an introduction to x-analysis integration (xai) part 3: example applications georgia tech...

94
An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact: Russell S. Peak Revision: March 15, 2001 Copyright © 1993-2001 by Georgia Tech Research Corporation, Atlanta, Georgia 30332-0415 USA. All Rights Reserved. Developed by eislab.gatech.edu. Permission to use for non-commercial purposes is hereby granted provided this notice is included.

Upload: bertram-samson-burke

Post on 04-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

An Introduction toX-Analysis Integration (XAI)

Part 3:Example Applications

Georgia Tech

Engineering Information Systems Lab

eislab.gatech.edu

Contact: Russell S. Peak

Revision: March 15, 2001

Copyright © 1993-2001 by Georgia Tech Research Corporation, Atlanta, Georgia 30332-0415 USA. All Rights Reserved.Developed by eislab.gatech.edu. Permission to use for non-commercial purposes is hereby granted provided this notice is included.

Page 2: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

2Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI

Part 3: Example Applications» Airframe Structural Analysis (Boeing)» Circuit Board Thermomechanical Analysis

(DoD: ProAM; JPL/NASA)» Chip Package Thermal Analysis (Shinko)

– Summary

Part 4: Advanced Topics & Current Research

Page 3: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

3Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Airframe Structural AnalysisGIT Work in Boeing PSI Project

Current Situation: Limited Analysis Integration

Manually-MaintainedAssociativity

Error-Prone, Labor-Intensive,Little Knowledge Capture

flap support assembly inboard beam (a.k.a. “bike frame”)

bulkhead assembly attach point

diagonal braceattach point

AnalysisDocumentationDesign Objects

Page 4: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

4Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Airframe Structural AnalysisTarget Situation: Enhanced Analysis Interoperability

Analysis Objects

Modular, Integrated, Active, Multidirectional, Reusable, User-Definable

diagonal brace lug jointj = top

0.7500 in

0.35 in

0.7500 in

1.6000 in

2

0.7433

14.686 K

2.40

4.317 K

8.633 K

k = norm

Max. torque brake settingdetent 30, 2=3.5º

7050-T7452, MS 7-214

67 Ksi

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Diagonal Brace Lug Joint

Program

Part

Feature

Lug JointAxial Ultimate Strength Model

Template

j = top lugk = normal diameter (1 of 4)

Dataset

material

deformation model

max allowable ultimate stress, FtuL

effective width, W

analysis context

objective

mode (ultimate static strength)

condition

estimated axial ultimate strength

Margin of Safety(> case)

allowable

actual

MS

normal diameter, Dnorm

thickness, t

edge margin, e

Plug joint

size,n

lugs

lugj hole

diameters

product structure (lug joint)

r1

n

P jointlug

L [ j:1,n ]

Plug

L [ k]Dk

oversize diameter, DoverD

PaxuW

e

t

Ftuax

Kaxu

Lug Axial UltimateStrength Model

BDM 6630

0.4375 in

0.5240 in

0.0000 in

2.440 in

1.267 in

0.307 in

0.5 in

0.310 in

2.088 in

1.770 in

67000 psi

65000 psi

57000 psi

52000 psi

39000 psi

0.067 in/in

0.030 in/in

5960 Ibs

1

10000000 psi

9.17

5.11

9.77

rear spar fitting attach point

BLE7K18

2G7T12U (Detent 0, Fairing Condition 1)

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Bulkhead Fitting Joint

Program

Part

Feature

Channel FittingStatic Strength Analysis

Template

1 of 1Dataset

strength model

r1

e

b

h

tb

te

Pu

Ftu

E

r2

r0

a

FtuLT

Fty

FtyLT

epuLT

tw

MSwall

epu

jm

MSepb

MSeps

Channel FittingStatic Strength Analysis

Fsu

IAS FunctionRef D6-81766

end pad

base

material

wall

analysis context

mode: (ultimate static strength)

condition:

heuristic: overall fitting factor, Jm

bolt

fitting

headradius, r1

hole radius, ro

width, b

eccentricity, e

thickness, teheight, h

radius, r2

thickness, tb

hole

thickness, twangled height, a

max allowable ultimate stress,

allowable ultimate long transverse stress,

max allowable yield stress,

max allowable long transverse stress,

max allowable shear stress,

plastic ultimate strain,

plastic ultimate strain long transverse,

young modulus of elasticity,

load, Pu

Ftu

Fty

FtyLT

Fsu

epu

epuLT

E

FtuLT

product structure (channel fitting joint)flap support assembly inboard beam (a.k.a. “bike frame”)

bulkhead assembly attach point

diagonal braceattach point

Pullable Views

lug analysis fitting analysis

Design Objects

Page 5: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

5Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Analysis Tools

0.4375 in

0.5240 in

0.0000 in

2.440 in

1.267 in

0.307 in

0.5 in

0.310 in

2.088 in

1.770 in

67000 psi

65000 psi

57000 psi

52000 psi

39000 psi

0.067 in/in

0.030 in/in

5960 Ibs

1

10000000 psi

9.17

5.11

9.77

rear spar fitting attach point

BLE7K18

2G7T12U (Detent 0, Fairing Condition 1)

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Bulkhead Fitting Joint

Program

Part

Feature

Channel FittingStatic Strength Analysis

Template

1 of 1Dataset

strength model

r1

e

b

h

tb

te

Pu

Ftu

E

r2

r0

a

FtuLT

Fty

FtyLT

epuLT

tw

MSwall

epu

jm

MSepb

MSeps

Channel FittingStatic Strength Analysis

Fsu

IAS FunctionRef D6-81766

end pad

base

material

wall

analysis context

mode: (ultimate static strength)

condition:

heuristic: overall fitting factor, Jm

bolt

fitting

headradius, r1

hole radius, ro

width, b

eccentricity, e

thickness, teheight, h

radius, r2

thickness, tb

hole

thickness, twangled height, a

max allowable ultimate stress,

allowable ultimate long transverse stress,

max allowable yield stress,

max allowable long transverse stress,

max allowable shear stress,

plastic ultimate strain,

plastic ultimate strain long transverse,

young modulus of elasticity,

load, Pu

Ftu

Fty

FtyLT

Fsu

epu

epuLT

E

FtuLT

product structure (channel fitting joint)

Flexible High Diversity Design-Analysis Integration Phase 1 Airframe Examples:

“Bike Frame” / Flap Support Inboard Beam

Analysis Modules (CBAMs) of Diverse Feature:Mode, & Fidelity

Design Tools

Materials DBFEA

Elfini*MATDB-like

Analyzable Product Model

XaiTools

XaiTools

Fitting:Bending/Shear

3D

1.5D

Modular, ReusableTemplate Libraries

MCAD ToolsCATIA

Lug:Axial/Oblique; Ultimate/Shear

1.5D

Assembly:Ultimate/

FailSafe/Fatigue*

* = Item not yet available in toolkit (all others have working examples)

diagonal brace lug jointj = top

0.7500 in

0.35 in

0.7500 in

1.6000 in

2

0.7433

14.686 K

2.40

4.317 K

8.633 K

k = norm

Max. torque brake settingdetent 30, 2=3.5º

7050-T7452, MS 7-214

67 Ksi

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Diagonal Brace Lug Joint

Program

Part

Feature

Lug JointAxial Ultimate Strength Model

Template

j = top lugk = normal diameter (1 of 4)

Dataset

material

deformation model

max allowable ultimate stress, FtuL

effective width, W

analysis context

objective

mode (ultimate static strength)

condition

estimated axial ultimate strength

Margin of Safety(> case)

allowable

actual

MS

normal diameter, Dnorm

thickness, t

edge margin, e

Plug joint

size,n

lugs

lugj hole

diameters

product structure (lug joint)

r1

n

P jointlug

L [ j:1,n ]

