an evaluation of high impact weathers over korea simulated

30
Numerical Modeling Laboratory, Department of Atmospheric Science Numerical Modeling Laboratory, Department of Atmospheric Science s, Yonsei University s, Yonsei University An Evaluation of High An Evaluation of High Impact Weathers over Korea Impact Weathers over Korea Simulated by the Simulated by the Non Non Hydrostatic Regional Spectral Model Hydrostatic Regional Spectral Model Eun Eun Chul Chang Chul Chang and Song Song You Hong You Hong Numerical Modeling Laboratory, Yonsei University Numerical Modeling Laboratory, Yonsei University

Upload: others

Post on 25-Mar-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

An Evaluation of HighAn Evaluation of High‐‐Impact Weathers over Korea Impact Weathers over Korea  Simulated by the Simulated by the 

NonNon‐‐Hydrostatic Regional Spectral ModelHydrostatic Regional Spectral Model

EunEun‐‐Chul Chang Chul Chang and

SongSong‐‐You HongYou Hong

Numerical Modeling Laboratory, Yonsei UniversityNumerical Modeling Laboratory, Yonsei University

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

IntroductionIntroduction

Most regional models employ the nonnon‐‐hydrostatichydrostatic

dynamics as a dynamical core

Non‐hydrostatic forcing is important at higher resolutionat higher resolution

when dynamical and 

thermodynamical forcing are strong

GlobalGlobal

and and RegionalRegional

Integrated Model System (Integrated Model System (GRIMsGRIMs))

Regional Spectral Model (RSM) in GRIMs

Widely used for climate researches (>50km)

For high‐resolution (<10km) climate simulation, non‐hydrostatic system is highly needed

Non‐hydrostatic version of NCEP RSM (Juang 1992, 2000(Juang 1992, 2000) is implemented to GRIMs

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

IntroductionIntroduction

GlobalGlobal

and and RegionalRegional

Integrated Model System (Integrated Model System (GRIMsGRIMs))

Spectral dynamic core : T62 Spectral dynamic core : T62 ―― T426T426

1. Spherical harmonics (SPH) system1. Spherical harmonics (SPH) system

: for Global and Regional: for Global and Regional

2. Double Fourier series (DFS) system2. Double Fourier series (DFS) system

: for Global: for Global

Physical processesPhysical processes

Land surfaceLand surface Kang and Hong (2008, JGR), Chen and Duhdia (2001, MWR)Kang and Hong (2008, JGR), Chen and Duhdia (2001, MWR)

PBLPBL Hong et al. (2006, MWR), Noh et al. (2003, BLM)Hong et al. (2006, MWR), Noh et al. (2003, BLM)

CumulusCumulus Byun and Hong (2007, MWR), Park and Hong (2007)Byun and Hong (2007, MWR), Park and Hong (2007)

Cloud and microphysicsCloud and microphysics Hong et al. (1998, MWR; 2004, MWR)Hong et al. (1998, MWR; 2004, MWR)

RadiationRadiation Chou (2006), Ham et al. (2009, ATP)Chou (2006), Ham et al. (2009, ATP)

Gravity wave dragGravity wave drag Chun and Baik (1998, JAS), Kim and Arakawa (1995, JAS), Chun and Baik (1998, JAS), Kim and Arakawa (1995, JAS), Hong et al. (2008, WAF)Hong et al. (2008, WAF)

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Experimental designExperimental design

Two regional models are utilized in this studyTwo regional models are utilized in this study

Regional Spectral Model (RSM)Regional Spectral Model (RSM)

Weather Research and Forecasting (WRF) modelWeather Research and Forecasting (WRF) model

RSMRSM

WRFWRF

HydrostaticHydrostatic

NonNon‐‐hydrostatichydrostatic

HydrostaticHydrostatic

NonNon‐‐hydrostatichydrostatic

Case 1 : Case 1 : 2005. 4. 4. 12UTC – 4. 6. 00UTCdown slope severe wind storm case(Lee wave)

