an exact microscopic multiphonon approach

30
An exact microscopic multiphonon approach Naples F. Andreozzi N. Lo Iudice A. Porrino Prague F. Knapp J. Kvasil

Upload: niran

Post on 23-Jan-2016

30 views

Category:

Documents


0 download

DESCRIPTION

An exact microscopic multiphonon approach. Naples F. Andreozzi N. Lo Iudice A. Porrino Prague F. Knapp - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: An exact microscopic multiphonon approach

An exact microscopic multiphonon approach

Naples F. Andreozzi N. Lo Iudice A. Porrino

Prague F. Knapp J. Kvasil

Page 2: An exact microscopic multiphonon approach

From mean field to multiphonon approaches

is responsible for collective modes

ij ijkl

kljiji aaaaklVijaajTiH ||4

1||

iresiii Vaa

resV

standard approach to collective modes: RPA (TDA)RPA (TDA) – harmonic approximations:

OOH ],[where

RPA:

TDA:

ph

phphhpph aaYaaXO ][ )()(

ph

hpph aaXO )(

Page 3: An exact microscopic multiphonon approach

for anharmonic effects multiphonon approaches are needed

OOOOOOO

problems:

1. )()( hphp aaOaaOOO lack of antisymmetry overcomplete set

2. brute approximations and/or formidable calculations are needed

sophisticated methods (with minimal approximation) should be developed for investigation of anharmonic effects

Page 4: An exact microscopic multiphonon approach

Fermion-Boson mapping A. Klein and E. R. Marshalek, Rev. Mod. Phys. 63, 375 (1991)

operator mapping

(S.T.Belyaev, V.G. Zelevinsky, Nucl.Phys. 39, 582 (1962)

ph

hpph aaCb

i ijkkjiijkiiB BBBXBXb ),3(),1()(

ijjiijB BByya ),2(),0()(

where

constraint: the exact fermionic anticommutator ijji aa },{ should be

used in the calculation of ],[ bb

ijji BB ],[

state vector mapping (T. Marumori et al., Progr.Theor.Phys. 31, 1009 (1964) 0|| bbbn )0|)| kji BBBn

constrant: )||(|| mOnmOn BF

problems in practical calculations: - in general slow convergence of the boson expansion - involved calculations

ij

jijkir aaCCa )()(

Page 5: An exact microscopic multiphonon approach

Practical examples of fermion – boson (FB) mapping

IBM – phenomenological FB mapping

ij

JjiijJ aaCA 2,02,0 )( ),( ds bosons

- originally s,d bosons were introduced from algebraic group relations and corresponding Hamiltonian was phenomenologically parametrized

- Marumori mapping of IBM was proved only within one single j shell and for only pairing plus quadrupole Hamiltonian (see T. Otsuka, A. Arima, F. Iachello, Nucl.Phys. A309, 1 (1978))- IBM successful in low-energy spectroscopy but purely phenomenological

quasi-particle + phonon model (QPM) (inspired by FB mapping)V.G.Soloviev, Theory of Atomic Nuclei: Quasiparticles and Phonons, Ins. Ph. Bristol, 1992

),,( ijjihp aaaaaaH ),( ijjiH ),( OOH BCS RPA

ijijijjiij YXO ][ )()(

RPAOOCOCn |}{,2| ),2(),1(

limitations: - Pauli principle valids only partly - valid (used) only for separable interactions - correlations not explicitely included in the ground state

QPM is microscopic and successful at low and high energies

Page 6: An exact microscopic multiphonon approach

Further attempts for multiphonon approachesMultistep Shell Model (MSM) R.L.Liotta, C.Pomar, Nucl.Phys. A382, 1 (1982)

ph

hpi

phi aaXO ),1(

ijjiij OOXn 0|,2| ),2(

iii nOXn ,2|,3| ),3(

iE ,1

,2E

,3E

They expand 0|]],,[[|, ji OOHn and for 2n (2 phonon) space theykeep only linear terms in two-phonon operators (linearization) and they geteigenvalue equation in two-phonon space

ji OO

),2(),2(,1,1,2 )( ijijji XAXEEE

where is expressed in terms of TDA eigenvalues and eigenstates.A- eigenvalue equations generate an overcomplete two-phonon set of states but redundancy and Pauli principle violation are cured by graphical method in the combination with the diagonalization of the metric matrix

Multiphonon Model M. Grinberg, R. Piepenbring et al., Nucl.Phys. A597, 355 (1996)along the same line (instead of a graphical method they give the complex recurentformulas between and ),| n ,1| n

Both MSM and MPM look involved and of problematic applicability (indeed, they have not been widely adopted).

