workshop operators and banach lattices welcome …obl/afernandez.pdf · welcome! this is a two-day...

Post on 19-Jul-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Welcome!

This is a two-day workshop bringing together specialists working in Operator theory and Banach lattices. The meeting will beheld at the Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, on Thursday 25 and Friday 26 October 2012.

If you wish to attend, please register by sending an email to obl@mat.ucm.es, indicating your name and institution, beforeOctober 21. Also, please let us know if you are interested in presenting a horizontal poster (paper, preprint...). There will be noregistration fee.

We look forward to seeing you in Madrid. The organizers:

Julio Flores (URJC), Francisco L. Hernández (UCM), Pedro Tradacete (UC3M).

Speakers

Félix Cabello, Universidad de Extremadura.

María J. Carro, Universidad de Barcelona.

Ben de Pagter, Delft University of Technology (The Netherlands).

Antonio Fernández-Carrión, Universidad de Sevilla.

Manuel González, Universidad de Cantabria.

Miguel Martín, Universidad de Granada.

Yves Raynaud, CNRS/Université Paris VI (France).

José Rodríguez, Universidad de Murcia.

Luis Rodríguez-Piazza, Universidad de Sevilla.

Workshop Operators and Banach lattices

Universidad Complutense de Madrid,Facultad de Ciencias Matemáticas,25-26 October 2012

WELCOME PROGRAMME LOCAL INFO PARTICIPANTS

Welcome!

This is a two-day workshop bringing together specialists working in Operator theory and Banach lattices. The meeting will beheld at the Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, on Thursday 25 and Friday 26 October 2012.

If you wish to attend, please register by sending an email to obl@mat.ucm.es, indicating your name and institution, beforeOctober 21. Also, please let us know if you are interested in presenting a horizontal poster (paper, preprint...). There will be noregistration fee.

We look forward to seeing you in Madrid. The organizers:

Julio Flores (URJC), Francisco L. Hernández (UCM), Pedro Tradacete (UC3M).

Speakers

Félix Cabello, Universidad de Extremadura.

María J. Carro, Universidad de Barcelona.

Ben de Pagter, Delft University of Technology (The Netherlands).

Antonio Fernández-Carrión, Universidad de Sevilla.

Manuel González, Universidad de Cantabria.

Miguel Martín, Universidad de Granada.

Yves Raynaud, CNRS/Université Paris VI (France).

José Rodríguez, Universidad de Murcia.

Luis Rodríguez-Piazza, Universidad de Sevilla.

Workshop Operators and Banach lattices

Universidad Complutense de Madrid,Facultad de Ciencias Matemáticas,25-26 October 2012

WELCOME PROGRAMME LOCAL INFO PARTICIPANTS

Welcome!

This is a two-day workshop bringing together specialists working in Operator theory and Banach lattices. The meeting will beheld at the Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, on Thursday 25 and Friday 26 October 2012.

If you wish to attend, please register by sending an email to obl@mat.ucm.es, indicating your name and institution, beforeOctober 21. Also, please let us know if you are interested in presenting a horizontal poster (paper, preprint...). There will be noregistration fee.

We look forward to seeing you in Madrid. The organizers:

Julio Flores (URJC), Francisco L. Hernández (UCM), Pedro Tradacete (UC3M).

Speakers

Félix Cabello, Universidad de Extremadura.

María J. Carro, Universidad de Barcelona.

Ben de Pagter, Delft University of Technology (The Netherlands).

Antonio Fernández-Carrión, Universidad de Sevilla.

Manuel González, Universidad de Cantabria.

Miguel Martín, Universidad de Granada.

Yves Raynaud, CNRS/Université Paris VI (France).

José Rodríguez, Universidad de Murcia.

Luis Rodríguez-Piazza, Universidad de Sevilla.

Workshop Operators and Banach lattices

Universidad Complutense de Madrid,Facultad de Ciencias Matemáticas,25-26 October 2012

WELCOME PROGRAMME LOCAL INFO PARTICIPANTS

Welcome!

This is a two-day workshop bringing together specialists working in Operator theory and Banach lattices. The meeting will beheld at the Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, on Thursday 25 and Friday 26 October 2012.

If you wish to attend, please register by sending an email to obl@mat.ucm.es, indicating your name and institution, beforeOctober 21. Also, please let us know if you are interested in presenting a horizontal poster (paper, preprint...). There will be noregistration fee.

We look forward to seeing you in Madrid. The organizers:

Julio Flores (URJC), Francisco L. Hernández (UCM), Pedro Tradacete (UC3M).

Speakers

Félix Cabello, Universidad de Extremadura.

María J. Carro, Universidad de Barcelona.

Ben de Pagter, Delft University of Technology (The Netherlands).

Antonio Fernández-Carrión, Universidad de Sevilla.

Manuel González, Universidad de Cantabria.

Miguel Martín, Universidad de Granada.

Yves Raynaud, CNRS/Université Paris VI (France).

José Rodríguez, Universidad de Murcia.

Luis Rodríguez-Piazza, Universidad de Sevilla.

Workshop Operators and Banach lattices

Universidad Complutense de Madrid,Facultad de Ciencias Matemáticas,25-26 October 2012

WELCOME PROGRAMME LOCAL INFO PARTICIPANTS

interpolation

Welcome!

This is a two-day workshop bringing together specialists working in Operator theory and Banach lattices. The meeting will beheld at the Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, on Thursday 25 and Friday 26 October 2012.

If you wish to attend, please register by sending an email to obl@mat.ucm.es, indicating your name and institution, beforeOctober 21. Also, please let us know if you are interested in presenting a horizontal poster (paper, preprint...). There will be noregistration fee.

We look forward to seeing you in Madrid. The organizers:

Julio Flores (URJC), Francisco L. Hernández (UCM), Pedro Tradacete (UC3M).

Speakers

Félix Cabello, Universidad de Extremadura.

María J. Carro, Universidad de Barcelona.

Ben de Pagter, Delft University of Technology (The Netherlands).

Antonio Fernández-Carrión, Universidad de Sevilla.

Manuel González, Universidad de Cantabria.

Miguel Martín, Universidad de Granada.

Yves Raynaud, CNRS/Université Paris VI (France).

José Rodríguez, Universidad de Murcia.

Luis Rodríguez-Piazza, Universidad de Sevilla.

Workshop Operators and Banach lattices

Universidad Complutense de Madrid,Facultad de Ciencias Matemáticas,25-26 October 2012

WELCOME PROGRAMME LOCAL INFO PARTICIPANTS

Welcome!

This is a two-day workshop bringing together specialists working in Operator theory and Banach lattices. The meeting will beheld at the Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, on Thursday 25 and Friday 26 October 2012.

If you wish to attend, please register by sending an email to obl@mat.ucm.es, indicating your name and institution, beforeOctober 21. Also, please let us know if you are interested in presenting a horizontal poster (paper, preprint...). There will be noregistration fee.

We look forward to seeing you in Madrid. The organizers:

Julio Flores (URJC), Francisco L. Hernández (UCM), Pedro Tradacete (UC3M).

Speakers

Félix Cabello, Universidad de Extremadura.

María J. Carro, Universidad de Barcelona.

Ben de Pagter, Delft University of Technology (The Netherlands).

Antonio Fernández-Carrión, Universidad de Sevilla.

Manuel González, Universidad de Cantabria.

Miguel Martín, Universidad de Granada.

Yves Raynaud, CNRS/Université Paris VI (France).

José Rodríguez, Universidad de Murcia.

Luis Rodríguez-Piazza, Universidad de Sevilla.

Workshop Operators and Banach lattices

Universidad Complutense de Madrid,Facultad de Ciencias Matemáticas,25-26 October 2012

WELCOME PROGRAMME LOCAL INFO PARTICIPANTS

interpolation integrable

Welcome!

This is a two-day workshop bringing together specialists working in Operator theory and Banach lattices. The meeting will beheld at the Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, on Thursday 25 and Friday 26 October 2012.

If you wish to attend, please register by sending an email to obl@mat.ucm.es, indicating your name and institution, beforeOctober 21. Also, please let us know if you are interested in presenting a horizontal poster (paper, preprint...). There will be noregistration fee.

We look forward to seeing you in Madrid. The organizers:

Julio Flores (URJC), Francisco L. Hernández (UCM), Pedro Tradacete (UC3M).

Speakers

Félix Cabello, Universidad de Extremadura.