Plug

L [ k]Dk

oversize diameter, Dover

D

PaxuW

e

t

Ftuax

Kaxu

Lug Axial UltimateStrength Model

BDM 6630

Fasteners DB

FASTDB-like

General Math Mathematica

In-HouseCodes

Image API(CATGEO)

Page 6: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

6Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Today’s Fitting Catalog Documentation from DM 6-81766 Design Manual

Channel Fitting End Pad Bending Analysis

AngleFitting

BathtubFitting

ChannelFitting

Categories of Idealized FittingsCalculation Steps

Page 7: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

7Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Object-Oriented Hierarchy of Fitting ABBs

Fitting Casing Body

Channel Fitting Casing Body*

Bathtub Fitting Casing Body

Angle FittingCasing Body

Fitting System ABB

Fitting Wall ABBFitting End Pad ABB

Fitting Bolt Body*

Open Wall FittingCasing Body

Fitting End Pad Bending ABB Fitting End Pad

Shear ABB*

Open Wall Fitting End Pad Bending ABB

Channel FittingEnd Pad Bending ABB*

e

se

tr

Pf

02

3 )2( b 1 teKC

21

e

be

ht

PCf

21 1 KKC

),,,( 011 erRrfK

),(2 we ttfK

),,( 13 hbrfK

baR

2

dfRe

),min( wbwaw ttt

bolt

load

Fitting Washer Body

Specialized Analysis Body

P

ABB

Specialized Analysis System

washercasing

* = Working Examples

Page 8: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

8Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

r1

sefactual shear stress,bolt.head.radius, r0

end_pad.thickness, te

load, P e

setr

Pf

02

Channel Fitting System ABBs

End Pad Bending Analysis

End Pad Shear Analysis

e n d _ p a d .e cce n tr ic ity , e

e n d _ p a d .w id th , b

b o lt.h o le .ra d iu s , r1

r2 r3

r1

h

r1

h

be n d _ p a d .h e ig h t, h3K

befa c tu a l b e n d in g s tre ss ,

ch a n n e l f itt in g fa c to r,

D M 6 -8 1 7 6 6 F ig u re 3 .3

b a se .th ickn e ss , tb

e n d _ p a d .th ickn e ss , te

lo a d , P

23 )2(e

bbeht

PteKf

0.1

0.2

0.3

0.41

1.5

2

2.5

3

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

Page 9: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

9Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

0.1

0.2

0.3

0.41

1.5

2

2.5

3

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

Implementation of Channel Fitting Factor, K3 as a Reusable Relation in an External Tool

r_1/h = 0.1 r_1/h = 0.2 r_1/h = 0.3 r_1/h = 0.4b/h K_3 b/h K_3 b/h K_3 b/h K_31.0 0.836 1.0 0.5525 1.0 0.395 1.0 0.281.04 0.8575 1.04 0.575 1.04 0.415 1.04 0.29751.1 0.8752 1.1 0.596 1.1 0.437 1.1 0.3171.2 0.898 1.2 0.618 1.2 0.461 1.18 0.3351.34 0.92 1.34 0.641 1.34 0.485 1.34 0.3591.5 0.938 1.5 0.66 1.5 0.505 1.5 0.3751.8 0.9645 2.0 0.705 2.02 0.55 2.0 0.4152.1 0.985 2.54 0.74 2.4 0.575 2.52 0.4453.0 1.035 3.0 0.756 3.0 0.607 3.0 0.468

DM 6-81766 Graph (Figure 3.3) 1.5 2 2.5 3

0.45

0.5

0.55

0.60.15 0.2 0.25 0.3 0.35 0.4

0.5

0.6

0.7

0.8

0.9

Mathematica Implementation

3K

3K

3K

h

b

h

r1

h

b

h

r1

Design Manual Curves

Page 10: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

10Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Reusable Channel Fitting Analysis Module (CBAM)

strength model

r1

e

b

h

tb

te

Pu

Ftu

E

r2

r0

a

FtuLT

Fty

FtyLT

epuLT

tw

MSwall

epu

jm

MSepb

MSeps

Channel FittingStatic Strength Analysis

Fsu

IAS FunctionRef DM 6-81766

end pad

base

material

wall

analysis context

mode: (ultimate static strength)

condition:

heuristic: overall fitting factor, Jm

bolt

fitting

headradius, r1

hole radius, ro

width, b

eccentricity, e

thickness, teheight, h

radius, r2

thickness, tb

hole

thickness, twangled height, a

max allowable ultimate stress,

allowable ultimate long transverse stress,

max allowable yield stress,

max allowable long transverse stress,

max allowable shear stress,

plastic ultimate strain,

plastic ultimate strain long transverse,

young modulus of elasticity,

load, Pu

Ftu

Fty

FtyLT

Fsu

epu

epuLT

E

FtuLT

product structure (channel fitting joint)

Page 11: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

11Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Diagonal Brace Lug Bulkhead Fitting Casing

Application to an Airframe PartAPM Associativity with Tagged CATIA Model

Bike Frame CATIA CAD Model

rib8.thickness

cavity3.inner_width

Page 12: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

12Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

APM Interface with Tagged CAD Models

APMCOB Tool

7) Solve idealizations8) Use in analysis

part_number : “9162”; hole1.radius : ?;hole2.radius : ?;length1 : ?;

tk/tclCATGEOwrapper

CATIA(CAD tool)

part_number : “9162”; hole1.radius : 2.5;hole2.radius : 4.0;length1 : 20.0;

1) 2) request

4)

5)

6) response

GITInterfaceprogram

0) Designer - Creates design geometry - Defines APM-compatible parameters/tags

3)

3 and 4 similar to other CAD APIs

COB instance format

Page 13: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

13Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Bike Frame APM Constraint SchematicBulkhead Fitting Portion (partial)

bulkhead assy attach, point fitting

cavity 3

rib 8

bike_frame

rib 9

end_pad

base

wall

width, b

base

inner_width

min_thickness

thickness, t8

thickness, t9

...

hole

thickness, te

2

1

Idealization Relations- Reuse from standard APM fitting template

or adapt for part feature-specific cases (as here)

Idealizedfeatures(std. APMtemplate)

Detaileddesignfeatures

Page 14: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

14Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Explicit Capture of Idealizations

(part-specific template adaptation in bike frame case)

Features/ParametersTagged in CAD Model (CATIA)

zf

xf

cavity3.base.minimum_thickness

yf

xf

rib8

cavity 3

rib9

= t8,t 9

rib8.thicknessrib9.thickness

cavity3.width, w3

zf

yf

xf

zfxf

yf

i - Relations between CAD parameters and idealized parameters1 : b = cavity3.inner_width + rib8.thickness/2 + rib9.thickness/22 : te = cavity3.base.minimum_thickness

Idealized Features

Tension Fitting Analysis

yf

Missing in

Today’s Process

2

1

Page 15: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

15Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Typical Analysis Results DocumentationMissing Explicit Design-Analysis Associativity

CAD Modelbulkhead assembly attach point

CAE Model channel fitting analysis

materialproperties

idealizedanalysis

geometry

analysisresults

detaileddesigngeometry

No explicit

fine-grained

CAD-CAE

associativity

inconsisten

cy littleautomationlittleknowledge capture

Page 16: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

16Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Bike Frame Bulkhead Fitting AnalysisCOB-based Analysis Template (CBAM) - Constraint Schematic

0.4375 in

0.5240 in

0.0000 in

2.440 in

1.267 in

0.307 in

0.5 in

0.310 in

2.088 in

1.770 in

67000 psi

65000 psi

57000 psi

52000 psi

39000 psi

0.067 in/in

0.030 in/in

5960 Ibs

1

10000000 psi

9.17

5.11

9.77

bulkhead fitting attach point

LE7K18

2G7T12U (Detent 0, Fairing Condition 1)

