wakefield acceleration in dielectric structures€¦ · reinvent resonant structure using...

Post on 09-Jul-2020

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Wakefield Acceleration inDielectric Structures

Wakefield Acceleration inDielectric Structures

J.B. RosenzweigUCLA Dept. of Physics and Astronomy

ICFA Workshop on Novel Concepts forLinear Accelerators and Colliders

SLAC, July 8, 2009

J.B. RosenzweigUCLA Dept. of Physics and Astronomy

ICFA Workshop on Novel Concepts forLinear Accelerators and Colliders

SLAC, July 8, 2009

Future colliders:ultra-high fields in the accelerator

Future colliders:ultra-high fields in the accelerator

High fields in violentaccelerating systems

High field implies shortRelativistic oscillations…Limit peak powerStored energy

ChallengesUltra-small beamsStructure breakdownPulsed heatingWhat sources < 1 cm?

High fields in violentaccelerating systems

High field implies shortRelativistic oscillations…Limit peak powerStored energy

ChallengesUltra-small beamsStructure breakdownPulsed heatingWhat sources < 1 cm?

eEz /mc ~ 1

Scaling the accelerator in sizeScaling the accelerator in size

Lasers produce copious power (~J, >TW)Scale in size by 4 orders of magnitude

< 1 m gives challenges in beam dynamicsReinvent resonant structure using dielectric (E163, UCLA)

To jump to GV/m, only need mm-THzMust have new source…

Lasers produce copious power (~J, >TW)Scale in size by 4 orders of magnitude

< 1 m gives challenges in beam dynamicsReinvent resonant structure using dielectric (E163, UCLA)

To jump to GV/m, only need mm-THzMust have new source…

Resonant dielectric laser-excitedstructure (HFSS simulation, UCLA)

Promising paradigm for high fieldaccelerators: wakefields

Promising paradigm for high fieldaccelerators: wakefields

Coherent radiation from bunched, v~c, e- beamAny impedance environmentPowers more exotic schemes: plasma, dielectrics

Non-resonant, short pulse operation possibleIntense beams needed by other fields

X-ray FELX-rays from Compton scatteringTHz sources

Coherent radiation from bunched, v~c, e- beamAny impedance environmentPowers more exotic schemes: plasma, dielectrics

Non-resonant, short pulse operation possibleIntense beams needed by other fields

X-ray FELX-rays from Compton scatteringTHz sources

High gradients, high frequency, EM powerfrom wakefields: CLIC @ CERN

High gradients, high frequency, EM powerfrom wakefields: CLIC @ CERN

CLIC wakefield-powered resonant scheme

CLIC 30 GHz,150 MV/m structures

CLIC drive beamextraction structure

Power

J. Rosenzweig, et al., Nucl. Instrum.Methods A 410 532 (1998).(concept borrowed from W. Gai…)

The dielectric wakefield acceleratorThe dielectric wakefield accelerator

Higher accelerating gradients: GV/m levelDielectric based, low loss, short pulseHigher gradient than optical? Different breakdown mechanismNo charged particles in beam path…

Use wakefield collider schemesCLIC style modular systemAfterburner possibility for existing accelerators

Spin-offsHigh power THz radiation source

Higher accelerating gradients: GV/m levelDielectric based, low loss, short pulseHigher gradient than optical? Different breakdown mechanismNo charged particles in beam path…

Use wakefield collider schemesCLIC style modular systemAfterburner possibility for existing accelerators

Spin-offsHigh power THz radiation source

Dielectric Wakefield AcceleratorOverview

Dielectric Wakefield AcceleratorOverview

Electron bunch ( 1) drives Cerenkovwake in cylindrical dielectric structure

Variations on structure featuresMultimode excitation

Wakefields accelerate trailing bunchMode wavelengths

n4 b a

n1

Peak decelerating field

eE z,dec4Nbremec

2

a 81 z a

Design Parameters a,b z

Ez on-axis, OOPIC

*

Extremely goodbeam needed

R Ez,acc

Ez,dec

2

Transformer ratio (unshaped beam)

Experimental HistoryArgonne / BNL experimentsExperimental History

Argonne / BNL experiments

Proof-of-principle experiments(W. Gai, et al.)