María J. Carro, Universidad de Barcelona.

Ben de Pagter, Delft University of Technology (The Netherlands).

Antonio Fernández-Carrión, Universidad de Sevilla.

Manuel González, Universidad de Cantabria.

Miguel Martín, Universidad de Granada.

Yves Raynaud, CNRS/Université Paris VI (France).

José Rodríguez, Universidad de Murcia.

Luis Rodríguez-Piazza, Universidad de Sevilla.

Workshop Operators and Banach lattices

Universidad Complutense de Madrid,Facultad de Ciencias Matemáticas,25-26 October 2012

WELCOME PROGRAMME LOCAL INFO PARTICIPANTS

Welcome!

This is a two-day workshop bringing together specialists working in Operator theory and Banach lattices. The meeting will beheld at the Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, on Thursday 25 and Friday 26 October 2012.

If you wish to attend, please register by sending an email to obl@mat.ucm.es, indicating your name and institution, beforeOctober 21. Also, please let us know if you are interested in presenting a horizontal poster (paper, preprint...). There will be noregistration fee.

We look forward to seeing you in Madrid. The organizers:

Julio Flores (URJC), Francisco L. Hernández (UCM), Pedro Tradacete (UC3M).

Speakers

Félix Cabello, Universidad de Extremadura.

María J. Carro, Universidad de Barcelona.

Ben de Pagter, Delft University of Technology (The Netherlands).

Antonio Fernández-Carrión, Universidad de Sevilla.

Manuel González, Universidad de Cantabria.

Miguel Martín, Universidad de Granada.

Yves Raynaud, CNRS/Université Paris VI (France).

José Rodríguez, Universidad de Murcia.

Luis Rodríguez-Piazza, Universidad de Sevilla.

Workshop Operators and Banach lattices

Universidad Complutense de Madrid,Facultad de Ciencias Matemáticas,25-26 October 2012

WELCOME PROGRAMME LOCAL INFO PARTICIPANTS

interpolation integrable

measure

Welcome!

This is a two-day workshop bringing together specialists working in Operator theory and Banach lattices. The meeting will beheld at the Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, on Thursday 25 and Friday 26 October 2012.

If you wish to attend, please register by sending an email to obl@mat.ucm.es, indicating your name and institution, beforeOctober 21. Also, please let us know if you are interested in presenting a horizontal poster (paper, preprint...). There will be noregistration fee.

We look forward to seeing you in Madrid. The organizers:

Julio Flores (URJC), Francisco L. Hernández (UCM), Pedro Tradacete (UC3M).

Speakers

Félix Cabello, Universidad de Extremadura.

María J. Carro, Universidad de Barcelona.

Ben de Pagter, Delft University of Technology (The Netherlands).

Antonio Fernández-Carrión, Universidad de Sevilla.

Manuel González, Universidad de Cantabria.

Miguel Martín, Universidad de Granada.

Yves Raynaud, CNRS/Université Paris VI (France).

José Rodríguez, Universidad de Murcia.

Luis Rodríguez-Piazza, Universidad de Sevilla.

Workshop Operators and Banach lattices

Universidad Complutense de Madrid,Facultad de Ciencias Matemáticas,25-26 October 2012

WELCOME PROGRAMME LOCAL INFO PARTICIPANTS

Welcome!

This is a two-day workshop bringing together specialists working in Operator theory and Banach lattices. The meeting will beheld at the Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, on Thursday 25 and Friday 26 October 2012.

If you wish to attend, please register by sending an email to obl@mat.ucm.es, indicating your name and institution, beforeOctober 21. Also, please let us know if you are interested in presenting a horizontal poster (paper, preprint...). There will be noregistration fee.

We look forward to seeing you in Madrid. The organizers:

Julio Flores (URJC), Francisco L. Hernández (UCM), Pedro Tradacete (UC3M).

Speakers

Félix Cabello, Universidad de Extremadura.

María J. Carro, Universidad de Barcelona.

Ben de Pagter, Delft University of Technology (The Netherlands).

Antonio Fernández-Carrión, Universidad de Sevilla.

Manuel González, Universidad de Cantabria.

Miguel Martín, Universidad de Granada.

Yves Raynaud, CNRS/Université Paris VI (France).

José Rodríguez, Universidad de Murcia.

Luis Rodríguez-Piazza, Universidad de Sevilla.

Workshop Operators and Banach lattices

Universidad Complutense de Madrid,Facultad de Ciencias Matemáticas,25-26 October 2012

WELCOME PROGRAMME LOCAL INFO PARTICIPANTS

interpolation integrable

measure

Welcome!

This is a two-day workshop bringing together specialists working in Operator theory and Banach lattices. The meeting will beheld at the Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, on Thursday 25 and Friday 26 October 2012.

If you wish to attend, please register by sending an email to obl@mat.ucm.es, indicating your name and institution, beforeOctober 21. Also, please let us know if you are interested in presenting a horizontal poster (paper, preprint...). There will be noregistration fee.

We look forward to seeing you in Madrid. The organizers:

Julio Flores (URJC), Francisco L. Hernández (UCM), Pedro Tradacete (UC3M).

Speakers

Félix Cabello, Universidad de Extremadura.

María J. Carro, Universidad de Barcelona.

Ben de Pagter, Delft University of Technology (The Netherlands).

Antonio Fernández-Carrión, Universidad de Sevilla.

Manuel González, Universidad de Cantabria.

Miguel Martín, Universidad de Granada.

Yves Raynaud, CNRS/Université Paris VI (France).

José Rodríguez, Universidad de Murcia.

Luis Rodríguez-Piazza, Universidad de Sevilla.

Workshop Operators and Banach lattices

Universidad Complutense de Madrid,Facultad de Ciencias Matemáticas,25-26 October 2012

WELCOME PROGRAMME LOCAL INFO PARTICIPANTS

Welcome!

This is a two-day workshop bringing together specialists working in Operator theory and Banach lattices. The meeting will beheld at the Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, on Thursday 25 and Friday 26 October 2012.

If you wish to attend, please register by sending an email to obl@mat.ucm.es, indicating your name and institution, beforeOctober 21. Also, please let us know if you are interested in presenting a horizontal poster (paper, preprint...). There will be noregistration fee.

We look forward to seeing you in Madrid. The organizers:

Julio Flores (URJC), Francisco L. Hernández (UCM), Pedro Tradacete (UC3M).

Speakers

Félix Cabello, Universidad de Extremadura.

María J. Carro, Universidad de Barcelona.

Ben de Pagter, Delft University of Technology (The Netherlands).

Antonio Fernández-Carrión, Universidad de Sevilla.

Manuel González, Universidad de Cantabria.

Miguel Martín, Universidad de Granada.

Yves Raynaud, CNRS/Université Paris VI (France).

José Rodríguez, Universidad de Murcia.

Luis Rodríguez-Piazza, Universidad de Sevilla.

Workshop Operators and Banach lattices

Universidad Complutense de Madrid,Facultad de Ciencias Matemáticas,25-26 October 2012

WELCOME PROGRAMME LOCAL INFO PARTICIPANTS

Interpolation of spaces of integrable functions with respect to a vector measure

Antonio Fernández (Universidad de Sevilla)

interpolation integrable

measure

The team (FQM–133).

The Bartle–Dunford–Schwartz integral.

The Bartle–Dunford–Schwartz integral.

The ingredients: set, sigma-algebra

( delta-ring), Banach space and

( ) vector measure.

⌦ ⌃

R X

m : ⌃ ! X ⌫ : R ! X

The Bartle–Dunford–Schwartz integral.

The ingredients: set, sigma-algebra

( delta-ring), Banach space and

( ) vector measure.

The definition. A measurable function

⌦ ⌃

R X

m : ⌃ ! X ⌫ : R ! X

f : ⌦ �! K

The Bartle–Dunford–Schwartz integral.

Measurable. (sigma-algebra)

f : ⌦ �! K

The Bartle–Dunford–Schwartz integral.

Measurable. (sigma-algebra)

f : ⌦ �! KRloc := {A ⇢ ⌦ : A \B 2 R, 8B 2 R}

The Bartle–Dunford–Schwartz integral.

Measurable. (sigma-algebra)

Null set.

f : ⌦ �! KRloc := {A ⇢ ⌦ : A \B 2 R, 8B 2 R}

The Bartle–Dunford–Schwartz integral.