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Bulkhead Fitting Joint

Program

Part

Feature

Channel FittingStatic Strength Analysis

Template

1 of 1Dataset

strength model

r1

e

b

h

tb

te

Pu

Ftu

E

r2

r0

a

FtuLT

Fty

FtyLT

epuLT

tw

MSwall

epu

jm

MSepb

MSeps

Channel FittingStatic Strength Analysis

Fsu

IAS FunctionRef DM 6-81766

end pad

base

material

wall

analysis context

mode: (ultimate static strength)

condition:

heuristic: overall fitting factor, Jm

bolt

fitting

headradius, r1

hole radius, ro

width, b

eccentricity, e

thickness, teheight, h

radius, r2

thickness, tb

hole

thickness, twangled height, a

max allowable ultimate stress,

allowable ultimate long transverse stress,

max allowable yield stress,

max allowable long transverse stress,

max allowable shear stress,

plastic ultimate strain,

plastic ultimate strain long transverse,

young modulus of elasticity,

load, Pu

Ftu

Fty

FtyLT

Fsu

epu

epuLT

E

FtuLT

product structure (channel fitting joint)

Page 17: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

17Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Bike Frame Bulkhead Fitting AnalysisCOB-based Analysis Template (CBAM) - in XaiTools

Detailed CAD datafrom CATIA

Idealized analysis features in APM

Explicit multi-directional associativity between detailed CAD data & idealized analysis features

Modular generic analysis templates(ABBs)

Library data for materials & fasteners

Focus Point ofCAD-CAE Integration

Page 18: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

18Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Bike Frame Diagonal Brace Lug Joint Analysis

Typical Current Approach

Page 19: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

19Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Lug Template Applied to Bike Frame

diagonal brace lug jointj = top

0.7500 in

0.35 in

0.7500 in

1.6000 in

2

0.7433

14.686 K

2.40

4.317 K

8.633 K

k = norm

Max. torque brake settingdetent 30, 2=3.5º

7050-T7452, MS 7-214

67 Ksi

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Diagonal Brace Lug Joint

Program

Part

Feature

Lug JointAxial Ultimate Strength Model

Template

j = top lugk = normal diameter (1 of 4)

Dataset

material

deformation model

max allowable ultimate stress, FtuL

effective width, W

analysis context

objective

mode (ultimate static strength)

condition

estimated axial ultimate strength

Margin of Safety(> case)

allowable

actual

MS

normal diameter, Dnorm

thickness, t

edge margin, e

Plug joint

size,n

lugs

lugj hole

diameters

product structure (lug joint)

r1

n

P jointlug

L [ j:1,n ]

Plug

L [ k]Dk

oversize diameter, DoverD

PaxuW

e

t

Ftuax

Kaxu

Lug Axial UltimateStrength Model

DM 6630

APM ABB

ABB

CBAM

SMM

*WIP items

Solution Tool Interaction

Boundary Condition Objects(links to other analyses)*

CAD-CAEAssociativity (idealization usage)

Material Models

PullableViews*

Geometry

Focus Point of

CAD-CAE IntegrationR

c

b

= f( c , b , R )W = f( R , D , )

axial direction

e

D

Page 20: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

20Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Accomplishments - Phase 1 Developed analysis template language & techniques:

– Facilitates template generation & usage – Captures associativity with design information & other analyses – Aids integration of existing CAD & CAE capabilities

» Demonstrates concepts to include in current tools» Wraps and reuses current tools in next generation tools

Implemented representative examples:– Associativity with CATIA CAD models and libraries (materials, fasteners)– Use of existing solvers as black boxes (e.g., FEA, math, in-house tools) – Creation of modular, reusable template catalogs: lugs & fittings– Usage in “bike frame”:

» Bulkhead & rear spar channel fittings (part-specific adaptation)

» Diagonal brace lug joint

Page 21: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

21Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Anticipated Benefits - Current Phases Provide methodology for bridging associativity gap

– Focus: Cases with different design vs. analysis geometries Ex. Multi-part built-up structure

– Reduce costs, decrease time, increase quality:» Improve engineering productivity» Reduce information inconsistencies» Increase analysis intensity & effectiveness» Capture engineering knowledge in a reusable form

Progress along production solution path for next.-generation structures environment– Clarify and evaluate recommended approaches– Build consensus with users and developers

(in incrementally larger groups)

See Advanced Topics

re: Current Work

Page 22: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

22Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI

Part 3: Example Applications» Airframe Structural Analysis (Boeing)» Circuit Board Thermomechanical Analysis

(DoD: ProAM; JPL/NASA)» Chip Package Thermal Analysis (Shinko)

– Summary

Part 4: Advanced Topics & Current Research

Page 23: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

23Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

ProAM Project Highlights

Title: Product Data-Driven Analysis in a Missile Supply Chain (ProAM)

Sponsor: National ECRC Program

From DoD DLA/DISA Joint Electronic Commerce Program Office (JECPO),

via subcontract under Concurrent Technologies Corp. (CTC)

Technical Team: AMCOM - Stakeholder, Atlanta ECRC/Georgia Tech (lead)

SMEs: Circuit Express (Tempe), S3 (Huntsville)

Duration: 8/97-6/99

Focus: - X-Analysis Integration (XAI) techniques

- Engineering Service Bureau (ESB) paradigm for SMEs

- Electronics domain (PWA/Bs) - STEP AP210, etc.

Extensions: - Transform demo ESB into SME commercial pilot

- Release next-generation XAI toolkitSME = small-medium enterprise

Page 24: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

24Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

STEP AP 210PWA/B Design Information

Technology

Physical

Geometry

• Component Placement• Bare Board Geometry• Layout items• Layers non-planar, conductive & non-conductive• Material product

• Geometrically Bounded 2-D Shape• Wireframe with Topology • Advanced BREP Solids • Constructive Solid Geometry

Part• Functionality• Termination • Shape 2D, 3D • Single Level Decomposition• Material Product• Characteristics

Configuration Mgmt• Identification• Authority • Effectivity • Control• Requirement Traceability• Analytical Model• Document References

Product Structure/Connectivity

• Functional• Packaged

• Fabrication Design Rules• Product Design Rules

Requirements• Design• Allocation• Constraints• Interface

Page 25: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

25Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

ProAM Technical Team

Circuit Express

AtlantaECRC

GeorgiaTech

AMCOM

S3

Missile supply chain SME• PWB fabrication expertise• Tool usage & feedback Electronic commerce resource center

• Mgt., ESB, computing support

Research & development lab• Program management• Technical concepts• Tool implementation

Missile supply chain SME• PWB design & fabrication expertise• Tool usage & feedback

Missile system end-users• Supply chain context• Technical oversight

Page 26: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

26Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

ProAM Focus Highly Automated Internet-based Analysis Modules

World WideEnd UserAMCOM

Feedback,Products

AtlantaPhysical SimulationU-Engineer.com

Internet-basedEngineering Service

Bureau

Self-ServeResults

Response to RFP,Technical Feedback,Products

Missile Mfg.

Prime 1

TempePWB Fabricator

Life CycleNeeds

FrionaPWB Fabricator

SME 2

RockhillPWB Fabricator

SME 1 SME n

IdealizedProductData

ProAM Focus

RFP with Product Data (STEP, IPC, …)

Page 27: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

27Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Why Do SME Manufacturers Need Analysis?

