an introduction to microfluidics : lecture n°3

51
AN INTRODUCTION TO MICROFLUIDICS : Lecture n°3 Patrick TABELING, [email protected] ESPCI, MMN, 75231 Paris 0140795153

Upload: stone-livingston

Post on 02-Jan-2016

54 views

Category:

Documents


0 download

DESCRIPTION

AN INTRODUCTION TO MICROFLUIDICS : Lecture n°3. Patrick TABELING, [email protected] ESPCI, MMN, 75231 Paris 0140795153. Outline of Lecture 1. 1 - History and prospectives of microfluidics 2 - Microsystems and macroscopic approach. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

AN INTRODUCTION TO MICROFLUIDICS :

Lecture n°3

Patrick TABELING, [email protected], MMN, 75231 Paris0140795153

Page 2: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

1 - History and prospectives of microfluidics2 - Microsystems and macroscopic approach.3 - The spectacular changes of the balances of forces aswe go to the small world.

Outline of Lecture 1

- The fluid mechanics of microfluidics - Digital microfluidics

Outline of Lecture 2

Page 3: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

1 - Basic notions on diffusive processes2 - Micromixing3 - Microreactors.

Outline of Lecture 3

Page 4: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

Diffusion time for a 100 m wide channel (for a molecule such as fluorescein) :

This time may be too long, especially if one develops several chemical reactions on the same chip

τ=l2

D~100s

Page 5: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

Equation de diffusion advection

• Dans le cas incompressible, l ’équation de diffusion advection est :

∂C∂t

+u∇C=DΔC+q

Un nombre sans dimension analogue au nombre de Reynolds est :

Pe =UlD

~advectiondiffusion

Ordre de grandeur :Pe ~ 105 pour un colorant dans l ’eau agitée à des vitesses de 1cm/s

Page 6: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

Quelques propriétés de l’équation de diffusion-advection

La variance de la concentation décroit avec le temps

∂ <C2 >∂t

=−D< ∇C( )2 >

- si les CL sont périodiques ou si l’écoulement est confiné dans un volume avec parois rigides imperméables.

Page 7: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

Le nombre de Peclet n’est pas nécessairement petit dans les systèmes miniaturisés

Pe=UlD

~advectiondiffusion

~l2

….donc petit

Page 8: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

C(x,t) =C0

4πDtexp−

x2

4Dt⎛ ⎝ ⎜

⎞ ⎠ ⎟

Un problème fondamental : la diffusion d ’une petite tache dans un fluide au repos

C

x

C

x

t=0 t

Écart type =(2Dt)1/2

Page 9: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

Dispersion dans un écoulement uniforme

• A t =0, on impose C=C0 en x=0 sur une couche d ’épaisseur

C(x, t) =C02π

exp−(x−Ut)2

2 2

⎛ ⎝ ⎜ ⎞

⎠Avec 2=2Dt

x=0

xU

Page 10: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

∂ C

∂ t

= Deff

Δ C

DC

Dt

=

∂ C

∂ t

+ ( U ( z ) − V )

∂ C

∂ x '

= D

2

C

∂ x '

2

DC

Dt

=

∂ C

∂ t

+ U ( z )

∂ C

∂ x

= D Δ C

Dispersion de TAYLOR-ARIS

d d doit etre très fin

Deff =D(1+αPe2)

Page 11: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

Origine microscopique de la diffusion moléculaire

• On introduit un « marcheur » effectuant des sauts de longueur li le long d ’une ligne : (mouvement brownien)

La poxition du marcheur est : x = li

1

n

On démontre :

x2=li

2=nl

2

1

n

∑=Dt

Mouvement diffusif et front gaussien

li

Page 12: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

- Mixing is difficult in microsystems

Mixing in microsystems

Page 13: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

There has been some clever and less clever ideas

FLOW

Poor transverse mixing for microfluidic systems

Page 14: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

HYDRODYNAMIC FOCUSING ALLOWS

TO MIX IN TENS OF MICROSECONDS Austin et al, PRL (2002)

On the order of30 nm in the extreme cases

Page 15: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3
Page 16: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3
Page 17: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3
Page 18: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3
Page 19: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3
Page 20: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3
Page 21: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

Circular micromixer

Quake, Scherer (2001)

Page 22: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

Transformation du boulanger

Page 23: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

In chaotic regimes, two close particles separate exponentiallyIn confined systems, this property is extremely favorable to mixing,

Page 24: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

From Ottino’s book : « Chaotic Advection »

Page 25: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

The first chaotic micromixer was designed at Berkeley (1997)

Thermal actuator

Micromixer

J. Evans, D. Liepmann, D., and A.P. Pisano, 1997, “Planar Laminar Mixer,” Proceeding of the IEEE 10th Annual Workshop of Micro Electro Mechanical Systems (MEMS ’97), Nagoya, Japan, Jan, pp.96-101.