Measurable. (sigma-algebra)

Null set.

f : ⌦ �! K

h⌫, x0i (A) := h⌫(A), x0i , A 2 RR ⌫�! X

x

0�! K, x

0 2 X

0

Rloc := {A ⇢ ⌦ : A \B 2 R, 8B 2 R}

The Bartle–Dunford–Schwartz integral.

Measurable. (sigma-algebra)

Null set.

f : ⌦ �! K

h⌫, x0i (A) := h⌫(A), x0i , A 2 R

k⌫k : A 2 Rloc �! k⌫k(A) 2 [0,1]

R ⌫�! X

x

0�! K, x

0 2 X

0

Rloc := {A ⇢ ⌦ : A \B 2 R, 8B 2 R}

k⌫k(A) := sup {|h⌫, x0i| (A) : kx0k 1}

The Bartle–Dunford–Schwartz integral.

Measurable. (sigma-algebra)

Null set.

A set is said to be null if

f : ⌦ �! K

A 2 Rloc

h⌫, x0i (A) := h⌫(A), x0i , A 2 R

k⌫k : A 2 Rloc �! k⌫k(A) 2 [0,1]

k⌫k(A) = 0.

R ⌫�! X

x

0�! K, x

0 2 X

0

Rloc := {A ⇢ ⌦ : A \B 2 R, 8B 2 R}

k⌫k(A) := sup {|h⌫, x0i| (A) : kx0k 1}

The Bartle–Dunford–Schwartz integral.

The ingredients: set, sigma-algebra

( delta-ring), Banach space and

( ) vector measure.

The definition. A measurable function

⌦ ⌃

R X

m : ⌃ ! X ⌫ : R ! X

f : ⌦ �! K

The Bartle–Dunford–Schwartz integral.

The ingredients: set, sigma-algebra

( delta-ring), Banach space and

( ) vector measure.

The definition. A measurable function

is said to be integrable if:

I) for each x

0 2 X

0,

⌦ ⌃

R X

m : ⌃ ! X ⌫ : R ! X

f : ⌦ �! K

f 2 L

1 (|h⌫, x0i|)

The Bartle–Dunford–Schwartz integral.

The ingredients: set, sigma-algebra

( delta-ring), Banach space and

( ) vector measure.

The definition. A measurable function

is said to be integrable if:

I) for each and

II) For every there exists

such that

x

0 2 X

0,

A 2 Rloc

⌦ ⌃

R X

m : ⌃ ! X ⌫ : R ! X

f : ⌦ �! K

f 2 L

1 (|h⌫, x0i|) Z

Afd⌫ 2 X

⌧Z

Afd⌫, x

0�

=

Z

Afd h⌫, x0i , x

0 2 X

0.

The function spaces.

The function spaces.

L1w(⌫) := {f : ⌦ �! K : I)} ,

L1(⌫) := {f : ⌦ �! K : I)+ II)} .

The function spaces.

kfk1 := sup

⇢Z

⌦|f | d |h⌫, x0i| : kx0k 1

�.

L1w(⌫) := {f : ⌦ �! K : I)} ,

L1(⌫) := {f : ⌦ �! K : I)+ II)} .

The function spaces.

For

kfk1 := sup

⇢Z

⌦|f | d |h⌫, x0i| : kx0k 1

�.

1 p < 1

L1w(⌫) := {f : ⌦ �! K : I)} ,

L1(⌫) := {f : ⌦ �! K : I)+ II)} .

Lpw(⌫) :=

�f : ⌦ �! K : |f |p 2 L1

w(⌫) ,

Lp(⌫) :=�f : ⌦ �! K : |f |p 2 L1(⌫)

.

The function spaces.

For

kfk1 := sup

⇢Z

⌦|f | d |h⌫, x0i| : kx0k 1

�.

kfkp := sup

(✓Z

⌦|f |p d |h⌫, x0i|

◆ 1p

: kx0k 1

).

1 p < 1

L1w(⌫) := {f : ⌦ �! K : I)} ,

L1(⌫) := {f : ⌦ �! K : I)+ II)} .

Lpw(⌫) :=

�f : ⌦ �! K : |f |p 2 L1

w(⌫) ,

Lp(⌫) :=�f : ⌦ �! K : |f |p 2 L1(⌫)

.

Basic properties.

Basic properties.

1) is a Banach lattice with o.c.n:

Lp(⌫)

Basic properties.

1) is a Banach lattice with o.c.n:

Lp(⌫)

0 fn " f 2 Lp(⌫) ) kfn � fkp ! 0.

Basic properties.

1) is a Banach lattice with o.c.n:

2) is a Banach lattice with the Fatou

property:

Lp(⌫)

0 fn " f 2 Lp(⌫) ) kfn � fkp ! 0.

Lpw(⌫)

Basic properties.

1) is a Banach lattice with o.c.n:

2) is a Banach lattice with the Fatou

property:

Lp(⌫)

0 fn " f 2 Lp(⌫) ) kfn � fkp ! 0.

Lpw(⌫)

0 fn " f 2 L0(⌫),

supn kfnkp < 1

))

8<

:

f 2 Lpw(⌫),

limn

kfnkp = kfkp .

Basic properties.

1) is a Banach lattice with o.c.n:

2) is a Banach lattice with the Fatou

property:

3) If then

Lp(⌫)

0 fn " f 2 Lp(⌫) ) kfn � fkp ! 0.

Lpw(⌫)

0 fn " f 2 L0(⌫),

supn kfnkp < 1

))

8<

:

f 2 Lpw(⌫),

limn

kfnkp = kfkp .

⌫ = µ, Lp(⌫) = Lpw(⌫) = Lp(µ).

Basic properties.

1) is a Banach lattice with o.c.n:

2) is a Banach lattice with the Fatou

property:

3) If then

In general,

Lp(⌫)

0 fn " f 2 Lp(⌫) ) kfn � fkp ! 0.

Lpw(⌫)

0 fn " f 2 L0(⌫),

supn kfnkp < 1

))

8<

:

f 2 Lpw(⌫),

limn

kfnkp = kfkp .

⌫ = µ, Lp(⌫) = Lpw(⌫) = Lp(µ).

Lp(⌫) Lpw(⌫).

Basic properties.

4) and can be non reflexive, even if

Lp(⌫) Lpw(⌫)

p > 1.

Basic properties.

4) and can be non reflexive, even if

5) If then

Lp(⌫) Lpw(⌫)

p > 1.

1 p1 < p2 < 1,

Lp2w (m) ⇢ Lp1

w (m) ⇢ L1w(m) ⇢ L0(m)

[ [ [L1(m) ⇢ Lp2(m) ⇢ Lp1(m) ⇢ L1(m)

Basic properties.

4) and can be non reflexive, even if

5) If then

Lp2w (m) ⇢ Lp1

w (m) ⇢ L1w(m) ⇢ L0(m)

[ [ [L1(m) ⇢ Lp2(m) ⇢ Lp1(m) ⇢ L1(m)

Lp(⌫) Lpw(⌫)

p > 1.

1 p1 < p2 < 1,

Basic properties.

4) and can be non reflexive, even if

5) If then

6) In general,

Lp2w (m) ⇢ Lp1

w (m) ⇢ L1w(m) ⇢ L0(m)

[ [ [L1(m) ⇢ Lp2(m) ⇢ Lp1(m) ⇢ L1(m)

Lp(⌫) Lpw(⌫)

p > 1.

1 p1 < p2 < 1,

L1(⌫) 6✓ L1(⌫).

Basic properties.

4) and can be non reflexive, even if

5) If then

6) In general,

7) and

Lp2w (m) ⇢ Lp1

w (m) ⇢ L1w(m) ⇢ L0(m)

[ [ [L1(m) ⇢ Lp2(m) ⇢ Lp1(m) ⇢ L1(m)

Lp(⌫) Lpw(⌫)

Lp(m) Lp[0, 1] Lp(⌫) Lp (R)

p > 1.

1 p1 < p2 < 1,

L1(⌫) 6✓ L1(⌫).

Interpolation methods.

Interpolation methods.

Let be a (compatible) couple of Banach

spaces.

(X0, X1)

X0 \X1,! F(X0, X1) ,!X0 +X1

Interpolation methods.

Let be a (compatible) couple of Banach

spaces. An interpolation method

with the interpolation property:

X0 \X1 ,! F(X0, X1) ,! X0 +X1

F

(X0, X1)

Interpolation methods.