Typically niche-experts– Precise mfg. process knowledge – Specialized product design knowledge

(ex. PWB laminates) SME analysis needs

– Product improvements (DFM)– Mfg. process troubleshooting– Mfg. process optimization

More accurate data Better analysis Bottom line drivers:

Higher Yields, Lower Cost, Better Quality, Fewer Delays

Page 28: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

28Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Barriers to Ubiquitous Analysis

Lack of awareness High costs of traditional analysis capability

– Secondary: Specialized Software, Training, Hardware – Primary: Model Access/Development, Validation,

Usage Lack of domain-specific integrated tools

Skilled PersonnelProduct Model Analysis Model

Page 29: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

29Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

U-Engineer.comSelf-Serve Engineering Service Bureau

Lower cost, better quality, fewer delays in supply chain

Analysis Documentation Ready-to-Use Analysis Modules

Page 30: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

30Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

ESB Analysis Module Catalogs & Documentation

Page 31: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

31Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Analysis Modules Attributes

Page 32: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

32Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Paper-based IPC-D-279 Plated Through Hole Fatigue Analysis

PTH/PTV Fatigue Life Estimation

Tedious to Use

Page 33: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

33Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Web-basedIPC-D-279 PTH Analysis Module

Easy to Use

Page 34: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

34Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Product Data-DrivenIPC-D-279 PTH Analysis Module

Data Driven aspect: Web Browser Processes Neutral File + Local Browser

Computation+ Less Errors than manual

idealization & re-entry+ Exhaustive search+ Data Compression

(e.g. 100x)+ Security

XparseJavaScriptparsing

GenCAM/GenXEasier to Use

Page 35: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

35Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Analysis Data Flow Web-based Approach (c. 1997)

ANSYS

xxx.mailcommands.tmp

rcp

nnnn.gif

gif

xxxx.prep7

ANSYS

db.out

ANSYS

(Analysis Server: Sun)

Browser:PTH Input

(HTML Form)

(Client PC)

Perl CGI Script

xxxx.prep7

ANSYS

Linuxrshrcp

(Web Server: Linux PC)

nnnn.gif

gif

User

Unixmail

Unixrcp

EmailTool

(1)

(3a)(3)(2)

(4)

(3c2)

(3b)

(3c1)

(5) (6)

(n) <actor action>

Data Flow Legend: <tool> <file>

<format>

Possible Newer Methods (c. 2001)Constrained objects, Web application servers, Java-based middleware, XML, ...

Page 36: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

36Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

ESB Characteristics

Self-serve analysis– Pre-developed analysis modules

presented in product & process contexts– Available via the Internet – Optionally standards-driven (STEP, GenCAM ...):

» Reduce manual data transformation & re-entry» Highly automated plug-and-play usage

– Enabled by X-analysis integration technology Full-serve analysis as needed Possible business models:

(beyond ProAM scope)

– Pay-per-use and/or Pay-per-period – Costs averaged across customer base

Page 37: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

37Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

ProAM Design-Analysis IntegrationElectronic Packaging Examples: PWA/B

Analysis Modules (CBAMs) of Diverse Mode & Fidelity

Design Tools

Laminates DB

FEA Ansys

General MathMathematica

Analyzable Product Model

XaiToolsPWA-B

XaiToolsPWA-B

Solder JointDeformation*

PTHDeformation & Fatigue**

1D,2D

1D,2D,3D

Modular, ReusableTemplate Libraries

ECAD Tools Mentor Graphics,

Accel*

temperature change,T

material model

temperature, T

reference temperature, To

cte,

youngs modulus, E

force, F

area, A stress,

undeformed length, Lo

strain,

total elongation,L

length, L

start, x1

end, x2

mv6

mv5

smv1

mv1mv4

E

One D LinearElastic Model(no shear)

T

e

t

thermal strain, t

elastic strain, e

mv3

mv2

x

FF

E, A,

LLo

T, ,

yL

r1

12 xxL

r2

oLLL

r4

A

F

sr1

oTTT

r3L

L

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

T o r s i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c r o s s s e c t i o n :e f f e c t i v e r i n g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

l i n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t i o n r e a c t i o n

t s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b l e s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

a l l o w a b l et w i s t Analysis Tools

PWBWarpage

1D,2D

Materials DB

PWB Stackup ToolXaiTools PWA-B

STEP AP210‡ GenCAM**,

PDIF*

‡ AP210 DIS WD1.7 * = Item not yet available in toolkit (all others have working examples) ** = Item available via U-Engineer.com

Page 38: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

38Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Overview of PWB Stackup Design

Fabrication engineer designs PWB stackup details

Stackup Specs - PWA/B Designer

Layer 1: 1 Oz. Cu Foil

Layer 2: 2 Oz. Cu Foil

Layer 3: 1 Oz. Cu Foil

Layer 6: 1 Oz. Cu Foil

Layer 4: 1 Oz. Cu Foil

Layer 5: 2 Oz. Cu Foil

component

plane

signal

signal

plane

solder

Epoxy Glass GF/ PGF

Epoxy Glass GF/ PGF

Epoxy Glass GF/ PGF

Epoxy Glass GF/ PGF

Epoxy Glass GF/ PGF

.065

.055overbase

material

OR

1 Oz. Cu

1 Oz. Cu

1 Oz. Cu

1 Oz. Cu

2 Oz. Cu

2 Oz. CuM150P2P11184

M150P1P21184

3 x 1080

3 x 1080

2 x 2116

Design Alternative 1

Stackup Design - PWB Fabricator

3 X 106

3 X 106

M150P1P21184

M150P2P11184

M150P1P11184

1 Oz. Cu

1 Oz. Cu

1 Oz. Cu

2 Oz. Cu

2 Oz. Cu

…Design Alternative n

1 Oz. Cu

Page 39: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

39Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Impact of Stackup Design

Stackup details impact PWB behavior: warpage, PTH reliability, crosstalk (impedance), etc.

Fabrication engineer needs tools to evaluate alternativesPrecise material and manufacturing process expertise of

fabrication engineer enables more accurate analysis

1 Oz. Cu

1 Oz. Cu

1 Oz. Cu

1 Oz. Cu

2 Oz. Cu

2 Oz. CuM150P2P111824 Polyclad -Tetra

M150P1P211824 Polyclad -Tetra

3 x 1080

3 x 1080

2 x 2116

ManufacturingConditions

Detailed Material Characterization Accurate Analysis Results

which can be compared to Prime’s Specs

Page 40: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

40Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Post-LaminationThickness Calculation

Before: Typical Manual Worksheet(as much as 1 hour engr. time)

After: Tool-Aided Design (ProAM)

321

221

1 2/2/C

t

ytC

t

ytC

n

iii

n

iii

B

n

ithickessnestedthicknessationlapost1

__min_

filltoretkthicknessnestedp

isfnsetprepreg _sin__1

_

Page 41: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

41Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Iterative Design & Analysis PWB Stackup Design & Warpage Analysis

AnalyzableProduct Model

PWB Stackup Design Tool

1 Oz. Cu

1 Oz. Cu

1 Oz. Cu

1 Oz. Cu

2 Oz. Cu

2 Oz. CuTetra GF

Tetra GF

3 x 1080

3 x 1080

2 x 2116

2D Plane Strain Model

b L T

t

2

Detailed FEA Check

bi i i

i

w y

t w

/ 2

1D Thermal Bending Model

LayupRe-design

PWB Warpage Modules

Quick Formula-based Check

(TIGER extensions)

Page 42: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

42Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

PWB Warpage Modulesa.k.a. CBAMs: COB-based analysis templates

total_thicknesspwa

layup layers[0]

layers[1]

layers[2]

TOTAL

CU1T

CU2T

POLYT

PREPREGT

TETRA1T

EXCU

ALPXCU

EXEPGL

ALPXEGL

TO

deformation model

ParameterizedFEA Model

ux mos model

Margin of Safety(> case)

allowable

actual

MS

UX

condition

UY

SX

associated_pwb

nominal_thickness

prepregs[0] nominal_thickness

top_copper_layer nominal_thickness

related_core nominal_thickness

prepregs[0] nominal_thicknesslayers[3]

primary_structure_material linear_elastic_model E

cte

primary_structure_material linear_elastic_model E

cte

reference temperature

temperatureDELTAT

APM ABB

SMM

deformation model

Thermal Bending Beam

L

b

T

Treference

t

T

total diagonalassociated_pwb

total thickness

coefficient of thermal bending

al1

al2

al6

al3

t

TLb

2

warpage

wrapage mos model

allowable

MSactual

Marginof Safety

associated condition

al5

al4

temperature

reference temperature

pwa

APM

ABBPWB Thermal Bending Model (1D formula-based)