,|, nn

Page 7: An exact microscopic multiphonon approach

method proposed here: Equation of Motion Method (EM)

eigenvalue problem || EH

is solved in a multiphonon space

N

nn

0

HH

where nn 21|,|nH

phhpphi aaC i 0||

Tamm-Dancoff

phonon

eigenvalue problem is solved in two steps:

- generating the multiphonon basis

- construction and diagonalization of the total Hamiltonian matrix in the whole space

nn 21|,| )(nE

H

ij ijkl

kljiijkljiij aaaaVaatH4

1

Page 8: An exact microscopic multiphonon approach

multiphonon basis1-st step: generating the multiphonon basis ,| n

We require: )(,||, nEnHn ),|,|( )( nEnH nor

for basis states with following orthogonality properties,| n)( hpph aab

)(,||,,||,

)(,||,,||,

)(,1||,,||,

,|,

)(,,

)(,,

)(1,1,

hhnaannaan

ppnaannaan

phXnbnnbn

nn

nnnhhnnhh

nnnppnnpp

nnnphnnph

nn

with closure relation:

n

nnI |,,|

Using we have),|,|( )( nEnH n

)()(,1|],[|, )()1()( phXEEnbHn nnnph (A)

From other side the closure relation and orthogonality properties above give

)(

1|)||()||(|

1|],[|

nHnnbbnnHn

nbHn

nphph

n

ph

substituting for and taking into account that only terns can contributeH b

Page 9: An exact microscopic multiphonon approach

multiphonon basis

1 1

11

21

21

21

21

21

})()(

]))((2

1[

])(2

1[{

1)1(

1)1(

21)1(

21)1(

h p

nphhp

nphhp

hhn

hhhhhhhhpp

pp

npppp

hppphh

ppVhhV

hhV

ppV

(B)

where

The comparison of (A) with (B) gives the eigenvalue equation for )()( phX n

)()( hpX n

hp

nnnnnnnn XEXAphXEhpXhpphA

)()()()()()()()( )()(),(

with

1

1

1

1

21

2121

21

21

)()(

]))((2

1[

])(2

1[),(

1)1(

1)1(

21)1(

21)1()1()(

p

nphhp

h

nphhp

hhhh

nhhhhhhpp

pp

npppppphh

npphh

n

ppVhhV

hhV

ppVEhpphA

(C)

1

11h

phhppppp Vt 1

11h

hhhhhhhh Vt

Page 10: An exact microscopic multiphonon approach

multiphonon basisIn the Hartree-Fock basis we have:

hhh

hhhhhhhhhhhh

hphphpppppppp

hhVt

ppVt

)()(

0)()(

1

11

1

11

)0(

)0(

and thenphphhppphh VhpphA )(),()1(

and (C) is the standard Tamm-Dancoff equation:for TDA states:

)()(),( )1(0

)1()1(0

)1(0 phXEhpXhpphA

hp

ph

phphXn |)(,1| )1(0

For the first sight one can expect that solutions of (C), , represent coefficients inthe expansion of the state in terms of states(because )

)()( phX n

,| n

,1| naa hp

1||)()( naanphX hpn

However, states represents the redundant (overcomplete) basis: ,1| naa hp

hhppphhp nbbn ,1||,1

multiphonon states are not fully antisymmetrizes !! ,1| naa hp

We should extract physical nonredundant basis fromthe redundant basis of states

,1| naa hp

Page 11: An exact microscopic multiphonon approach

multiphonon basis

In order to extract physical basis let us expand the exact eigenstatesin the redundant basis