Let be a (compatible) couple of Banach

spaces. An interpolation method

with the interpolation property:

X0T�! Y0

X1T�! Y1

9>=

>;) F(X0, X1)

T�! F(Y0, Y1)

X0 \X1 ,! F(X0, X1) ,! X0 +X1

F

(X0, X1)

Compatible couple of Banach spaces.

Compatible couple of Banach spaces.

If and sigma-finite

1 p0 6= p1 < 1 ⌫ : R ! X

⌦ =[

n�1

⌦n [N, (⌦n)n ✓ R, k⌫k(N) = 0,

Compatible couple of Banach spaces.

If and sigma-finite

we can consider the following (compatible) couples

of Banach spaces:

1 p0 6= p1 < 1 ⌫ : R ! X

⌦ =[

n�1

⌦n [N, (⌦n)n ✓ R, k⌫k(N) = 0,

(Lp0(⌫), Lp1(⌫)) (Lp0w (⌫), Lp1

w (⌫))

(Lp0w (⌫), Lp1(⌫)) (Lp0(⌫), Lp1

w (⌫))

Compatible couple of Banach spaces.

If and sigma-finite

we can consider the following (compatible) couples

of Banach spaces:

The ambient space:

1 p0 6= p1 < 1 ⌫ : R ! X

L0(⌫).

⌦ =[

n�1

⌦n [N, (⌦n)n ✓ R, k⌫k(N) = 0,

(Lp0(⌫), Lp1(⌫)) (Lp0w (⌫), Lp1

w (⌫))

(Lp0w (⌫), Lp1(⌫)) (Lp0(⌫), Lp1

w (⌫))

Complex methods. [Calderón (1964)]

Complex methods. [Calderón (1964)]

[X0, X1][✓] ,! X1�✓0 X✓

1 ,! [X0, X1][✓] , 0 < ✓ < 1.

Complex methods. [Calderón (1964)]

1) Calderón-Lozanowskiĭ product: X1�✓0 X✓

1 .

[X0, X1][✓] ,! X1�✓0 X✓

1 ,! [X0, X1][✓] , 0 < ✓ < 1.

Complex methods. [Calderón (1964)]

1) Calderón-Lozanowskiĭ product:

2) If or has order continuous norm:

[X0, X1][✓] = X1�✓0 X✓

1 ,! [X0, X1][✓] , 0 < ✓ < 1.

X0 X1

X1�✓0 X✓

1 .

[X0, X1][✓] ,! X1�✓0 X✓

1 ,! [X0, X1][✓] , 0 < ✓ < 1.

Complex methods. [Calderón (1964)]

1) Calderón-Lozanowskiĭ product:

2) If or has order continuous norm:

3) If and have the Fatou property:

[X0, X1][✓] = X1�✓0 X✓

1 ,! [X0, X1][✓] , 0 < ✓ < 1.

[X0, X1][✓] ,! X1�✓0 X✓

1 = [X0, X1][✓] , 0 < ✓ < 1.

X0 X1

X1�✓0 X✓

1 .

X0 X1

[X0, X1][✓] ,! X1�✓0 X✓

1 ,! [X0, X1][✓] , 0 < ✓ < 1.

Complex methods. [Calderón (1964)]

1) Calderón-Lozanowskiĭ product:

2) If or has order continuous norm:

3) If and have the Fatou property:

4)

[Lp0(µ), Lp1(µ)][✓]=(Lp0(µ))1�✓ (Lp1(µ))✓

=[Lp0(µ), Lp1(µ)][✓]= Lp(µ).

1 p0, p1 1

1

p:=

1� ✓

p0+

p1

[X0, X1][✓] = X1�✓0 X✓

1 ,! [X0, X1][✓] , 0 < ✓ < 1.

[X0, X1][✓] ,! X1�✓0 X✓

1 = [X0, X1][✓] , 0 < ✓ < 1.

X0 X1

X1�✓0 X✓

1 .

X0 X1

[X0, X1][✓] ,! X1�✓0 X✓

1 ,! [X0, X1][✓] , 0 < ✓ < 1.

Complex methods: the problem.

For sigma-finite, and

describe

0 < ✓ < 1 p0 6= p1 1⌫ : R ! X

[Lp0(⌫), Lp1(⌫)][✓] , [Lp0(⌫), Lp1(⌫)][✓] ,

[Lp0(⌫), Lp1w (⌫)][✓] , [Lp0(⌫), Lp1

w (⌫)][✓] ,

[Lp0w (⌫), Lp1(⌫)][✓] , [Lp0

w (⌫), Lp1(⌫)][✓] ,

[Lp0w (⌫), Lp1

w (⌫)][✓] , [Lp0w (⌫), Lp1

w (⌫)][✓] .

Complex method [.,.]θ (sigma-algebra).

Complex method [.,.]θ (sigma-algebra).

[Mayoral, Naranjo, Sánchez-Pérez & AF, 2010]

If and

then

0 < ✓ < 1 p0 6= p1 1m : ⌃ ! X

Complex method [.,.]θ (sigma-algebra).

[Mayoral, Naranjo, Sánchez-Pérez & AF, 2010]

If and

then

0 < ✓ < 1 p0 6= p1 1

1

p:=

1� ✓

p0+

p1

m : ⌃ ! X

[·, ·]✓ Lp0(m) Lp0w (m)

Lp1w (m)

Lp1(m)

Lp(m)

Lp(m) Lp(m)

Lp(m)

Complex method [.,.]θ (sigma-algebra).

Complex method [.,.]θ (sigma-algebra).

[Mayoral, Naranjo, Sánchez-Pérez & AF, 2010]

If and

then

0 < ✓ < 1 p0 6= p1 1m : ⌃ ! X

Complex method [.,.]θ (sigma-algebra).

[Mayoral, Naranjo, Sánchez-Pérez & AF, 2010]

If and

then

1

p:=

1� ✓

p0+

p1

Lp0(m) Lp0w (m)

Lp1w (m)

Lp1(m)

[·, ·]✓

Lpw(m)Lp

w(m)

Lpw(m) Lp

w(m)

0 < ✓ < 1 p0 6= p1 1m : ⌃ ! X

Complex methods (delta-ring).

Complex methods (delta-ring).

[·, ·]✓ Lp0(m) Lp0w (m)

Lp1w (m)

Lp1(m)

Lp(m)

Lp(m) Lp(m)

Lp(m)

Lp0(m) Lp0w (m)

Lp1w (m)

Lp1(m)

[·, ·]✓

Lpw(m)Lp

w(m)

Lpw(m) Lp

w(m)(R)

(R)(R)

(R)(⌃)

(⌃)(⌃)

(⌃)

Complex methods (delta-ring).

[·, ·]✓ Lp0(m) Lp0w (m)

Lp1w (m)

Lp1(m)

Lp(m)

Lp(m) Lp(m)

Lp(m)

Lp0(m) Lp0w (m)

Lp1w (m)

Lp1(m)

[·, ·]✓

Lpw(m)Lp

w(m)

Lpw(m) Lp

w(m)

(R)

(R)(⌃)

(⌃)(⌃)

(⌃)

Complex methods (delta-ring). Example.

Complex methods (delta-ring). Example.

Let be the delta-ring of finite subsets of

natural numbers, and consider the measure

Pf (N)

⌫ : A 2 Pf (N) �! ⌫(A) := �A 2 c0.

Complex methods (delta-ring). Example.

Let be the delta-ring of finite subsets of

natural numbers, and consider the measure

It is not difficult to show that

Pf (N)

⌫ : A 2 Pf (N) �! ⌫(A) := �A 2 c0.

Lp(⌫) = c0 ✓ Lpw(⌫) = `1, 1 p < 1.

Complex methods (delta-ring). Example.

Let be the delta-ring of finite subsets of

natural numbers, and consider the measure

It is not difficult to show that

Then, for 1 p0, p1 < 1,

Pf (N)

⌫ : A 2 Pf (N) �! ⌫(A) := �A 2 c0.

Lp(⌫) = c0 ✓ Lpw(⌫) = `1, 1 p < 1.

[Lp0w (⌫), Lp1

w (⌫)][✓] = [`1, `1][✓] = `1 = Lpw(⌫),

[Lp0(⌫), Lp1(⌫)][✓] = [c0, c0][✓] = c0 = Lp(⌫).

Intermediate spaces (sigma-algebra).

Intermediate spaces (sigma-algebra).