PWB Plane Strain Model (2D formula-based)

Page 43: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

43Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Original design:– Six layer board– Unsymmetrical layup– Severe warpage– Analysis predicted

thermal distortion Alternate design:

– Modeled construction variables

– Analysis predicted improved distortion

New capability aided design improvement

Example SME Usage

Page 44: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

44Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

ProAM Design-Analysis IntegrationElectronic Packaging Examples: PWA/B

Analysis Modules (CBAMs) of Diverse Mode & Fidelity

Design Tools

Laminates DB

FEA Ansys

General MathMathematica

Analyzable Product Model

XaiToolsPWA-B

XaiToolsPWA-B

Solder JointDeformation*

PTHDeformation & Fatigue**

1D,2D

1D,2D,3D

Modular, ReusableTemplate Libraries

ECAD Tools Mentor Graphics,

Accel*

temperature change,T

material model

temperature, T

reference temperature, To

cte,

youngs modulus, E

force, F

area, A stress,

undeformed length, Lo

strain,

total elongation,L

length, L

start, x1

end, x2

mv6

mv5

smv1

mv1mv4

E

One D LinearElastic Model(no shear)

T

e

t

thermal strain, t

elastic strain, e

mv3

mv2

x

FF

E, A,

LLo

T, ,

yL

r1

12 xxL

r2

oLLL

r4

A

F

sr1

oTTT

r3L

L

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

T o r s i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c r o s s s e c t i o n :e f f e c t i v e r i n g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

l i n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t i o n r e a c t i o n

t s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b l e s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

a l l o w a b l et w i s t Analysis Tools

PWBWarpage

1D,2D

Materials DB

PWB Stackup ToolXaiTools PWA-B

STEP AP210‡ GenCAM**,

PDIF*

‡ AP210 DIS WD1.7 * = Item not yet available in toolkit (all others have working examples) ** = Item available via U-Engineer.com

Page 45: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

45Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

PWA/B Analyzable Product Model(partial)

<component occurrences>

Resistor Capacitor

STEP EXPRESS-G Notation

attribute 2 S[1:?] (a set) Entity C

attribute 1 Entity B

Entity A1 (a subclass) [ISO 10303-11]

Entity = Class of Objects

Entity A

cost

Integer

Currency

part number

PhysicalObject

SolidMaterialdescription

Image

String

primary structural materialphotos

IntegratedComponent

DiscreteNetwork

Micro-Processor

PWB PWAbody style ElectricalComponent

pwb

PWB Layer

magnitudetolerance

Transistor

DiscreteComponent

Diode

Inductor

power ratingSolderJoint

PWAComponentOccurrence

ComponentOccurrence

referencedesignator

location

solder joint

surface

<location><component>

AssemblyMultimaterialPart

UnimaterialPart component occurrences

assembly

component

2DLocation

total length

total widthtotal height

rotation

xy

<assembly>layers

Part

Page 46: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

46Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Solder Joint Deformation CBAMInformal Associativity Mapping

Plane Strain Bodies System

PWA Component Occurrence

CL

1

material ,E( , )geometry

body

plane strain body , i = 1...4PWB

SolderJoint

Epoxy

Componentbase: Alumina

core: FR4

Component Occurrence Plane Strain Model

total height, h

linear-elastic model

1

2

ABBPM

1

3 APM 4 CBAM

2 ABBc

4body 3body

2body

1h oT

primary structural material

3

2

ii

i

Page 47: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

47Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

soldersolder joint

pwb

component

1.25

deformation model

total height

detailed shape

rectangle

[1.2]

[1.1]

average

[2.2]

[2.1]

cTc

Ts

inter-solder joint distanceapproximate maximum

sj

L s

primary structural material

total thickness

linear-elastic model

Plane Strain

geometry model 3

a

stress-strainmodel 1

stress-strainmodel 2

stress-strainmodel 3

Bodies System

xy, extreme, 3

T2

L1

T1

T0

L2

h1

h2

T3

Tsj

hs

hc

L c

xy, extreme, sjbilinear-elastoplastic model

linear-elastic model

primary structural material linear-elastic model

componentoccurrence

solder jointshear strainrange

[1.2]

[1.1]length 2 +

Solder Joint Deformation CBAMConstraint Schematic

3 APM 2 ABB2

1

Page 48: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

48Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Summary of Accomplishments

General techniques: Internet-based engineering service bureau (ESB) X-analysis integration (XAI)

Product data-driven plug-and-play analysis modules

General purpose XAI toolkit

Applications in specific AMCOM context: U-Engineer.com pilot commercial ESB

with Internet-based PWA/B-specific analysis modules & toolkit

Usage by SMEs in AMCOM supply chain: Full-serve and self-serve missile examples

MaturePrototype

State

EarlyPilot State

Page 49: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

49Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Summary of Benefits

Internet-based engineering service bureaus (ESBs)

Key step towards affordable SME analysis Product data-driven analysis technology

Analysis integration toolkit AMCOM missile supply chain application

U-Engineer.com & electronic packaging analysis Exemplar usage of electronic data files like STEP Applicability to other product industries Framework for automated analysis

Improved product performance, reliability, and manufacturability

Page 50: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

50Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI

Part 3: Example Applications» Airframe Structural Analysis (Boeing)» Circuit Board Thermomechanical Analysis

(DoD: ProAM; JPL/NASA)» Chip Package Thermal Analysis (Shinko)

– Summary

Part 4: Advanced Topics & Current Research

Page 51: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

51Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Development of AdvancedCollaborative Engineering Environments (CEEs)

Phase 1: CEE-based Stackup Design Tool

Period: December 2000 - September 2001

ContactsMichael L. Dickerson

[email protected] - NASA

Pasadena, California USAhttp://www.jpl.nasa.gov/

Russell S. [email protected] Institute of Technology

Atlanta, Georgia USAhttp://eislab.gatech.edu/

SynopsisCurrent engineering computing environments can be characterized as largely disjoint setsof tools that exchange information via labor-intensive processes. While some progresshas been made, a good deal of engineering knowledge is not available in effectiveelectronic forms, and interoperability among engineering processes is less than optimum.

For example, today engineers still often manually add numerous notes and sketches toCAD drawings. In spite of being in an electronic form, these notes and sketches are in arelatively low-level representation that is not easily processed by downstream tools.They are primarily intended for human consumption. These items typically requiremanual intervention and re-creation downstream, resulting in increased labor efforts andtranscriptions errors.

Thus, there is a great need to capture the higher level concepts behind these items (e.g.,PWB stackup design intent) in semantically rich knowledge containers. Associativitywith other types of information is also needed (e.g., other rich objects that exist in somecurrent CAD tools). This Phase 1 effort is aimed at a) developing a general methodologyand computing framework for capturing this ancillary information, and b) implementing aprototype PWB stackup tool in this framework to demonstrate this approach.

Phase 1 helps JPL/NASA move along the roadmap defined in Phase 0 to achieve a next-generation collaborative engineering environment. The target environment will leverageadvances in engineering information technology, including standards like STEP, toachieve fine-grain, modular interoperability among design objects and related tools.Techniques based on efforts including Georgia Tech CAD-CAE integration research willbe applied and enhanced, and new approaches will be developed as needed. The targetoutcome is a virtual collaborative engineering environment which increases product lifecycle effectiveness by an order of magnitude or greater.