,| n ,1| nbph

hpphhp

nph

n

ihp

N

i

n

nbbnhpCnbnphX

nbCnii

r

i

,1||,1)(,1||,)(

,1|,|

)()(

1

)(

),()1( hpphd n

metric matrix:

)()()(

,1||,1,1||,1

,1||,1,1||,1),(

)1()1()1(

)1(

hhpphh

naaaannaan

naaaannbbnhpphd

nnnpp

hhpphhpp

hpphphhpn

so, in matrix form: )()1()( nnn CDX

(D)

eigenvalue equation (C) can be rewritten:

)()1()()()1()()()()()( nnnnnnnnnn CDECDAXEXA

However, metric matrix is singular (det{D}=0) it is not possible to invert it

Page 12: An exact microscopic multiphonon approach

multiphonon basisusual solving of the singular metric matrix problem – diagonalization of D(Rowe J., Math.Phys. 10, 1774 (1969)

UDUDD 1

0..00000

........

0.00.000

0.00.00

........

0.0.0.0

.0......

0.0...01

nN

i

D

ijd iji

rnihp NNjinbiii

,,,,1,,,1|

CECA

CUDECUDUAUCUDUECUDUACDECDA

111

CUCUAUA

,1

effectively we obtain linearlyindependent (physical) eigenvectors

nn NN

0 inNifor

problems: - a bruto forced calculation (diagonalization) of very lengthy and difficult for , practically impossible for - diagonalization of changes the structure of the multiphonon states (now the vector - see (D) – contains instead of )

D2n 2n

D,| n C

Cin our EM approach the redundancy of the overcomplete basis, , is removedby Choleski decomposition: - no diaginalization of - much faster and more effective

,1| nbph

D J.H.Wilkinson, The Algebraic Eigenvalue, Clarendon Oxford, 1965

n

Page 13: An exact microscopic multiphonon approach

multiphonon basisremoving of the redundancy of the overcomplete basis by Choleski decomposition:

any real non negative definnite symmetric matrix can be rewritte as

TLLD where is the lower triangular matrixwith defined by recursive formulas:

}{ ijlL

ijl

1

1

1

1

22

1111

11211

,,2

i

kjkikjijiii

i

kikiiii

jj

lldll

ldl

njdll

dl

22222

211

2 }det{}det{ nnii llllLD

decomposition of using recursiveformulas goes until a diagonal element - in this moment we know that -th basis vector is a linear combinationof vectors -th vector is discarded and we dropped -th row and -th column from and decomposition continues with -thbasis vector. This procedure continuesuntil the whole redundant basis is exhausted.

D

0iil0}det{

1

2

n

jjjlD

i1,,2,1 i

ii i D

)1( i

During decomposition we can rearrange thebasis in the decreasing way according towhich gives us the maximum of(maximum overlap)

iil}det{D

Choleski decomposition – from vectors of the overcomplete basis we extract linearly independent vectors ( )

nn nn

+

Page 14: An exact microscopic multiphonon approach

multiphonon basisCholeski method we obtain ( ) linearly independentbasis states, , for the subspace with nonsingularmatrix

;1| nbph nH},1||,1{)1(

nbbnD phhp

n

nN nn NN

nn NN ( - type matrix )

we can solve the eigen-value problem

)(nH we obtain eigen solutions (physical, nonredundant) in the subspace :nN

n

jjji

N

j

nijhpjj

ni EnbhpCn

1

)()( ,1|)(,|

nH

Now we can go from n – phonon subspace(we know ))()1()()()( ,, nnnnn CDXEC

nH (n+1) – phonon subspaceand solve: )1()1()1()1( nnnn CECH

to 1nH

where for the creation of and we need and :)( )1()()1( nnn ADH )()( 21)(

21)( hhpp nn

})({)()(

,||,)(

2)1(

11

)()(

21)(

2

21

pphpXhpC

naanpp

jn

pp

N

jj

njj

n

ppn

j

n

with a similar expression for )( 21)( hhn

recursive

formula

nNnN

(E)