If and where

then

1 p0 6= p1 1r := min{p0, p1} < s := max{p0, p1},

r < p < s,

Ls(m) ✓ Lsw(m) ✓ Lp(m) ✓ Lp

w(m) ✓ Lr(m) ✓ Lrw(m).

Intermediate spaces (sigma-algebra).

If and where

then

[Mayoral, Naranjo, Sáez, Sánchez-Pérez & AF 2006]

1 p0 6= p1 1r := min{p0, p1} < s := max{p0, p1},

r < p < s,

Ls(m) ✓ Lsw(m) ✓ Lp(m) ✓ Lp

w(m) ✓ Lr(m) ✓ Lrw(m).

Intermediate spaces (sigma-algebra).

If and where

then

[Mayoral, Naranjo, Sáez, Sánchez-Pérez & AF 2006]

1 p0 6= p1 1r := min{p0, p1} < s := max{p0, p1},

r < p < s,

Ls(m) ✓ Lsw(m) ✓ Lp(m) ✓ Lp

w(m) ✓ Lr(m) ✓ Lrw(m).

Lp0(m) \ Lp1(m)

Lp0w (m) \ Lp1(m)

Lp0(m) \ Lp1w (m)

Lp0w (m) \ Lp1

w (m)

Intermediate spaces (sigma-algebra).

If and where

then

[Mayoral, Naranjo, Sáez, Sánchez-Pérez & AF 2006]

1 p0 6= p1 1r := min{p0, p1} < s := max{p0, p1},

r < p < s,

Ls(m) ✓ Lsw(m) ✓ Lp(m) ✓ Lp

w(m) ✓ Lr(m) ✓ Lrw(m).

Lp0(m) \ Lp1(m)

Lp0w (m) \ Lp1(m)

Lp0(m) \ Lp1w (m)

Lp0w (m) \ Lp1

w (m)

Intermediate spaces (sigma-algebra).

If and where

then

[Mayoral, Naranjo, Sáez, Sánchez-Pérez & AF 2006]

1 p0 6= p1 1r := min{p0, p1} < s := max{p0, p1},

r < p < s,

Ls(m) ✓ Lsw(m) ✓ Lp(m) ✓ Lp

w(m) ✓ Lr(m) ✓ Lrw(m).

Lp0(m) \ Lp1(m)

Lp0w (m) \ Lp1(m)

Lp0(m) \ Lp1w (m)

Lp0w (m) \ Lp1

w (m)

Lp0(m) + Lp1(m)

Lp0w (m) + Lp1(m)

Lp0(m) + Lp1w (m)

Lp0w (m) + Lp1

w (m)

Intermediate spaces (sigma-algebra).

If and where

then

[Mayoral, Naranjo, Sáez, Sánchez-Pérez & AF 2006]

1 p0 6= p1 1r := min{p0, p1} < s := max{p0, p1},

r < p < s,

Ls(m) ✓ Lsw(m) ✓ Lp(m) ✓ Lp

w(m) ✓ Lr(m) ✓ Lrw(m).

Lp0(m) \ Lp1(m)

Lp0w (m) \ Lp1(m)

Lp0(m) \ Lp1w (m)

Lp0w (m) \ Lp1

w (m)

Lp0(m) + Lp1(m)

Lp0w (m) + Lp1(m)

Lp0(m) + Lp1w (m)

Lp0w (m) + Lp1

w (m)

Gain of integrability (sigma-algebra).

Gain of integrability (sigma-algebra).

[Mayoral, Naranjo, Sáez, Sánchez-Pérez & AF 2006]

If then

r < s, Lsw(m) ✓ Lr(m).

Gain of integrability (sigma-algebra).

[Mayoral, Naranjo, Sáez, Sánchez-Pérez & AF 2006]

If then

f 2 Lsw(m) ✓ Lr

w(m)f

r < s, Lsw(m) ✓ Lr(m).

Gain of integrability (sigma-algebra).

[Mayoral, Naranjo, Sáez, Sánchez-Pérez & AF 2006]

If then

f�[fn] 2 Lr(m)

f 2 Lsw(m) ✓ Lr

w(m)f

n f�[fn]

r < s, Lsw(m) ✓ Lr(m).

Gain of integrability (sigma-algebra).

[Mayoral, Naranjo, Sáez, Sánchez-Pérez & AF 2006]

If then

f�[fn] 2 Lr(m)

f 2 Lsw(m) ✓ Lr

w(m)

��f � f�[fn]

��Lr

w(m)! 0

f

n f�[fn]

r < s, Lsw(m) ✓ Lr(m).

Intermediate spaces (delta-ring).

Intermediate spaces (delta-ring).

If then

1 p0 < p < p1 < 1,

(i) Lp0w (⌫) \ Lp1

w (⌫) ✓ Lpw(⌫) ✓ Lp0

w (⌫) + Lp1w (⌫).

(ii) Lp0(⌫) \ Lp1(⌫) ✓ Lp(⌫) ✓ Lp0(⌫) + Lp1(⌫).

(iii) Lp0(⌫) \ Lp1w (⌫) ✓ Lp(⌫) ✓ Lp0(⌫) + Lp1

w (⌫).

(iv) Lp0w (⌫) \ Lp1(⌫) ✓ Lp(⌫) ✓ Lp0

w (⌫) + Lp1(⌫).

Intermediate spaces (delta-ring).

If then

Nevertheless,

1 p0 < p < p1 < 1,

(i) Lp0w (⌫) \ Lp1

w (⌫) ✓ Lpw(⌫) ✓ Lp0

w (⌫) + Lp1w (⌫).

(ii) Lp0(⌫) \ Lp1(⌫) ✓ Lp(⌫) ✓ Lp0(⌫) + Lp1(⌫).

(iii) Lp0(⌫) \ Lp1w (⌫) ✓ Lp(⌫) ✓ Lp0(⌫) + Lp1

w (⌫).

(iv) Lp0w (⌫) \ Lp1(⌫) ✓ Lp(⌫) ✓ Lp0

w (⌫) + Lp1(⌫).

Lp0w (⌫) \ Lp1

w (⌫) 6✓ Lp(⌫),

Lpw(⌫) 6✓ Lp0(⌫) + Lp1(⌫).

Locally strongly additive measure.

Locally strongly additive measure.

is said to be locally strongly additive if

for each disjoint sequence

such that

⌫ : R ! X

limn!1

k⌫(An)kX = 0

(An)n ✓ R k⌫k⇣S

n�1 An

⌘< 1.

Locally strongly additive measure.

is said to be locally strongly additive if

for each disjoint sequence

such that

1) The Lebesgue measure is l.s.a.

⌫ : R ! X

limn!1

k⌫(An)kX = 0

(An)n ✓ R k⌫k⇣S

n�1 An

⌘< 1.

Locally strongly additive measure.

is said to be locally strongly additive if

for each disjoint sequence

such that

1) The Lebesgue measure is l.s.a.

2) is not

locally strongly additive.

⌫ : R ! X

limn!1

k⌫(An)kX = 0

(An)n ✓ R k⌫k⇣S

n�1 An

⌘< 1.

k⌫k(A) = 1,? 6= A 2 Pf (N), k⌫k(?) = 0

⌫ : A 2 Pf (N) �! ⌫(A) := �A 2 c0

Locally strongly additive measure.

is said to be locally strongly additive if

for each disjoint sequence

such that

1) The Lebesgue measure is l.s.a.

2) is not

locally strongly additive.

3) Every is (locally) strongly additive.

⌫ : R ! X

limn!1

k⌫(An)kX = 0

(An)n ✓ R k⌫k⇣S

n�1 An

⌘< 1.

m : ⌃ ! X

k⌫k(A) = 1,? 6= A 2 Pf (N), k⌫k(?) = 0

⌫ : A 2 Pf (N) �! ⌫(A) := �A 2 c0

Intermediate spaces (delta-ring).

Intermediate spaces (delta-ring).

[del Campo, Mayoral, Naranjo & AF, 2012]

Let The following assertions are

equivalent:

1 p0 < p1 < 1.

Intermediate spaces (delta-ring).

[del Campo, Mayoral, Naranjo & AF, 2012]

Let The following assertions are

equivalent:

1) is locally strongly additive.

1 p0 < p1 < 1.

Intermediate spaces (delta-ring).

[del Campo, Mayoral, Naranjo & AF, 2012]

Let The following assertions are

equivalent:

1) is locally strongly additive.