Page 52: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

52Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Outline

AP210-based Environment - JPL/NASA Phase 1– Ancillary Information Problem– Phase 1 Scope (work-in-progress)

» Background: ProAM/TIGER Projects, XAI» Phase 1 Architectures

– Collaboration– Expected Benefits

Page 53: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

53Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Design Hub

Central group for CAx tools & processes Supports NASA space system design activities at JPL Management has diverse background:

– Mechanical systems, electronics, systems engineering

“The Design Hub provides computerized tools for JPL engineers

so they may design electrical and mechanical devicesand software programs

for spacecraft.”

Page 54: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

54Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

AncillaryInformation

Needed Tools

Tool B1 Tool C1... Tool Bn

Typical end-user tools (for novices experts)

Instance population tools(for experts)

Problem:Insufficient Information Capture

Existing Tools

Tool A1 Tool An

Product Model(e.g., AP210 + AP2xx + ...)

...

“dumb” information capture(only human-sensible,I.e., not computer-sensible)

Legend

Page 55: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

55Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Example PWA Ancillary Information

Component AssemblyInstructions

Maximum HeightRestrictions

Stackup Notes

Conformal CoatingRestrictions

PWA = printed wiring assemblyPWB = printed wiring board

Page 56: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

56Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Example PWB Ancillary Information

Outline DetailStackup Specs

Stackup Notes

Page 57: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

57Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Current Situation (typical) CAx tools of diverse disciplines Each focuses on information subset

(some overlap) Much ancillary information

– Some captured as “dumb” notes & sketches in CAD » Human-oriented, not computer-sensible

– Much not captured at all – Lack of fine-grain explicit associativity

Problems – Manually intensive transformations– Error-prone transcription / re-creation downstream – Little knowledge capture

Page 58: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

58Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Target Situation (longer term)

Collaborative Engineering Environment with Advanced Interoperability

Domain Specific Analysis

Cross Domain Analysis

CAx Applications and PDMs

PDMSchema

AnalysisSchema(AP209)

Repository Schema Generator

Requirements Design & Analysis

Data Viewer

SystemEngineeringSchema

Catalog &ViewSchemas

Application Access/Translation Layer

ElectricalSchema(AP210)

MechanicalSchema(AP203)

Documentation Facility

(UML)

Mfg.Capabilities(AP220)

(Text, XML,

SGML, etc.)

(STEP)

(STEP)

(STEP)

(STEP, XML)

(STEP)

Model Development and Interactive Environment

RequestBrokerOrRemoteAccessMech.

ObjectsEntities,Relations &AttributesObject Oriented or Object Relational DBMS

Data Views and PDM

AnalysisAgents

Negotiation/CommunicationsAgents

Data Dictionary Facility

(Express)

Potential Standards-based Architecture (after G. Smith, Boeing)

Page 59: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

59Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Outline

AP210-based Environment - JPL/NASA Phase 1– Ancillary Information Problem– Phase 1 Scope (work-in-progress)

» Background: ProAM/TIGER Projects, XAI» Phase 1 Architectures

– Collaboration– Expected Benefits

Page 60: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

60Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Phase 1 ScopeWork-in-Progress

Initial step towards vision Capture of representative ancillary information

– Focus: PWB stackup information – Extend Georgia Tech stackup tool (from ProAM) – STEP AP210 as information container structure– Develop & demonstrate method

Initial steps (Phase 1): file-oriented– Use Metaphase as PDM capability– Manage files: ECAD file, MCAD file, Gerber file,

stackup tool file (AP210 subset), ... Next steps (Phase 1+, 2):

Fine-grained interactive sharing (Accelis-type tools)

See ProAMslides forstackupoverview

Page 61: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

61Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

LKSoftLKSoft

Collaborative Engineering Environment Initial Steps - Phase 1

Design Tools

Laminates Library

Product KnowledgeManagement System

Metaphase

ECAD Tools Mentor Graphics,

Cadence

Materials Library

PWB Stackup ToolXaiTools PWA-B

Nativefiles

AP210 file CC24

LKSoftSTEP s/w

JSD

AI

LKSoft, ...

Instance Browser/EditorSTEP-Book AP210,

SDAI-Edit,STI AP210 Viewer, ...

Work-In-Progress

AP210 file CCx1-xn

Page 62: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

62Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Collaborative Engineering Environment Next Steps - Phase 1+,2

MetaphaseAccelis

Standards-BasedCoarse/Fine-Grained

Interoperability

Notes:Accelis & Metaphase are SDRC products.

Product KnowledgeManagement System

EngineeringMiddleware

LKSoftLKSoft

Design Tools

Laminates Library

ECAD Tools Mentor Graphics, Cadence

Materials Library

PWB Stackup ToolXaiTools PWA-B

LKSoftSTEP s/w

JSD

AI

LKSoft, ...

Instance Browser/EditorSTEP-Book AP210,

SDAI-Edit,STI AP210 Viewer, ...

J2EE-compliantWeb Application Server

Other Tools

AP210 content

Page 63: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

63Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

MentorGraphics

LKSoft, …

AncillaryInformation

Added Tools

XaiToolsPWA-B LKSoft, …

Typical end-user tools (for novices experts)

Instance population tools(for experts)

Phase 1 View

Existing ToolsMentor

Graphics

Product Model(AP210)

“dumb” information capture(only human-sensible,I.e., not computer-sensible)

Legend

AP210 Viewer,STEP-Book AP210,

SDAI-Edit, ...

Instance Browser/EditorPWB Stackup Tool

ECAD Tools

Page 64: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

64Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Collaboration

JPL/NASA– Primary stakeholder, end users, tool experts

Georgia Tech– Architecture/method, PWB stackup tool, XAI

methods AP210 Implementers Forum

– Common interests & techniques– Cooperative exchanges

JPL/NASA suppliers– Software vendors

Page 65: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

65Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Expected Benefits: Phase 1 STEP AP 210-based method

» Depth, extendibility Capture of ancillary information

– Representative tool: PWB stackup design» Graphics, automation» Tangible end user benefits» Technique illustration

– “Better, faster, cheaper”» Increased product model completeness» Reduced downstream errors» Increased automation» Increased knowledge retention

Page 66: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

66Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI

Part 3: Example Applications» Airframe Structural Analysis (Boeing)» Circuit Board Thermomechanical Analysis

(DoD, JPL/NASA)» Chip Package Thermal Analysis (Shinko)

– Summary

Part 4: Advanced Topics & Current Research

Page 67: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

67Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Phase 1 Summary - Shinko Project (Phase 2 is underway and evaluating usage of STEP AP210)

Abstract Accepted for InterPACK'01http://www.asme.org/conf/ipack01/

An Object-Oriented Internet-based Framework forChip Package Thermal and Stress Simulation

1Russell S. Peak, 2Ryuichi Matsuki, 1Miyako W. Wilson, 1Donald Koo,1Andrew J. Scholand, 2Yukari Hatcho, 1Sai Zeng

1Engineering Information Systems LabGeorgia Institute of Technology

Atlanta, Georgia USAhttp://eislab.gatech.edu/

2Package Design CenterShinko Electric Industries Co., Ltd.

Nagano, Japanhttp://www.shinko.co.jp/

AbstractSimulating the behavior of electronic chip packages like ball grid arrays (BGAs) is important to guide andverify their designs. Thermal resistance, thermomechanical stress, and electromagnetics impose some ofthe main challenges that package designers need to address. Yet because packages are composed ofnumerous materials and complex shapes, with current methods an analyst may spend hours to days creatingsimulations like finite element analysis (FEA) models.

This paper overviews work to reduce design cycle time by automating key aspects of FEA modeling andresults documentation. The main objective has been automating FEA-based thermal resistance modelcreation for a variety of package styles: quad flat packs (QFPs), plastic BGAs (PBGAs), and enhancedBGAs (EBGAs). Pilot production tools embody analysis integration techniques that leverage rich productmodels and idealize them into FEA models. We have also demonstrated how the same rich product modelscan drive basic stress models with different idealizations.