)()()()1()(1)1()()1()()()1()( )( nnnnnnnnnnnn CECDADCDECDA

Page 15: An exact microscopic multiphonon approach

multiphonon basisIterative generating of phonon basis

starting point 0|

)1()1( , X

)2()2( , X

)1()1( , nnX

)()()(2

)(1

)()()()(

|,| ni

in

ii

nnnn

Ein

CECH

)2()(2

)(1

)2()2()2()2(

|,2| iii Ein

CECH

)1()(1

)1()1()1()1(

|,1| ii Ein

CECH

)()( , nnX

multiphonon basis is generated

Page 16: An exact microscopic multiphonon approach

full eigenvalue problem

Full eigenvalue problem

Once the multiphonon basis has been generated the total Hamiltonian matrix can begenerated and digonalized.

n

nn

n nnHnnnnEH |,,||,,||,,|)(

The second term involves only nondiagonal matrix lementsgiven by recursive formulas:

)2,1( nnn

)()(4

1

,2||,4

1,2||,

11)1()(

22

121

1

11

11

2

hpXphXV

naaaanVnHnH

nn

hphphhpp

ijklnkljinijklnn

nnnn

n

nn

with

21 21

2111112111211})({)( 21

)1(21

)1()(

pp hhhh

nhhph

nhppp

ph

nnnnnnnhhVppV -1n

V

1

111

1

)(2

1

,1||,4

1,1||,

)()(

11

n

nnnn

nn

ph

nph

ijklnkljinijklnn

phX

naaaanVnHnH

V

Page 17: An exact microscopic multiphonon approach

full eigenvalue problemBy the diagonalization of the total Hamiltonian matrix:

nnnnnn

nnnnnn

nnnnnn

HHH

HHH

HHH

HHH

HHHH

HHHHH

HHHHH

HHHH

HHH

H

12

11112

21222

554535

45443424

3534332313

2423221202

13121101

020100

0000000

000000

00000

0

00000

00000

0000

0000

00000

000000

where

},3||,3{

},2||,2{

},2||0,0{},1||,1{

},1||0,0{0,0||0,0

3333

2222

2021111

10100

nHnH

nHnH

nHnHnHnH

nHnHnHnH

we obtain exact nuclear eigenvalues and eigenvectors:

n n

nnn

ni

n

n cnc

1)( |,||

1

1E

(F)

Page 18: An exact microscopic multiphonon approach

transition amplitudesTransition amplitudes

Let us consider the transition amplitudes ififM ||M

of some single-particle transition operator kl

lkkl aaMM

Substitution of (F) gives:

klnn

nnfikl

nlkn n

nkl

klfi

if

nn

nnnn

n n

nn

klcc

naanccM

)(

,||,

)()()(

)()(

M

M

transition amplitude involves density matrix elementswhich are given by recursive formula (E)

)()( klnn

nn

Page 19: An exact microscopic multiphonon approach

elimination of spuriosityElimination of the center of mass spuriosity

Following the method: F. Palumbo, Nucl.Phys. 99, 100 (1967) we add to the startingHamiltonian

a center of mass (CM) oscillator Hamiltonian multiplied by a constant :

ij ijkl

kljiji aaaaklVijaajTiH ||4

1||

g

)2

3

2

1

2( 22

2

RmA

mA

PgH g

A

i ji

CMij

CMi gUh

1

)(

2

3

where

A

i

A

ijiji

CMijii

iiCM

i

A

i

rrmppmA

gUprmRMP

rmm

p

A

ghrmRM

1 1

2)(

22)(

1

)1

(

)2

1

2(

full space Schr. equation:

oscosc

oscosc

oscoscosc

nn

oscnn

nnn

g

EEE

EH

HHH

)(

for physical states:

)2

3( )(

000 gE oscnn oscosc

for spurious states:)

2

3( )(

111 ggE oscnn oscosc

for big spurious statesare shifted to high energies

by the shift:

spurious states can be easily tagged and eliminated

gEE oscosc )(0

)(1

g

effec

tive o

nly in

J = 1-

channel

Page 20: An exact microscopic multiphonon approach

elimination of spuriosity

reminder :