ANL AATF

Mode superposition(J. Power, et al. and S. Shchelkunov, et al.)

ANL AWA, BNL

Transformer ratio improvement(J. Power, et al.)

Beam shaping

Tunable permittivity structuresFor external feeding

(A. Kanareykin, et al.)

Proof-of-principle experiments(W. Gai, et al.)

ANL AATF

Mode superposition(J. Power, et al. and S. Shchelkunov, et al.)

ANL AWA, BNL

Transformer ratio improvement(J. Power, et al.)

Beam shaping

Tunable permittivity structuresFor external feeding

(A. Kanareykin, et al.)Tunable permittivity

E vs. witness delay

Gradients limited to <50 MV/m by available beam

T-481: Test-beam explorationof breakdown threshold

T-481: Test-beam explorationof breakdown threshold

Go beyond pioneering work at ANLMuch shorter pulses, small radial sizeHigher gradients…

Leverage off E167Goal: breakdown studies

Al-clad fused SiO2 fibersID 100/200 m, OD 325 m, L=1 cm

Avalanche v. tunneling ionizationBeam parameters indicate Ez 11GV/mcan be excited

3 nC, z 20 m, 28.5 GeV

48 hr FFTB run

Go beyond pioneering work at ANLMuch shorter pulses, small radial sizeHigher gradients…

Leverage off E167Goal: breakdown studies

Al-clad fused SiO2 fibersID 100/200 m, OD 325 m, L=1 cm

Avalanche v. tunneling ionizationBeam parameters indicate Ez 11GV/mcan be excited

3 nC, z 20 m, 28.5 GeV

48 hr FFTB runT-481 “octopus” chamber

T481: Methods and ResultsT481: Methods and Results

Multiple tube assembliesScanning of bunch lengths forwake amplitude variationVaporization of Al cladding…dielectric more robustObserved breakdown threshold(field from simulations)

13.8 GV/m surface field5.5 GV/m deceleration fieldMulti-mode effect?

Correlations to post-morteminspection

Multiple tube assembliesScanning of bunch lengths forwake amplitude variationVaporization of Al cladding…dielectric more robustObserved breakdown threshold(field from simulations)

13.8 GV/m surface field5.5 GV/m deceleration fieldMulti-mode effect?

Correlations to post-morteminspection

T481: Beam ObservationsT481: Beam Observations

View end of dielectric tube;frames sorted by increasing peak currentView end of dielectric tube;frames sorted by increasing peak current

T-481: Inspection of Structure DamageT-481: Inspection of Structure Damage

ultrashortbunch

longerbunch

Aluminum vaporized from pulsed heating!

Laser transmission test

Bisected fiber

Damage consistent with beam-induced discharge

OOPIC Simulation StudiesOOPIC Simulation StudiesParametric scans for designHeuristic model benchmarkingShow pulse duration in multimode excitation… hint at mechanismDetermine field levels in experiment: breakdown

Gives breakdown limit of 5.5 GV/m deceleration field

Multi-mode excitation – short, separated pulse

Example scan, comparison to heuristic model

0

5 10 9

1 10 10

1.5 10 10

40 60 80 100 120 140 160

E_dec,max (OOPIC)E_acc max (OOPIC)E_dec,theory

E z(V

/m)

a ( m)

E169 CollaborationE169 Collaboration

H. Badakov , M. Berry , I. Blumenfeld , A. Cook , F.-J. Decker ,M. Hogan , R. Ischebeck , R. Iverson , A. Kanareykin , N. Kirby ,

P. Muggli , J.B. Rosenzweig , R. Siemann , M.C. Thompson ,R. Tikhoplav , G. Travish , R. Yoder , D. Walz

Department of Physics and Astronomy, University of California, Los AngelesStanford Linear Accelerator CenterUniversity of Southern California