1 p0 < p1 < 1.

�B 2 Rloc, �B 2 L1

w(⌫) ) �B 2 L1(⌫)�

Intermediate spaces (delta-ring).

[del Campo, Mayoral, Naranjo & AF, 2012]

Let The following assertions are

equivalent:

1) is locally strongly additive.

2) for every (some)

1 p0 < p1 < 1.

p0 < p < p1.

Lp0w (⌫) \ Lp1

w (⌫) ✓ Lp(⌫)

�B 2 Rloc, �B 2 L1

w(⌫) ) �B 2 L1(⌫)�

Intermediate spaces (delta-ring).

[del Campo, Mayoral, Naranjo & AF, 2012]

Let The following assertions are

equivalent:

1) is locally strongly additive.

2) for every (some)

3) for every (some)

1 p0 < p1 < 1.

p0 < p < p1.

p0 < p < p1.

Lp0w (⌫) \ Lp1

w (⌫) ✓ Lp(⌫)

Lpw(⌫) ✓ Lp0(⌫) + Lp1(⌫)

�B 2 Rloc, �B 2 L1

w(⌫) ) �B 2 L1(⌫)�

Gain of integrability (delta-ring).

Gain of integrability (delta-ring).

[del Campo, Mayoral, Naranjo & AF, 2012]

If is l.s.a. and then

⌫ p0 < p < p1,

Lpw(⌫) ✓ Lp0(⌫) + Lp1(⌫).

Gain of integrability (delta-ring).

[del Campo, Mayoral, Naranjo & AF, 2012]

If is l.s.a. and then

f

⌫ p0 < p < p1,

Lpw(⌫) ✓ Lp0(⌫) + Lp1(⌫).

Lpw(⌫) ✓ Lp0

w (⌫) + Lp1w (⌫)

Gain of integrability (delta-ring).

[del Campo, Mayoral, Naranjo & AF, 2012]

If is l.s.a. and then

f

f�[fn]

n

⌫ p0 < p < p1,

Lpw(⌫) ✓ Lp0(⌫) + Lp1(⌫).

Lpw(⌫) ✓ Lp0

w (⌫) + Lp1w (⌫)

Gain of integrability (delta-ring).

[del Campo, Mayoral, Naranjo & AF, 2012]

If is l.s.a. and then

f

n

1

n

⌫ p0 < p < p1,

Lpw(⌫) ✓ Lp0(⌫) + Lp1(⌫).

Lpw(⌫) ✓ Lp0

w (⌫) + Lp1w (⌫)

Gain of integrability (delta-ring).

[del Campo, Mayoral, Naranjo & AF, 2012]

If is l.s.a. and then

f

n

1

n

f�[ 1nfn] 2 Lp0(⌫) + Lp1(⌫)

⌫ p0 < p < p1,

Lpw(⌫) ✓ Lp0(⌫) + Lp1(⌫).

Lpw(⌫) ✓ Lp0

w (⌫) + Lp1w (⌫)

Gain of integrability (delta-ring).

[del Campo, Mayoral, Naranjo & AF, 2012]

If is l.s.a. and then

f

n

1

n

��f�[f>n]

��L

p0w (⌫)

! 0

⌫ p0 < p < p1,

Lpw(⌫) ✓ Lp0(⌫) + Lp1(⌫).

Lpw(⌫) ✓ Lp0

w (⌫) + Lp1w (⌫)

Gain of integrability (delta-ring).

[del Campo, Mayoral, Naranjo & AF, 2012]

If is l.s.a. and then

⌫ p0 < p < p1,

f

n

1

n

���f�[f< 1n ]

���L

p1w (⌫)

! 0

Lpw(⌫) ✓ Lp0(⌫) + Lp1(⌫).

Lpw(⌫) ✓ Lp0

w (⌫) + Lp1w (⌫)

Gain of integrability (delta-ring).

[del Campo, Mayoral, Naranjo & AF, 2012]

If is l.s.a. and then

f

n

1

n

���f�[f< 1n ]

���L

p1w (⌫)

! 0

f�[ 1nfn] 2 Lp0(⌫) + Lp1(⌫)

⌫ p0 < p < p1,

Lpw(⌫) ✓ Lp0(⌫) + Lp1(⌫).

��f�[f>n]

��L

p0w (⌫)

! 0

Lpw(⌫) ✓ Lp0

w (⌫) + Lp1w (⌫)

Complex methods: equalities (R).

Complex methods: equalities (R).

[del Campo, Mayoral, Naranjo & AF, 2012]

Let The following

assertions are equivalent:

0 < ✓ < 1 p0 < p1 < 1.

Complex methods: equalities (R).

[del Campo, Mayoral, Naranjo & AF, 2012]

Let The following

assertions are equivalent:

1) is locally strongly additive.

0 < ✓ < 1 p0 < p1 < 1.

Complex methods: equalities (R).

[del Campo, Mayoral, Naranjo & AF, 2012]

Let The following

assertions are equivalent:

1) is locally strongly additive.

2)

0 < ✓ < 1 p0 < p1 < 1.

[Lp0w (⌫), Lp1

w (⌫)][✓] = Lp(⌫).

1

p:=

1� ✓

p0+

p1

Complex methods: equalities (R).

[del Campo, Mayoral, Naranjo & AF, 2012]

Let The following

assertions are equivalent:

1) is locally strongly additive.

2)

3)

0 < ✓ < 1 p0 < p1 < 1.

[Lp0w (⌫), Lp1

w (⌫)][✓] = Lp(⌫).

[Lp0(⌫), Lp1(⌫)][✓] = [Lp0w (⌫), Lp1(⌫)][✓]

= [Lp0(⌫), Lp1w (⌫)][✓]

= Lpw(⌫).1

p:=

1� ✓

p0+

p1

Complex methods (delta-ring).

If is not locally strongly additive, and

0 < ✓ < 1 p0 < p1 < 1.

Complex methods (delta-ring).

If is not locally strongly additive, and

0 < ✓ < 1 p0 < p1 < 1.

1

p:=

1� ✓

p0+

p1

Lp(⌫) [Lp0w (⌫), Lp1

w (⌫)][✓] Lpw(⌫)

Complex methods (delta-ring).

If is not locally strongly additive, and

0 < ✓ < 1 p0 < p1 < 1.

1

p:=

1� ✓

p0+

p1

Lp(⌫) [Lp0(⌫), Lp1(⌫)][✓] Lpw(⌫)

Lp(⌫) [Lp0w (⌫), Lp1

w (⌫)][✓] Lpw(⌫)

The real method (.,.)θ,q. [Lions & Peetre (1964)]

The real method (.,.)θ,q. [Lions & Peetre (1964)]

Given: a couple of Banach spaces and

(X0, X1)

0 < ✓ < 1 q 1,

The real method (.,.)θ,q. [Lions & Peetre (1964)]

Given: a couple of Banach spaces and

is the space of

those such that

is finite.

f 2 X0 +X1

(X0, X1)

0 < ✓ < 1 q 1, (X0, X1)✓,q

kfk✓,q :=

8>><

>>:

Z 1

0

�t�✓K(t, f)

�q dt

t

� 1q

, q < 1

supt>0

t�✓K(t, f), q = 1

The real method (.,.)θ,q. [Lions & Peetre (1964)]

Given: a couple of Banach spaces and

is the space of

those such that

is finite.

f 2 X0 +X1

(X0, X1)

0 < ✓ < 1 q 1, (X0, X1)✓,q

kfk✓,q :=

8>><

>>:

Z 1

0

�t�✓K(t, f)

�q dt

t

� 1q

, q < 1

supt>0

t�✓K(t, f), q = 1

K(t, f) := inf {kf0kX0 + tkf1kX1 :

f0 2 X0, f1 2 X1, f = f0 + f1} .

The real method: problem/classical results.

The real method: problem/classical results.

For we want

to describe with 0 < ✓ < 1 q 1.(X0, X1)✓,q ,

Xk 2 {Lpk(m), Lpkw (m)} , k = 0, 1,

The real method: problem/classical results.

For we want

to describe with

Let be a positive sigma-finite measure, and

Then:

0 < ✓ < 1 q 1.(X0, X1)✓,q ,

µ

0 < ✓ < 1 p0 6= p1 1.

Xk 2 {Lpk(m), Lpkw (m)} , k = 0, 1,

The real method: problem/classical results.