The Hamiltonian is effective only in ph- channel. gH 1J

For exact factorization of the wave function and tagging the spurious mode is easy. In our approach the ph (1- phonon) states represent building blocks of all n- phonon states we are able to identify and eliminate exactly spurious states also for

1n

1n

1n

There is a necessary condition for the tagging and elimination of spurious modes by the method given above: all shells up to given are to be involved in the space

The fulfilment of this condition is possible in our approach (see futher)but is not easy in the standard shell model calculations.

n

Page 21: An exact microscopic multiphonon approach

evaluation of the method

Pluses and minuses of the method

Pluses Minuses

simple structure of the eigenvalueequation in any n- phonon subspace

only density matrix elements , and have to becomputed

)()( ppn )()( hhn )()( phX n

relatively simple recursive formulashold for , andfor all other quantities

)()( ppn )()( hhn

overcompletness of multiphonon basisstates (in our approach eliminated byelegant Choleski method)

number of density matrix elements to be computed increaseswith the number of phonons

for higher numerical process may become slow

)()( ijn

n

our method enables to use Palumbo’sprocedure for the elimination of theCM spurious mode also for largeconfiguration spaces

Page 22: An exact microscopic multiphonon approach

numerical resultsNumerical test: 16Ocalculation up to 3- phonon states ( ) with unperturbed energies up to3,2,1,0n 3

Hamiltonian :

ij ijkl

kljiji aaaaklVijaajTiH ||4

1||

iresiii Vaa

ibare

iNilss Gh )(

bareABonn GV

Elimination of the CM spurious mode : F. Palumbo, Nucl. Phys. 99, 100 (1967)needed condition: construction of the subspaces from n- phonon ( np-nh configuration) states with unperturbed energies up to 3

)3,2,1( nnH

snl

dnl

gnlN

33,0

22,2

11,44

pnl

fnlN

22,1

11,33

snl

dnlN

22,0

11,22

1)6(11,11 pnlN

4)30(

3)20(

2)12(

0)2(11,00 snlN

3,4,133

)1)(1,2()1)(1,2(2

)1)(1,2(1

0|0

1

11

1

toupNforstatesphononnon

pdspdsonlyn

pfpn

n

111

11

1

)1)(1,2()1)(1,2()1)(1,2(3

)1)(1,2()1)(1,2(2

)1)(1,2,3(1

1

pdspdspdsonlyn

pfppdsn

pgdsn

,2,1,0

,2,1

1)1(2

l

n

nN

4N

0

0,5

1

1,5

2

2,5

3

3,5

4

1ph 2ph 3ph

Nmx

dependence of the maximum major number N ofshell one has to include in order to have all and onlyconfigurations up to 3

Page 23: An exact microscopic multiphonon approach

numerical resultspositive parity

0 ph 1 ph 2 ph 3 ph 4 ph0

10

20

30

40

50

60

70

80

n ph- component

Pn [

% ]

our BG HJ B

0 ph 1 ph 2 ph0

10

20

30

40

50

60

70

80

n ph- component

Pn [

% ]

w ithout CM w ith CM

comparison with others influence of the elimination of CM spurious mode

Positive parity statesGround state

21

21 21)0()0()0(

00 ||0|| ccc

2

21

1

1

)2(,21

1

)1()(,

||

0||

N

jjhp

N

jhphp

jjj

jjjj

bC

bC

1| 21000 PPP

21

21

2)0(2

2)0(1

2)0(00

||

||

||

cP

cP

cP

BG G.E.Brown, A.M.Green, Nucl.Phys. 75, 401 (1966)HJ W.C.Haxton, C.Johnson, Phys.Rev.Lett. 65, 1325 (1990)B B.R.Barret et al., private communication