Case 2 : Case 2 : 2005. 12. 21. 00UTC – 12. 22. 00UTCHeavy snowfall case

Case 3 : Case 3 : 2006. 7. 15. 00UTC – 7. 16. 00UTCHeavy rainfall case

Domain1 (27km)Domain1 (27km)

Domain2 (9km)Domain2 (9km)

Regional Model Domains :Regional Model Domains :

Lambert conformal conic map projectionLambert conformal conic map projection

4 domains are used for downscaling 4 domains are used for downscaling 

11‐‐way nesting (27km way nesting (27km ––

9km 9km ––

3km 3km ––

1km)1km)

NCEP Final Analysis Data (FNL, 1NCEP Final Analysis Data (FNL, 1⁰×⁰×

11⁰⁰))

is used for I.C. and B.C.is used for I.C. and B.C.

Dm 1 Dm 2 Dm 3 Dm 4

RSM 60 s 20 s 6 s

WRF 90 s 30 s 10 s 3 s

time step (time step (∆∆t) for integrationt) for integration

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

ObjectiveObjective

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

ObjectiveObjective

For the WRFWRF

model and RSM,RSM,

the non‐hydrostatic

and hydrostatic

versions are available.

Evaluate high‐impact weathers simulated by the non‐hydrostatic models

Find out advantages of the non‐hydrostatic dynamical cores in high resolution 

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Result 1Result 1

Case 1 : downslope windstorm (Lee wave)Case 1 : downslope windstorm (Lee wave)

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Domain 1 (27km) : 850 hPa geopotential height (m), wind vectorDomain 1 (27km) : 850 hPa geopotential height (m), wind vectorCase 1 : downslope windstorm (Lee wave)Case 1 : downslope windstorm (Lee wave)

WRFWRF

RSMRSM

HydrostaticHydrostatic

HydrostaticHydrostatic NonNon‐‐HydrostaticHydrostatic

NonNon‐‐HydrostaticHydrostatic

36hr fcst

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Domain 1 (27km) : 500 hPa geopotential height (m), wind vectorDomain 1 (27km) : 500 hPa geopotential height (m), wind vector

WRFWRF

RSMRSM

HydrostaticHydrostatic

HydrostaticHydrostatic NonNon‐‐HydrostaticHydrostatic

NonNon‐‐HydrostaticHydrostatic

36hr fcst

Case 1 : downslope windstorm (Lee wave)Case 1 : downslope windstorm (Lee wave)

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Domain 3 (3km) : topographyDomain 3 (3km) : topography

RSM domain3RSM domain3

Case 1 : downslope windstorm (Lee wave)Case 1 : downslope windstorm (Lee wave)

WRF domain3WRF domain3

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

WRF WRF ––

Domain 3 (3km) : 850 hPa vertical velocity (m/s)Domain 3 (3km) : 850 hPa vertical velocity (m/s)

HydrostaticHydrostatic

NonNon‐‐HydrostaticHydrostatic

WRFWRF

WRFWRF

2005. 4. 5. 12 UTC2005. 4. 5. 12 UTC 2005. 4. 5. 15 UTC2005. 4. 5. 15 UTC 2005. 4. 5. 18 UTC2005. 4. 5. 18 UTC

2005. 4. 5. 12 UTC2005. 4. 5. 12 UTC 2005. 4. 5. 15 UTC2005. 4. 5. 15 UTC 2005. 4. 5. 18 UTC2005. 4. 5. 18 UTC

Case 1 : downslope windstorm (Lee wave)Case 1 : downslope windstorm (Lee wave)

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

RSM RSM ––

Domain 3 (3km) : 850 hPa vertical velocity (m/s)Domain 3 (3km) : 850 hPa vertical velocity (m/s)

Case 1 : downslope windstorm (Lee wave)Case 1 : downslope windstorm (Lee wave)