In this framework, Internet standards like CORBA enable worldwide access to simulation solvers (e.g.,Ansys and Mathematica). Automation and ease-of-use enable access by chip package designers and otherswho are not simulation specialists. Pilot industrial usage has shown that total simulation cycle time can bedecreased 75%, while modeling time itself can be reduced 10:1 or more (from hours to minutes).

Page 68: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

68Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Chip Package Products Shinko

Plastic Ball Grid Array (PBGA) Packages

Quad Flat Packs (QFPs)

Page 69: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

69Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Flexible High Diversity Design-Analysis Integration

Electronic Packaging Examples: Chip Packages/Mounting Shinko Electric Project: Phase 1 (completed 9/00)

EBGA, PBGA, QFP

CuGround

PKG

Chip

Analysis Modules (CBAMs) of Diverse Behavior & Fidelity

FEAAnsys

General MathMathematica

Analyzable Product Model

XaiTools

XaiToolsChipPackage

ThermalResistance

3D

Modular, ReusableTemplate Librariestemperature change,T

material model

temperature, T

reference temperature, To

cte,

youngs modulus, E

force, F

area, A stress,

undeformed length, Lo

strain,

total elongation,L

length, L

start, x1

end, x2

mv6

mv5

smv1

mv1mv4

E

One D LinearElastic Model(no shear)

T

e

t

thermal strain, t

elastic strain, e

mv3

mv2

x

FF

E, A,

LLo

T, ,

yL

r1

12 xxL

r2

oLLL

r4

A

F

sr1

oTTT

r3L

L

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

T o r s i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c r o s s s e c t i o n :e f f e c t i v e r i n g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

l i n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t i o n r e a c t i o n

t s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b l e s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

a l l o w a b l et w i s t Analysis Tools

Design Tools

PWB DB

Materials DB*

Prelim/APM Design ToolXaiTools ChipPackage

ThermalStress

Basic3D**

** = Demonstration module

BasicDocumentation

AutomationAuthoringMS Excel

Page 70: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

70Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Traditional VTMB FEA Model Creation

Manually Intensive: 6-12 hours

FEA Model Planning Sketches - EBGA 600 Chip Package

VTMB = variable topology multi-body

Page 71: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

71Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

APM Design ToolPreliminary Design of Packages - PBGA Screens

APM = analyzable product model

Page 72: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

72Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Test Cases - ShinkoExample Chip Package Idealizations (PBGA)

[ Outer Balls ] Average Thermal Conductivity

x 1

x 2

y 1y 2

% Ball Area = (Pi * (ball diameter / 2)^ 2) / (x2 * y2 - x1 * y1 )

Vertical Direction v: v = Vff+(1-Vf )m [W/mK]Horizontal Direction h: 1/h = Vf/f+(1-Vf )/m [W/mK]

Where: f: thermal conductivity of solder ball [W/mK] m: thermal conductivity of air [W/mK] Vf: volume ratio of solder ball

- =

V i a + A i r A i r V i a

R r

S R r n 2 2

E q u a t i o n f o r T o t a l S e c t i o n a l V i a A r e a

S : t o t a l s e c t i o n a r e a o f v i a sR : o u t e r r : i n n e r n : n u m b e r o f v i a

l x r y 2r : a radius of balll : a side length of squarex : number of ballsy : number of squares

l

l

r + r r =5 - 10 Balls

[ Inner Balls (Thermal Balls) ]

(Ball value in all directions)

Thermal Conductivity

Idealization for solder-joint/thermal ball

Idealization for thermal via

Courtesy of Shinko - see [Koo, 2000]

Page 73: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

73Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Generic COB Browser with design and analysis objects

(attributes and relations)

CustomizedAnalysis Module Tool

with idealized package cross-section

COB-based Analysis Tools

Typical Input Objects

COB = constrainedobject

Page 74: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

74Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

COB-based Analysis Tools

Typical Highly Automated Results

COB = constrainedobject

FEATemperature Distribution

Thermal Resistancevs.

Air Flow Velocity

Auto-CreatedFEA Inputs

(for Mesh Model)

Analysis Module Tool

Page 75: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

75Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Using Internet/Intranet-based Analysis SolversThick Client Architecture

Client PCs

XaiTools

Thick Client

Users

Internet

June’99-Present:EIS Lab - Regular internal use

U-Engineer.com - Demo usage: - US - Japan

Nov.’00-Present:Electronics Co. - Began production usage (dept. Intranet)

Future:Company Intranet and/or

U-Engineer.com(commercial) - Other solvers

Iona orbixdj

Mathematica

Ansys

Internet/Intranet

XaiTools AnsysSolver Server

XaiTools AnsysSolver Server

XaiTools Math.Solver Server

CORBA Daemon

XaiTools AnsysSolver Server

FEA Solvers

Math Solvers

CORBA Servers

CO

RB

A IIO

P..

.

Engineering Service BureauHost Machines

Page 76: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

76Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Test Cases - ShinkoAuto-Generated FEA Model of PBGA 256 with Thermal Vias

FEA Model Relational Complexity

29 idealized bodies10 idealized materials

1 main pattern~3 sub patterns

Small Idealized Vias

Thin Copper Layers

Page 77: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

77Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Results ValidationEBGA 352 (4L-PCB)

0

2

4

6

8

10

12

14

0 1 2 3 4

Air Flow Velocity [m/s]

ja

[d

egre

eC/W

] COSMOS (PB)

COSMOS (BB)

ANSYS (PB)

ANSYS (BB)

Measure

Thermalresistance

Good comparisons: (a) simulation via VTMB algorithm (in XCP)(b) simulation via traditional manual approach (c) physical measurements

(a)

(b)(c)

Page 78: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

78Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

1

2

3

1

2

3

12

4

1a

2

3a

1b

1c

3b 3c

3a 3b

2

1a 1b 1c

1d 1e

3

1a 1b

1c1d

23

4a 4b 4c

Analytical Bodies FEA Model Decomposed Volumes

original

topology change (no body change)

variable body change(includes topology change)

Variable Topology Multi-Body (VTMB) FEA Meshing Challenges

See Advanced Topics

re: Current Work

Labor-intensive “chopping”

Page 79: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

79Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Design Changes with Large Topology Impact Example Variations: PBGAs & EBGAs

EBGA 600with2 Steps

EBGA 325withNo Steps

PBGA 313with

Thermal Vias &Thermal Balls

2D partial views of 3D models

Page 80: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

80Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Idealized Analytical Models

FEA Mesh Models

thin & large thick & small

2D partial views of 3D models

z-direction topology changes

Design Change with Small Topology Impact

Heat Spreader Size Variations - EBGA 600

Page 81: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

81Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Product Information-Driven FEA MethodologyPurpose of VTMB Methodology

algorithmij

Design Types i = 1…m Analysis Types j = 1…n

Design Instances Analysis Instances

VTMB FEA ModelsVTMB

Methodologycreate algorithmij

once

for a given ij j{1…n} (not all design types have all analysis types)e.g.) for i=1(EBGA), j=1(thermal resistance) j=2 (thermal stress) for i=2 (PWB), j=1 (warpage)

Chip package APMs thermal resistance CBAMs

PWB APMsthermal stress CBAMs

ANSYS SMMs

VTMB= variable topology multi-body

use algorithmij

many times

Page 82: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

82Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

MethodologyScope of VTMB algorithmij for cbamij

Conditions &Next-Higher

CBAMs

Boundary Condition Objects & Discipline

Analyzable Product Model

Part Feature& Assembly Structure

Behavior/Mode

MoSallowableactual

Objectives

AnalysisContext

Context-BasedAnalysis Model

(CBAM)idealizations,

allowables

Step 1a

boundary variables

Step 1b

AssociativityLinkages,

Step 4

Pseudo-Analysis Building Blocks(pseudo-ABBs)

Analysis Subsystems

SolutionMethod Models

(SMMs)

transformations,Step 2

Step 3

VTMBalgorithmij

for cbamij

[Tamburini, 1999]

[Peak, 2001]

Page 83: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

83Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Test Cases - ShinkoAuto-Generated FEA Model: QFP PCDPH

FEA Model Relational Complexity23 idealized bodies

9 idealized materials1 main pattern~3 sub patterns

Page 84: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

84Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Design Changes with Large Topology Impact

Example Variations: QFPs

QFP 128 SLDie Pad

QFP 208 DPHHS/Tape

2D partial views of 3D models

Page 85: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

85Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Basic Stress Analysis Module Tool

Highly automated FEA model creation

Uses same:• APM• CORBA-based solvers, etc.