Page 24: An exact microscopic multiphonon approach

numerical resultspositive parityE2 response (up to )3

2|||)2||2|)2;2( grEgrEB M(

i

ii YreE 22)2M(

)()2;2();2( EEgrEBEES

22 )2

()(

1

2)(

EEEE

the big difference between 0+1-phononand 0+1+2-phonon cases

we need to enlarge the space up to (in order to have 4 ph components in the ground and 2+ states)

4

Page 25: An exact microscopic multiphonon approach

numerical resultspositive parityE2 response (up to ) – effect of the elimination of the CM motion3

21

21 21)2()2()2(

02||0||

ccc

2

21

1

1

)2(,21

1

)1()(,

||

0||

N

jjhp

N

jhphp

jjj

jjjj

bC

bC

3,4,133

)1)(1,2()1)(1,2(2

)1)(1,2(1

0|0

1

11

1

toupNforstatesphononnon

pdspdsonlyn

pfpn

n

.gHIn spite of the fact that CMHamiltonian acts only inthe channel it contributes tothe E2 strength because of thepresence of the phononcomponents:

1

11 )1)(1,2()1)(1,2( pdspds

2n

gH

Page 26: An exact microscopic multiphonon approach

numerical resultspositive parityE2 response (up to ) – running sum3

S(E

) / S

0 10 20 30 40 50 60 70

1.0

0.0

0.2

0.4

0.6

0.8

E [ M e V ]

)()2;2();2( EEgrEBEES

It is necessary to enlarge the space up to 4

22

)(1

0

1

4

50

2)2(

);2()(

rZm

ES

EESEEdES

EWSR

E

see e.g. P.Ring, P.Schuck, The many Body Problem, Springer-V., 1980

Page 27: An exact microscopic multiphonon approach

numerical resultsnegative parity

Negative parity states

Isovector Giant Dipole Resonance (IVGDR)(up to )3

Practically no anharmonicity

i

iii YreE

grEgrEB

EEgrEBEES

3)(

13

233

33

)1,1(

|||)1,1(||1|)1;11(

)()1;11(),11(

M

M

Page 28: An exact microscopic multiphonon approach

numerical resultsnegative paritynumerical resultsnegative parity

Isoscalar Giant Dipole Resonance(ISGDR)

i

iii YreE

grE

grEB

EEgrEB

EES

)(1

33

23

3

3

3

)0,1(

|||)0,1(||1|

)1;01(

)()1;01(

),01(

M

M

multiphonon components areimportant for the ISGDR(large anharmonicity)

Page 29: An exact microscopic multiphonon approach

Concluding remarks

Eigenvalue equations generating multiphonon bases have a simple structure for any numberof phonons (ph confugurations). Redundancy of such basis is removed by elegant Choleskimethod.

After the creation of the multiphonon basis the total Hamiltonian matrix is constructed anddiagonalised. The spurious CM modes are removed by Palumbo’s method. It needs toconstruct each multiphonon space by the consistent way involving all unperturbedmultiphonon states with the energy up to given (procedure hardly treated in theSM calculations).

nHn

We solved in fact exactly the full eigenvalue problem for 16O in a space spanned bymultiphonon states up to 3 phonons and up to unperturbed energy . We found thatsuch a space is not sufficient (e.g. for the fulfilling the EWSR rule).On the other hand, in an enlarged space (up to 4 phonons) the calculation becomes lengthybecause of a large number of one-body density matrix elements. Truncation of the space is needed in this case. Fortunately, effective sampling method allows this truncation keeping the necessary accuracy: F.Andreozzi, N.Lo Iudice, A.Porrino, J. Phys. G 29, 2319 (2003)

3

Page 30: An exact microscopic multiphonon approach

Choleski method reduction of the number of redundant basis states to the number of nonredundant (physical) basis states for 16O ( ) (protons or neutrons)nn NN

13 n

67099400

62593781

50978642

36058383

21438084

10521575

4110426

104177

11328

0309

0410

33

33

33

33

33

33

33

33

33

33

33

NNM

NNM

NNM

NNM

NNM

NNM

NNM

NNM

NNM

NNM

NNM

33 ,,1,,1,3| NorNin i

we use axial symmetry basis where ang. momentum projection M is a goodquantum number