For we want

to describe with

Let be a positive sigma-finite measure, and

Then:

0 < ✓ < 1 q 1.(X0, X1)✓,q ,

µ

0 < ✓ < 1 p0 6= p1 1.

Xk 2 {Lpk(m), Lpkw (m)} , k = 0, 1,

•�L1(µ), L1(µ)

�✓,q

= L1

1�✓ ,q(µ).

• (Lp0(µ), Lp1(µ))✓,q = Lp,q(µ).

• Lp,p(µ) = Lp(µ), 1 p < 1.

• K(t, f, L1(µ), L1(µ)) =R t0 f⇤(s)ds.

The real method: problem/classical results.

For we want

to describe with

Let be a positive sigma-finite measure, and

Then:

0 < ✓ < 1 q 1.(X0, X1)✓,q ,

µ

0 < ✓ < 1 p0 6= p1 1.

1

p:=

1� ✓

p0+

p1

Xk 2 {Lpk(m), Lpkw (m)} , k = 0, 1,

•�L1(µ), L1(µ)

�✓,q

= L1

1�✓ ,q(µ).

• (Lp0(µ), Lp1(µ))✓,q = Lp,q(µ).

• Lp,p(µ) = Lp(µ), 1 p < 1.

• K(t, f, L1(µ), L1(µ)) =R t0 f⇤(s)ds.

The real method: problem/classical results.

For we want

to describe with

Let be a positive sigma-finite measure, and

Then:

0 < ✓ < 1 q 1.(X0, X1)✓,q ,

µ

0 < ✓ < 1 p0 6= p1 1.

1

p:=

1� ✓

p0+

p1

Xk 2 {Lpk(m), Lpkw (m)} , k = 0, 1,

•�L1(µ), L1(µ)

�✓,q

= L1

1�✓ ,q(µ).

• (Lp0(µ), Lp1(µ))✓,q = Lp,q(µ).

• Lp,p(µ) = Lp(µ), 1 p < 1.

• K(t, f, L1(µ), L1(µ)) =R t0 f⇤(s)ds.

The real method: problem/classical results.

For we want

to describe with

Let be a positive sigma-finite measure, and

Then:

0 < ✓ < 1 q 1.(X0, X1)✓,q ,

µ

0 < ✓ < 1 p0 6= p1 1.

1

p:=

1� ✓

p0+

p1

Xk 2 {Lpk(m), Lpkw (m)} , k = 0, 1,

•�L1(µ), L1(µ)

�✓,q

= L1

1�✓ ,q(µ).

• (Lp0(µ), Lp1(µ))✓,q = Lp,q(µ).

• Lp,p(µ) = Lp(µ), 1 p < 1.

• K(t, f, L1(µ), L1(µ)) =R t0 f⇤(s)ds.

Lorentz spaces of a vector measure.

Lorentz spaces of a vector measure.

Let and consider

hm,x

0i (A) := hm(A), x0i , A 2 ⌃.

⌃m�! X

x

0�! R, x

0 2 X

0,

Lorentz spaces of a vector measure.

Let and consider

If we say that if:

hm,x

0i (A) := hm(A), x0i , A 2 ⌃.

1 p, q 1, f 2 Lp,qw (m)

⌃m�! X

x

0�! R, x

0 2 X

0,

Lorentz spaces of a vector measure.

Let and consider

If we say that if:

i) measurable and

hm,x

0i (A) := hm(A), x0i , A 2 ⌃.

1 p, q 1, f 2 Lp,qw (m)

f : ⌦ �! R

⌃m�! X

x

0�! R, x

0 2 X

0,

Lorentz spaces of a vector measure.

Let and consider

If we say that if:

i) measurable and

ii)

hm,x

0i (A) := hm(A), x0i , A 2 ⌃.

1 p, q 1, f 2 Lp,qw (m)

f 2 L

p,q (|hm,x

0i|) , x

0 2 X

0.

f : ⌦ �! R

⌃m�! X

x

0�! R, x

0 2 X

0,

Lorentz spaces of a vector measure.

Let and consider

If we say that if:

i) measurable and

ii)

hm,x

0i (A) := hm(A), x0i , A 2 ⌃.

1 p, q 1, f 2 Lp,qw (m)

f 2 L

p,q (|hm,x

0i|) , x

0 2 X

0.

f : ⌦ �! R

kfkp,q

:= supn

kfkL

p,q(|hm,x

0i|) : kx0k 1

o

.

⌃m�! X

x

0�! R, x

0 2 X

0,

Lorentz spaces of a vector measure.

Let and consider

If we say that if:

i) measurable and

ii)

hm,x

0i (A) := hm(A), x0i , A 2 ⌃.

1 p, q 1, f 2 Lp,qw (m)

f 2 L

p,q (|hm,x

0i|) , x

0 2 X

0.

f : ⌦ �! R

kfkp,q

:= supn

kfkL

p,q(|hm,x

0i|) : kx0k 1

o

.

⌃m�! X

x

0�! R, x

0 2 X

0,

�L1w(m), L1(m)

�✓,q

S(⌃)Lp,q

w (m)✓ Lp,q

w (m).

Distribution and decreasing rearrangement.

Distribution and decreasing rearrangement.

Distribution function. measurable:

f : ⌦ �! Rkmkf : t 2 [0,1) �! kmkf (t) 2 [0,1)

kmkf (t) := kmk ({w 2 ⌦ : |f(w)| > t})

= supn

|hm,x

0i|f (t) : kx0k 1

o

.

Distribution and decreasing rearrangement.

Distribution function. measurable:

Decreasing rearrangement function.

kmkf : t 2 [0,1) �! kmkf (t) 2 [0,1)

kmkf (t) := kmk ({w 2 ⌦ : |f(w)| > t})

= supn

|hm,x

0i|f (t) : kx0k 1

o

.

f

⇤(s) := inf {t � 0 : kmkf

(t) s}= �kmkf

(s)

= sup {f⇤x

0(s) : kx0k 1}

f : ⌦ �! R

Lorentz spaces of the semivariation.

Lorentz spaces of the semivariation.

For the Lorentz space

consists of all measurable functions

such that where

1 p, q 1,

f : ⌦ �! RLp,q(kmk)

kfkLp,q(kmk) < 1,

Lorentz spaces of the semivariation.

For the Lorentz space

consists of all measurable functions

such that where

1 p, q 1,

f : ⌦ �! R

1 p, q < 1

Lp,q(kmk)

kfkLp,q(kmk) :=

Z 1

0

⇣s

1p f⇤(s)

⌘q ds

s

� 1q

,

kfkLp,q(kmk) < 1,

Lorentz spaces of the semivariation.

For the Lorentz space

consists of all measurable functions

such that where

1 p, q 1,

f : ⌦ �! R

1 p, q < 1

1 p < 1, q = 1

Lp,q(kmk)

kfkLp,q(kmk) :=

Z 1

0

⇣s

1p f⇤(s)

⌘q ds

s

� 1q

,

kfkLp,1(kmk) := supn

s1p f⇤(s) : s > 0

o

.

kfkLp,q(kmk) < 1,

Lorentz spaces of the semivariation.

1) is a quasi-Banach lattice.

Lp,q(kmk)kf + gkLp,q(kmk) C(p, q)

�kfkLp,q(kmk) + kgkLp,q(kmk)

Lorentz spaces of the semivariation.

1) is a quasi-Banach lattice.

2) has separating dual:

a) b) and

Lp,q(kmk)

Lp,q(kmk)p = q = 1, p > 1 1 q 1.

kf + gkLp,q(kmk) C(p, q)�kfkLp,q(kmk) + kgkLp,q(kmk)

Lorentz spaces of the semivariation.

1) is a quasi-Banach lattice.

2) has separating dual:

a) b) and

Lp,q(kmk)

Lp,q(kmk)p = q = 1, p > 1 1 q 1.

kf + gkLp,q(kmk) C(p, q)�kfkLp,q(kmk) + kgkLp,q(kmk)

Lp,q(kmk) ✓ Lp,q(µ), 1 p, q 1

Lorentz spaces of the semivariation.

1) is a quasi-Banach lattice.

2) has separating dual:

a) b) and

3) Inclusions.

Lp,q(kmk)

Lp,q(kmk)p = q = 1, p > 1 1 q 1.

kf + gkLp,q(kmk) C(p, q)�kfkLp,q(kmk) + kgkLp,q(kmk)

Lp,q(kmk) ✓ Lp,q(µ), 1 p, q 1

Lorentz spaces of the semivariation.