Lawrence Livermore National LaboratoryManhattanville CollegeEuclid TechLabs, LLC

Collaboration spokespersons

H. Badakov , M. Berry , I. Blumenfeld , A. Cook , F.-J. Decker ,M. Hogan , R. Ischebeck , R. Iverson , A. Kanareykin , N. Kirby ,

P. Muggli , J.B. Rosenzweig , R. Siemann , M.C. Thompson ,R. Tikhoplav , G. Travish , R. Yoder , D. Walz

Department of Physics and Astronomy, University of California, Los AngelesStanford Linear Accelerator CenterUniversity of Southern California

Lawrence Livermore National LaboratoryManhattanville CollegeEuclid TechLabs, LLC

Collaboration spokespersons

UCLA

E-169 MotivationE-169 Motivation

Take advantage of unique experimentalopportunity at SLAC

FACET: ultra-short intense beamsAdvanced accelerators for high energy frontierVery promising path: dielectric wakefields

Extend successful T-481 investigationsMulti-GV/m dielectric wakesComplete studies of transformational technique

Take advantage of unique experimentalopportunity at SLAC

FACET: ultra-short intense beamsAdvanced accelerators for high energy frontierVery promising path: dielectric wakefields

Extend successful T-481 investigationsMulti-GV/m dielectric wakesComplete studies of transformational technique

E169 at FACET: overviewE169 at FACET: overview

Research GV/m acceleration scheme in DWAGoals

Explore breakdown issues in detailDetermine usable field envelopeCoherent Cerenkov radiation measurementsExplore alternate materialsExplore alternate designs and cladding

Radial and longitudinal periodicity…Varying tube dimensions

Impedance changeBreakdown dependence on wake pulse length

Approved experiment (EPAC, Jan. 2007)Awaits FACET construction

Research GV/m acceleration scheme in DWAGoals

Explore breakdown issues in detailDetermine usable field envelopeCoherent Cerenkov radiation measurementsExplore alternate materialsExplore alternate designs and cladding

Radial and longitudinal periodicity…Varying tube dimensions

Impedance changeBreakdown dependence on wake pulse length

Approved experiment (EPAC, Jan. 2007)Awaits FACET construction

Already explored atUCLA Neptune

Observation of THz CoherentCerenkov Wakefields @ Neptune

Observation of THz CoherentCerenkov Wakefields @ Neptune

Chicane-compressed (200 m)0.3 nC beam

Focused with PMQ array tor~100 m (a=250 m)

Single mode operationTwo tubes, different b, THzfrequencies

Horn-launched quasi-opticaltransportAutocorrelation in Michelsoninterferometer

Chicane-compressed (200 m)0.3 nC beam

Focused with PMQ array tor~100 m (a=250 m)

Single mode operationTwo tubes, different b, THzfrequencies

Horn-launched quasi-opticaltransportAutocorrelation in Michelsoninterferometer

E-169: High-gradient AccelerationGoals in 3 Phases

E-169: High-gradient AccelerationGoals in 3 Phases

Phase 1: Complete breakdown study (whendoes E169->E168!)

Coherent Cerenkov (CCR) measurement

explore (a, b, z) parameter space

Alternate cladding

Alternate materials (e.g. CVD diamond)

Explore group velocity effect

z 20 m

r< 10 m

U 25 GeV

Q 3 - 5 nC

UCeNb E z,decLd

2

Un

2nNb2remec

2z2Ld

2a b a 2 8 1 z 1 aexp n z

2 b a 1

2

Total energy gives field measure

Harmonics are sensitive z diagnostic

T Ld / c vg Ld / c 1

FACET beam parameters forE169: high gradient case

Longitudinal E-fieldLongitudinal E-field

E-169 at FACET: Phase 2 & 3E-169 at FACET: Phase 2 & 3Phase 2: Observe acceleration10-33 cm tube length

longer bunch, acceleration of tail

“moderate” gradient, 1-3 GV/m

single mode operation

z50-150 m

r< 10 m

Eb25 GeV

Q 3 - 5 nCPhase 3: Scale to 1 m length

Momentum distribution after 33 cm (OOPIC)