Pattern-based meshing• Adjustable mesh density

PBGA 625

Page 86: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

86Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Multi-Fidelity IdealizationsMode-dependent Idealized Geometries; Same Dimension

Thermal Resistance

Thermal Stress

FEA ModelIdealized Geometry (3D)

Common Design ModelCu(0.15)BT-Resin (0.135)

0.56

(Air)

(0.135)

Al Fin (1.5)Adhesive(0.05)

FEA ModelIdealized Geometry (3D)

Page 87: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

87Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Pilot & Initial Production Usage Results

Product Model-Driven Analysis

Analysis Model Creation ActivityWith TraditionalPractice

With VTMBMethodology* Example

Create initial FEA model (QFP cases) 8-12 hours 10-20 minutes QFP208PIN

Create initial FEA model (EBGA cases) 6-8 hours 10-20 minutes EBGA352PIN

Create initial FEA model (PBGA cases) 8-10 hours 10-20 minutes PBGA256PIN

Create variant - small topology change 0.3-6 hours (10-20 minutes) - Moderate dimension change

(e.g., EBGA 600 heat sink size variations)

Create variant - moderate topology change (6-8 hours)- (10-20 minutes) - Add more features

(e.g., increase number of EBGA steps)

Create variant - large topology change (6-8 hours)+ (10-20 minutes)-or N/A

Add new types of features

(e.g., add steps to EBGA outer edges)

Reduced FEA modeling time > 10:1 (days/hours minutes) Reduced simulation cycle > 75%

Enables greater analysis intensity Better designs

References[1] Shinko 5/00 (in Koo, 2000)[2] Shinko evaluation 10/12/00

VTMB = variable topology multi-body technique [Koo, 2000]

Page 88: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

88Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI

Part 3: Example Applications» Airframe Structural Analysis (Boeing)» Circuit Board Thermomechanical Analysis

(DoD, JPL/NASA)» Chip Package Thermal Analysis (Shinko)

– Summary

Part 4: Advanced Topics & Current Research

Page 89: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

89Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Advanced Topics & Current ResearchOutline

Advanced Product Information-Driven FEA Modeling– Focus on cases with:

» Variable topology multi-body geometries» Different design & analysis geometries» Mixed analytical bodies and idealized interfaces

Constrained Object (COB) Extensions– Automating support for multiple views– Next-generation capabilities

Optimization and the MRA

Page 90: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

90Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Cost of Associativity Gaps

000,000,10$gap

$10 gaps000,000,1

gaps000,000,1analysis

variables 10

part

analyses 10parts 000,10

OOO

OOOO

e

setr

Pf

02

21

e

beht

PCf

),,( 13 hbrfK

Analysis Model(with Idealized Features)

Detailed Design Model

Channel Fitting Analysis

idealizations

No explicit

fine-grained

CAD-CAE

associativity

Categories of Gap Costs Associativity time & labor

– Manual maintenance– Little re-use– Lost knowledge

Inconsistencies Limited analysis usage

– Few iterations/part– Limited part coverage

“Wrong” values – Too conservative:

Extra costs, inefficiencies– Too loose:

Re-work, failures, law suits

Page 91: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

91Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

XAI Summary Emphasis on X-analysis integration (XAI) for design reuse (DAI,SBD) Multi-Representation Architecture (MRA)

– Addressing fundamental XAI/DAI issues» Explicit CAD-CAE associativity: multi-fidelity, multi-directional, fine-grained

– General methodology --> Flexibility & broad application Research advances & applications

– Product data-driven analysis (STEP AP210, GenCAM, etc.)– Internet-based engineering service bureau (ESB) techniques– Object techniques for next-generation aerospace analysis systems– FEA modeling time reduction in pilot tests (chip packages):

> 10:1 (days/hours to minutes)

Improved Simulation-Based Designs Tools and development services

– Analysis integration toolkit: XaiTools™ and applications– Pilot commercial ESB: U-Engineer.com– Company-tailored engineering information system solutions

Motivated by industry & government collaboration

Page 92: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

92Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Selected Tools and Services Offered via Georgia Tech Research Corp.

http://eislab.gatech.edu/

XaiTools Framework™

– General-purpose analysis integration toolkit Product-Specific Toolkits

– XaiTools PWA-B™

– XaiTools ChipPackage™

U-Engineer.com™

– Internet-based engineering service bureau (ESB)

– Self-serve automated analysis modules Full-serve consulting Research, Development, and Consulting

– Analysis integration & optimization

– Product-specific analysis module catalogs

– Internet/Intranet-based ESB development

– Engineering information technology

» PDM, STEP, GenCAM, XML, UML, Java, CORBA, Internet, …

– CAD/CAE/CAM, parametric FEA, thermal & mechanical analysis

Page 93: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

93Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

For Further Information ...

EIS Lab web site: http://eislab.gatech.edu/– Publications, project overviews, tools, etc.– See: Publications DAI/XAI Suggested Starting Points

X-Analysis Integration (XAI) Technologyhttp://eislab.gatech.edu/pubs/reports/EL002/

XaiTools™ home page: http://eislab.gatech.edu/tools/XaiTools/

Pilot commercial ESB: http://www.u-engineer.com/– Internet-based self-serve analysis– Analysis module catalog for electronic packaging– Highly automated front-ends to general FEA & math tools

Page 94: An Introduction to X-Analysis Integration (XAI) Part 3: Example Applications Georgia Tech Engineering Information Systems Lab eislab.gatech.edu Contact:

94Engineering Information Systems Lab eislab.gatech.edu© 1993-2001 GTRC

Nomenclature ABB-SMM transformation idealization relation between design and analysis attributes APM-ABB associativity linkage indicating usage of one or more i

ABB analysis building blockAMCOM U. S. Army Aviation and Missile CommandAPM analyzable product modelCAD computer aided designCAE computer aided engineeringCBAM context-based analysis modelCOB constrained objectCOI constrained object instanceCOS constrained object structureCORBA common ORB architectureDAI design-analysis integrationEIS engineering information systemsESB engineering service bureauFEA finite element analysisFTT fixed topology templateGUI graphical user interfaceIIOP Internet inter-ORB protocolMRA multi-representation architectureORB object request brokerOMG Object Management Group, www.omg.comPWA printed wiring assembly (a PWB populated with components)PWB printed wiring boardSBD simulation-based designSBE simulation-based engineeringSME small-to-medium sized enterprise (small business)SMM solution method modelProAM Product Data-Driven Analysis in a Missile Supply Chain (ProAM) project (AMCOM)PSI Product Simulation Integration project (Boeing)STEP Standard for the Exchange of Product Model Data (ISO 10303).VTMB variable topology multi-bodyXAI X-analysis integration (X= design, mfg., etc.)XCP XaiTools ChipPackage™

XFW XaiTools FrameWork™

XPWAB XaiTools PWA-B™