Page 26: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

Main Flow

Time periodic transverse flow

V

-V

time

Cross-channel micro-mixer(UCLA,1999)

400 m

investigated by Y.K. Lee, C.M.Ho (1999), Mezic et al (1999)

Fluid A

FluidB

Page 27: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

How it works (from a kinematical viewpoint)

U

Perturbation is appliedLine is stretched

Perturbationis stoppedLine is folded

U

U

Page 28: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

EXPERIMENTEXPERIMENT

200m

25m

1mm

actuation channel

Glass slide Working channel

Microvalve

Micro-valve

Page 29: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3
Page 30: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

A.Dodge, P. Tabeling, A. Hountoundji, M.C.Jullien (2004)

200 m

Page 31: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

Under resonance conditions, the interface is stretchedin the active zone, and returns flat afterwards

A.Dodge, P. Tabeling, A. Hountoundji, M.C.Jullien (2004)

QuickTime™ et undécompresseur H.263

sont requis pour visionner cette image.

Page 32: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

DETERMINING A PHASE DIAGRAM, USING THE VARIANCEOF THE PDF OF THE CONCENTRATION FIELD

σ2 =<C(x)−Cmean>2

- Well mixed : the variance is small

- Unmixed : the variance is large

Page 33: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

QuickTime™ et un décompresseurH.263 sont requis pour visualiser

cette image.

EXPERIMENTAL PHASE DIAGRAM, REPRESENTING ISOLINES OF 2

Actuationpressure(bar)

Frequency (Hz)

Page 34: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

RESONANCESMAY BE USED TO SORTPARTICLES :

BY CHANGING THE FREQUENCY OF THE PERTURBATION, ONEOBTAINS A SYSTEM WHICH MIXES FLUIDS, FILTERS PARTICLES,OR SIMPLY TRANSPORTS MATERIALS

SIDE BY SIDE.

An efficient particle sorter, using resonance

Page 35: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

A.Dodge, P. Tabeling, A. Hountoundji, M.C.Jullien (2004)

Page 36: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

CHEMICAL MICROREACTORS

Page 37: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

EXPERIMENTAL STUDY OF A CHEMICAL REACTIONA+B C IN A T MICROREACTOR

Channels 10m deep,500m wide, various flow-ratesSystem made in glass, coveredby a silicon wafer, or in PDMS

A

B

Page 38: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

The T reactor

Diffusion-reaction zone wherethe product C is formed

A

B

Quantitative analysis of Molecular Interaction in a Microfluidic Channel : The T sensor,A.E.Kamholz, B Weigl, B Finlayson, P Yager, Anal Chem, 71, 5340 (1999)

x

One may also measure the kinetics without mixing thoroughly

U

y

Page 39: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

EXPERIMENT

Reaction : Ca-CaGreen

C.Baroud, F Okkels, P Tabeling, L Menetrier, Phys. Rev E67, 60104 (2003) 

Page 40: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

Ca

CaGreen

Fluorescence intensity fields obtained for the reactionCaGr+Ca2+ (CaGr,Ca2+)

U

U

C.Baroud, F Okkels, P Tabeling, L Menetrier, Phys. Rev E67, 60104 (2003) 

Page 41: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

Theory of the T-reactor for a second order reaction

U∂C∂x

=DC∂2C∂y2 +kAB

The product C is governed by the following equation :

U∂A∂x

=DA∂2A∂y2 −kAB

U∂B∂x

=DB∂2B∂y2 −kAB = (k A0

1/2 B01/2 )-1

Characteristic time of the reactionx=0, A = A0 for y< 0

B =B0 for y> 0

Boundary conditions :

Page 42: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

Width

Locationof the maxConc.

C

y

Typical structure ofa concentration profile of the productacross the channel

width

Locationof the max.

Agreement between theory and experimentis good

MaximumConc.

THEORY with one fitting parameter k = 105 lM-1 s-1 ( = 1 ms)C.Baroud et al, Phys. RevE (2003)

x

x

x

Page 43: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

EXPERIMENT IS WELL INTERPRETED BY THE THEORY

THEORY THEORY

m m

Fitting the experiment with one free parameter k = 105 LM-1 s-1 ( = 1 ms)

X

y

y (m) y (m)

C.Baroud et al Phys. Rev E67, 60104 (2003) 

Page 44: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

Digital microfluidics is interesting for chemical analysis, protein cristallization, elaborating novel emulsions,…

Ismagilov et al(Chicago University)

Page 45: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

(Source : C. Delattre, MIT, MTL)

Can we produce much using microreactors ?

Can we move a mountain with a spoon ?

Page 46: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3
Page 47: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3
Page 48: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3
Page 49: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3
Page 50: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3
Page 51: AN INTRODUCTION TO  MICROFLUIDICS : Lecture n°3

The end