*

Alignment, transverse wakes, BBU

Group velocity & EM exposureFACET beam parameters forE169: acceleration case

Experimental Issues: AlternateDWA design, cladding, materialsExperimental Issues: Alternate

DWA design, cladding, materials

Aluminum cladding in T-481

Dielectric cladding

Bragg fiber?Low HOM

Alternate dielectric: CVD diamondUltra-high breakdown thresholdDoping gives low SECFirst structures from Euclid Tech.

Vaporized at moderate wake amplitudes

Low vaporization threshold; low pressure

and thermal conductivity of environment

Lower refractive index provides internal reflection

Low power loss, damage resistant

Bragg fiberA. Kanareykin

CVD deposited diamond

Control of group velocity withperiodic structure

Control of group velocity withperiodic structure

For multiple pulse beamloaded operation in LC,may need low vg

Use periodic DWAstructure in ~ -modeExample: simple SiO2-diamond structure

For multiple pulse beamloaded operation in LC,may need low vg

Use periodic DWAstructure in ~ -modeExample: simple SiO2-diamond structure

Accelerating beam Driving beam

Alternate geometry: slabAlternate geometry: slab

Slab geometry suppressestransverse wakes*

Also connects to optical case

Price: reduced wakefieldInteresting tests at FACET

Slab example, >600 MV/m

Slab geometry suppressestransverse wakes*

Also connects to optical case

Price: reduced wakefieldInteresting tests at FACET

Slab example, >600 MV/m

*A. Tremaine, J. Rosenzweig, P. Schoessow,Phys. Rev. E 56, 7204 (1997)

Towards a linear collider…Towards a linear collider…

What have we learned?One might use gradients of 2-3 GV/m

Near to plasma w/o attendant challenges

Frequencies of interest are ~ few THz (?)Need nC level drive bunch, <50 m rms

What do we need to learn?Usable gradients, materials, agingStructure design features (e.g. slab, vg control)Transverse wakes, beam loadingFull system considerations

What have we learned?One might use gradients of 2-3 GV/m

Near to plasma w/o attendant challenges

Frequencies of interest are ~ few THz (?)Need nC level drive bunch, <50 m rms

What do we need to learn?Usable gradients, materials, agingStructure design features (e.g. slab, vg control)Transverse wakes, beam loadingFull system considerations

Parameter list: a departure pointParameter list: a departure point

Calculator from E. ColbyCalculator from E. Colby

Based on multibunch trainsOther optimizations possible (slab structures)

ILC Nominal DWA LC

E_cms GeV 1000 1000

Bunch Charge e 2.0E+10 5.0E+08

# bunches/train # 2820 200

train repetition rate kHz 5.0E-02 2.4

final bunch length psec 1.00 0.08

design wavelength micron 230609.58 300.00

Normalized emittances micron 10/0.04 2e-02/6e-04

I. P. Spot Size nm 554/3.5 25/0.5

Enh. Luminosity /cm^2/s 4.34E+34 1.14E+35Beam Power MW 22.6 19.2

Wall-Plug Power MW 104.0 76.9

Gradient MeV/m 30 2500Total Linac Length km 33.3 0.4

ConclusionsConclusions

Very promising technical approach in DWAPhysics surprisingly forgiving thus farLooks like an accelerator!

FACET should provide critical test-bedLinear collider system presents newchallenges

Unique problems of short , wakefieldsDevelop straw man now!

Very promising technical approach in DWAPhysics surprisingly forgiving thus farLooks like an accelerator!

FACET should provide critical test-bedLinear collider system presents newchallenges

Unique problems of short , wakefieldsDevelop straw man now!

top related