HydrostaticHydrostatic

NonNon‐‐HydrostaticHydrostatic

RSMRSM

RSMRSM

2005. 4. 5. 12 UTC2005. 4. 5. 12 UTC 2005. 4. 5. 15 UTC2005. 4. 5. 15 UTC 2005. 4. 5. 18 UTC2005. 4. 5. 18 UTC

2005. 4. 5. 12 UTC2005. 4. 5. 12 UTC 2005. 4. 5. 15 UTC2005. 4. 5. 15 UTC 2005. 4. 5. 18 UTC2005. 4. 5. 18 UTC

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

WRF WRF ––

Domain4 (1km) : Vertical velocity (m/s) at z = 2 kmDomain4 (1km) : Vertical velocity (m/s) at z = 2 km

Case 1 : downslope windstorm (Lee wave)Case 1 : downslope windstorm (Lee wave)

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

WRF WRF ––

Domain 4 (1km)Domain 4 (1km)

5

4

3

2

1

0

Case 1 : downslope windstorm (Lee wave)Case 1 : downslope windstorm (Lee wave)

Cross section : vertical velocity & potential temperature

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Result 2Result 2

Case 2 : Heavy snowfallCase 2 : Heavy snowfall

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Domain 2 (Domain 2 (9 km9 km): total precipitation (mm) for 24 hours): total precipitation (mm) for 24 hoursCase 2 : Heavy snowfall (2005. 12. 21. 00UTC ~ 12. 22. 00UTC)Case 2 : Heavy snowfall (2005. 12. 21. 00UTC ~ 12. 22. 00UTC)

WRFWRF(WSM6)(WSM6)

RSMRSM(WSM1)(WSM1)

HydrostaticHydrostatic

HydrostaticHydrostatic NonNon‐‐HydrostaticHydrostatic

NonNon‐‐HydrostaticHydrostatic TMPATMPA

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Domain 3 (Domain 3 (3 km3 km): total precipitation (mm) for 24 hours): total precipitation (mm) for 24 hoursCase 2 : Heavy snowfallCase 2 : Heavy snowfall

RSMRSM

WRFWRF

HydrostaticHydrostatic

HydrostaticHydrostatic NonNon‐‐HydrostaticHydrostatic

NonNon‐‐HydrostaticHydrostatic diff (nonhydro diff (nonhydro ––

hydro)hydro)

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Result 3Result 3

Case 3 : Heavy rainfallCase 3 : Heavy rainfall

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Domain 2 (Domain 2 (9 km9 km): total precipitation (mm) for 24 hours): total precipitation (mm) for 24 hoursCase 3 : Heavy rainfallCase 3 : Heavy rainfall

WRFWRF(WSM6)(WSM6)

RSMRSM(WSM1)(WSM1)

HydrostaticHydrostatic

HydrostaticHydrostatic NonNon‐‐HydrostaticHydrostatic

NonNon‐‐HydrostaticHydrostatic

TMPATMPA

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Domain 3 (3Domain 3 (3

kmkm): total precipitation (mm) for 24 hours): total precipitation (mm) for 24 hours

Case 3 : Heavy rainfallCase 3 : Heavy rainfall

RSMRSM

WRFWRF

HydrostaticHydrostatic

HydrostaticHydrostatic NonNon‐‐HydrostaticHydrostatic

NonNon‐‐HydrostaticHydrostatic

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

SummarySummary

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

SummarySummary

For short range forecast, there are no significant differences of results 

between the hydrostatic and non‐hydrostatic dynamics cores in coarse 

resolution domains (< 9 km).

For high resolution ( > 3 km), non‐hydrostatic dynamics frames can 

generate lee wave propagation, and more strong  vertical motions

which 

increase precipitation.

Advantages of the Non‐hydrostatic dynamic core for high resolution (<10 

km) climate run.

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Plan Plan 

Blow up problems

Advantages of the Non‐hydrostatic dynamic core for high resolution (<10 

km) climate run.