✓✓

✓✓

Lp1,1(kmk)

Lp1,p1(kmk)

Lp1,1(kmk)

...

...

1 p1 < p2 < 1

Lorentz spaces of the semivariation.

✓ ✓✓

✓✓✓

✓✓

Lp2,1(kmk)

Lp2,p2(kmk)

Lp2,1(kmk) Lp1,1(kmk)

Lp1,p1(kmk)

Lp1,1(kmk)

...

......

...

1 p1 < p2 < 1

Lorentz spaces of the semivariation.

✓ ✓✓

✓✓✓

✓✓

Lp2,1(kmk)

Lp2,p2(kmk)

Lp2,1(kmk) Lp1,1(kmk)

Lp1,p1(kmk)

Lp1,1(kmk)

...

......

...

1 p1 < p2 < 1

Lorentz spaces of the semivariation.

L1(m)✓

✓ ✓✓

✓✓✓

✓✓

Lp2,1(kmk)

Lp2,p2(kmk)

Lp2,1(kmk) Lp1,1(kmk)

Lp1,p1(kmk)

Lp1,1(kmk)

...

......

...

1 p1 < p2 < 1

Lorentz spaces of the semivariation.

L1(m)✓

✓✓

✓✓

✓✓✓

✓✓

Lp2,1(kmk)

Lp2,p2(kmk)

Lp2,1(kmk) Lp1,1(kmk)

Lp1,p1(kmk)

Lp1,1(kmk)

L1,1(kmk)

L1,1(kmk)

...

...

......

...

1 p1 < p2 < 1

Lorentz spaces of the semivariation.

L1(m)✓

✓✓

✓✓

✓✓✓

✓✓

Lp2,1(kmk)

Lp2,p2(kmk)

Lp2,1(kmk) Lp1,1(kmk)

Lp1,p1(kmk)

Lp1,1(kmk)

L1,1(kmk)

L1,1(kmk)

...

...

......

... Lp(m)

Lpw(m)

1 p1 < p2 < 1

Lorentz spaces of the semivariation.

1) is a quasi-Banach lattice.

2) has separating dual:

a) b) and

3) Inclusions.

4) For

Lp,q(kmk)

Lp,q(kmk)p = q = 1, p > 1 1 q 1.

kf + gkLp,q(kmk) C(p, q)�kfkLp,q(kmk) + kgkLp,q(kmk)

Lp,q(kmk) ✓ Lp,q(µ), 1 p, q 1

1 p < 1,

Lp,p(kmk) Lp(m) Lpw(m) Lp,1(kmk).

Estimates for the K−functional.

Estimates for the K−functional.

If and then

f 2 L1w(m) t > 0,

Estimates for the K−functional.

If and then

a)

f 2 L1w(m) t > 0,

tf⇤(t) K�t, f, L1

w(m), L1(m)�.

Estimates for the K−functional.

If and then

a)

b)

f 2 L1w(m) t > 0,

tf⇤(t) K�t, f, L1

w(m), L1(m)�.

K�t, f, L1

w(m), L1(m)�

Z t

0f⇤(s)ds.

Estimates for the K−functional.

If and then

a)

b)

c)

f 2 L1w(m) t > 0,

tf⇤(t) K�t, f, L1

w(m), L1(m)�.

K�t, f, L1

w(m), L1(m)�

Z t

0f⇤(s)ds.

f 2 L1(m) 6)Z t

0f⇤(s)ds < 1,

6)Z 1

0f⇤(s)ds < 1.

The real method. [Mayoral, Naranjo & AF, 2011]

The real method. [Mayoral, Naranjo & AF, 2011]

1) For

with equivalence of norm−quasinorm.

0 < ✓ < 1 q 1,�L1(m), L1(m)

�✓,q

=�L1w(m), L1(m)

�✓,q

= L1

1�✓ ,q(kmk),

The real method. [Mayoral, Naranjo & AF, 2011]

1) For

with equivalence of norm−quasinorm.

2) For

0 < ✓ < 1 q 1,

1 p0 6= p1 1; 0 < ✓ < 1 q 1,

1

p=

1� ✓

p0+

p1.

�L1(m), L1(m)

�✓,q

=�L1w(m), L1(m)

�✓,q

= L1

1�✓ ,q(kmk),

(Lp0(m), Lp1(m))✓,q = (Lp0w (m), Lp1

w (m))✓,q

= Lp,q(kmk),

The real method: consequences.

The real method: consequences.

Consequence 1. If the space is

normable.

Lp,q(kmk)p > 1,

The real method: consequences.

Consequence 1. If the space is

normable.

Concequence 2. If the space

is reflexive.

Lp,q(kmk)p > 1,

1 < p, q < 1,

Lp,q(kmk)

The real method: consequences.

Consequence 1. If the space is

normable.

Concequence 2. If the space

is reflexive.

[Beauzamy 1978] If and the

inclusion is weakly compact,

then is reflexive.

Lp,q(kmk)p > 1,

1 < p, q < 1,

Lp,q(kmk)0 < ✓ < 1 < q < 1

X0 \X1 ✓ X0 +X1

(X0, X1)✓,q

The real method: consequences.

Consequence 1. If the space is

normable.

Concequence 2. If the space

is reflexive.

[Beauzamy 1978] If and the

inclusion is weakly compact,

then is reflexive.

[Mayoral, Naranjo, Sáez, Sánchez-Pérez & AF 2006]

If then is

weakly compact.

Lp,q(kmk)p > 1,

1 < p, q < 1,

Lp,q(kmk)0 < ✓ < 1 < q < 1

X0 \X1 ✓ X0 +X1

(X0, X1)✓,q

1 p0 < p1 1, Lp1w (m) ✓ Lp0(m)

Welcome!

This is a two-day workshop bringing together specialists working in Operator theory and Banach lattices. The meeting will beheld at the Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, on Thursday 25 and Friday 26 October 2012.

If you wish to attend, please register by sending an email to obl@mat.ucm.es, indicating your name and institution, beforeOctober 21. Also, please let us know if you are interested in presenting a horizontal poster (paper, preprint...). There will be noregistration fee.

We look forward to seeing you in Madrid. The organizers:

Julio Flores (URJC), Francisco L. Hernández (UCM), Pedro Tradacete (UC3M).

Speakers

Félix Cabello, Universidad de Extremadura.

María J. Carro, Universidad de Barcelona.

Ben de Pagter, Delft University of Technology (The Netherlands).

Antonio Fernández-Carrión, Universidad de Sevilla.

Manuel González, Universidad de Cantabria.

Miguel Martín, Universidad de Granada.

Yves Raynaud, CNRS/Université Paris VI (France).

José Rodríguez, Universidad de Murcia.

Luis Rodríguez-Piazza, Universidad de Sevilla.

Workshop Operators and Banach lattices

Universidad Complutense de Madrid,Facultad de Ciencias Matemáticas,25-26 October 2012

WELCOME PROGRAMME LOCAL INFO PARTICIPANTS

Welcome!

This is a two-day workshop bringing together specialists working in Operator theory and Banach lattices. The meeting will beheld at the Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, on Thursday 25 and Friday 26 October 2012.

If you wish to attend, please register by sending an email to obl@mat.ucm.es, indicating your name and institution, beforeOctober 21. Also, please let us know if you are interested in presenting a horizontal poster (paper, preprint...). There will be noregistration fee.

We look forward to seeing you in Madrid. The organizers:

Julio Flores (URJC), Francisco L. Hernández (UCM), Pedro Tradacete (UC3M).

Speakers

Félix Cabello, Universidad de Extremadura.

María J. Carro, Universidad de Barcelona.

Ben de Pagter, Delft University of Technology (The Netherlands).

Antonio Fernández-Carrión, Universidad de Sevilla.

Manuel González, Universidad de Cantabria.

Miguel Martín, Universidad de Granada.

Yves Raynaud, CNRS/Université Paris VI (France).

José Rodríguez, Universidad de Murcia.

Luis Rodríguez-Piazza, Universidad de Sevilla.

Workshop Operators and Banach lattices

Universidad Complutense de Madrid,Facultad de Ciencias Matemáticas,25-26 October 2012

WELCOME PROGRAMME LOCAL INFO PARTICIPANTS

Interpolation of spaces of integrable functions with respect to a vector measure

Antonio Fernández (Universidad de Sevilla)

top related