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Thank you

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Domain 4 (Domain 4 (1 km1 km) : total precipitation (mm) for 24 hours) : total precipitation (mm) for 24 hoursCase 2 : Heavy snowfallCase 2 : Heavy snowfall

WRFWRF

HydrostaticHydrostatic NonNon‐‐HydrostaticHydrostatic diff (diff (nonhydrononhydro

––

hydro)hydro)

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

NonhydrostaticNonhydrostatic

Primitive EquationsPrimitive Equations

22

22

1 1ln

1 1ln

s bu

s bv

Q uu u u u mm u v E fv R T Ft x y x x x t

Q vv v

Q T QTT

v v mm u v E fu R T FQ Tt x y y y y t

QTT

wt

12

0

2 2

2 1 1 1ln

s s s sbQ

kk s

T

w

s

b

Q Q Q Qu um u v dt x y x y t

Q QT T T Tm u v T m ut x y t

ww w w T Qm u v g

x

Fx y tT

2 23

2 2 2 2

2

V+

s

s s sT

ksk s

T

T

s

b

b

Q Q Q Q QQ Q Fm u m vt x y T t

T T Q Q Q Q Q Q TT T T T T Qm u m v T T m u m v Ft x y t x

Q

y

Tm v F

t

y t

2 2 bq

qq q q qm u m v Ft x y t

Fully compressible Fully compressible nonhydrostaticnonhydrostatic

RSM (Juang 2000) RSM (Juang 2000)

'( ln ), ', Q p T w

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

NonhydrostaticNonhydrostatic

Primitive EquationsPrimitive Equations

Fully compressible Fully compressible nonhydrostaticnonhydrostatic

equations equations : calculation of sigma dot ( ): calculation of sigma dot ( )

2g w m u vt x yRT RT

1 2 2

0

Q Q u v Q Q u vm u v d m u vx y x y x y x y

Hydrostatic Hydrostatic : use pressure and wind: use pressure and wind

NonhydrostaticNonhydrostatic: use vertical velocity (directly) : use vertical velocity (directly)

)ln(

)ln(

ss pQpQ

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Primitive EquationsPrimitive Equations

Hydrostatic

Nonhydrostatic

2

2 1 1ln

s bu

Q T QT Q uu u u u mm u v E fv R T Ft x y x x xT t

22 s b

uQ uu u u u mm u v E fv RT F

t x y x x x t

2 21

2E u v

T

Q

T

Q

T

Q

Hydrostatic part

perturbation part

)ln()ln(

ss pQpQ

Q Q Q

lnsQ Q

2

22 2 con

s1 1l

s Q T QQu u u u mm u v E fv R Tt x

uTy x Tx

wax

w

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Current statusCurrent status

2 23 V+s s sTQ Q Q Q QFQ Qm u m v

t x y T t

12

0

s s s sbQ

Q Q Q Qu um u v dt x y x y t

2 2 22 s s

k

sk bT

T T TT T T T Tm u m v T T Ft x y

Q Q Q Q Q Q Qm u vt x y t

m

2

2 1l

1n

s bu

Q Q uu u u u mm u v E fv R T T T QT

Ft x y x x x t

2

ln1 1 1 b

www w w wm u v Tg F

t x y tQ

T

2wg m u vt x yRT RT

23 V= u v u v gm

x y x y Tw

RT R

NonhydrostaticNonhydrostatic

PressurePressure

Hydrostatic PressureHydrostatic Pressure

NonhydNonhyd

Q Q ––

hydro Q : Get pressure perturbationhydro Q : Get pressure perturbation

NonhydNonhyd

T T ––

hydro T : Get temperature perturbationhydro T : Get temperature perturbation

'( ln ), ', Q p T w

Numerical Modeling Laboratory, Department of Atmospheric ScienceNumerical Modeling Laboratory, Department of Atmospheric Sciences, Yonsei Universitys, Yonsei University

Future planFuture plan

Lee wave is a “pure dynamics”

phenomena

tested when the dynamic core is developed

check for RSM non‐hydrostatic frame

Suggested cases Suggested cases 

Test dynamical core + phenomena

1. development of the convection cell

Lake effect snow storm over the East (West) sea of Korea

2. dynamically strong cyclogenesis

cyclogenesis

and it’s development in front of the Siberian High

Cloud streetCloud street