analog and digital multimeters topics covered in chapter 8 8-1: moving-coil meter 8-2: meter shunts...

30
Analog and Digital Analog and Digital Multimeters Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter 8-5: Ohmmeters Chapter 8

Upload: randell-blake

Post on 04-Jan-2016

225 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

Analog and Digital MultimetersAnalog and Digital Multimeters

Topics Covered in Chapter 8

8-1: Moving-Coil Meter

8-2: Meter Shunts

8-3: Voltmeters

8-4: Loading Effect of a Voltmeter

8-5: Ohmmeters

ChapterChapter88

Page 2: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

Topics Covered in Chapter 8Topics Covered in Chapter 8

8-6: Multimeters 8-7: Digital Multimeters (DMMs) 8-8: Meter Applications 8-9: Checking Continuity with the Ohmmeter

Page 3: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-1: Moving-Coil Meter8-1: Moving-Coil Meter

Two Types of Multimeters

VOM(analog)

DMM(digital)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 4: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-1: Moving-Coil Meter8-1: Moving-Coil Meter

Types of Meters Analog meter:

Uses a moving pointer and a printed scale to indicate values of voltage, current, or resistance.

Volt-Ohm-Milliammeter (VOM): Allows all three kinds of measurements on a single

scale or readout. Digital multimeter:

Uses a numerical readout to indicate the measured value of voltage, current or resistance.

Page 5: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-1: Moving-Coil Meter8-1: Moving-Coil Meter

Direct Current Meters Direct current in a moving-coil meter deflects the pointer

in proportion to the amount of current.

A current meter must be connected in series with the part of the circuit where the current is to be measured.

A dc current meter must be connected with the correct polarity.

Page 6: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-1: Moving-Coil Meter8-1: Moving-Coil Meter

Analog instruments use a moving coil meter movement.

Current flow in the coil moves the pointer up- scale.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 7: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-2: Meter Shunts8-2: Meter Shunts

Meter Shunts Meter shunts are low-value precision resistors that are

connected in parallel with the meter movement.

Meter shunts bypass a portion of the current around the meter movement. This process extends the range of currents that can be read with the same meter movement.

Page 8: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-2: Meter Shunts8-2: Meter Shunts

Using Shunts to Increase Ammeter Range

Fig. 8-4: Example of meter shunt RS in bypassing current around the movement to extend range from 1 to 2 mA. (a) Wiring diagram. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 9: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-2: Meter Shunts8-2: Meter Shunts

Fig. 8-4: (b) Schematic diagram showing effect of shunt. With RS = rM the current range is doubled. (c) Circuit with 2-mA meter to read the current.

VM = IM x rM IS = IT - IM RS = VM

IS

VM = 50mV IS = 1 mA RS = 50

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 10: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-2: Meter Shunts8-2: Meter Shunts

Fig. 8-5: Calculating the resistance of a meter shunt. RS is equal to VM/IS. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

VM = 0.001 x 50 = 0.05V or 50 mV

Page 11: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-2: Meter Shunts8-2: Meter Shunts

Fig. 8-5: Calculating the resistance of a meter shunt. RS is equal to VM/IS. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

IS = 0.005 − 0.001 = 0.004 A or 4 mA

Page 12: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-2: Meter Shunts8-2: Meter Shunts

Divide VM by IS to find RS.

RS = 0.05/0.004 = 12.5 Ω

This shunt enables the 1-mA movement to be used for an extended range from 0-5 mA.

Page 13: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-3: Voltmeters8-3: Voltmeters

A voltmeter is connected across two points to measure their difference in potential.

A voltmeter uses a high-resistance multiplier in series with the meter movement.

A dc voltmeter must be connected with the correct polarity.

Page 14: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-3: Voltmeters8-3: Voltmeters

A multiplier resistor is a large resistance in series with a moving-coil meter movement which allows the meter to measure voltages in a circuit.

Page 15: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-3: Voltmeters8-3: Voltmeters

DCV

Using Multipliers to Increase Voltmeter Range

VM = IM x rM = 0.1 V9.9 k

Sensitivity = rM

VM

= 1000 per voltRmult = VFS

IM

- rM

Rmult

10 V

For a 25 V range, change Rmult to 24.9 k.

Note: sensitivity is not affected by the multipliers.

DCV

Using Multipliers to Increase Voltmeter Range

VM = IM x rM = 0.1 V9.9 k

Sensitivity = rM

VM

= 1000 per voltSensitivity = rM

VM

= 1000 per voltRmult = VFS

IM

- rMRmult = VFS

IM

- rM

Rmult

10 V10 V

For a 25 V range, change Rmult to 24.9 k.

Note: sensitivity is not affected by the multipliers.

Page 16: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-3: Voltmeters8-3: Voltmeters

Typical Multiple Voltmeter Circuit

Fig. 8-7: A typical voltmeter circuit with multiplier resistors for different ranges.Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 17: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-3: Voltmeters8-3: Voltmeters

Voltmeter Resistance The high resistance of a voltmeter with a multiplier is essentially the value of the multiplier resistance. Since the multiplier is changed for each range, the voltmeter resistance changes.

Page 18: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-4: Loading Effect of a Voltmeter8-4: Loading Effect of a Voltmeter

When voltmeter resistance is not high enough, connecting it across a circuit can reduce the measured voltage.

This effect is called loading down the circuit, because the measured voltage decreases due to the additional load current for the meter.

Page 19: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-5: Ohmmeters

Fig. 8-10: How meter movement M can be used as an ohmmeter with a 1.5-V battery. (a) Equivalent closed circuit with R1 and the battery when ohmmeter leads are short-circuited for zero ohms of external R. (b) Internal ohmmeter circuit with test leads open, ready to measure an external resistance.Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 20: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-5: Ohmmeters

Resistance RT is the total resistance of RX and the ohmmeter’s internal resistance.NOTE: RX is the external resistance to be measured.

The ohmmeter’s internal resistance Ri is constant at 50 + 1450, or 1500 Ω here. If RX also equals 1500 Ω, RT equals 3000 Ω.

Fig. 8-11

Page 21: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-6: Multimeters8-6: Multimeters

Fig. 8-13: Analog VOM that combines a function selector and range switch.

Fig. 8-14: Portable digital multimeter (DMM).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 22: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-6: Multimeters8-6: Multimeters

Fig. 8-15: DMM with amp clamp accessory.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The problem of opening a circuit to measure current can be eliminated by using a probe with a clamp that fits around the current-carrying wire.

The clamp probe measures only ac, generally for the 60-Hz ac power line.

Page 23: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-7: Digital Multimeters 8-7: Digital Multimeters (DMMs)(DMMs)

The digital multimeter has become a very popular test instrument.

The digital value of the measurement is displayed automatically with decimal point, polarity, and the unit for V, A, or Ω.

Page 24: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-7: Digital Multimeters 8-7: Digital Multimeters (DMMs)(DMMs)

Fig. 8-16: Typical digital multimeter (DMM).Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Digital multimeters are generally easier to use.

They eliminate the human error that often occurs in reading different scales on an analog meter with a pointer.

Page 25: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-8: Meter Applications8-8: Meter Applications

Fig. 8-17: How to insert a current meter in different parts of a series-parallel circuit to read the desired current I. At point A, B, or C the meter reads IT; at D or E the meter reads I2; at F or G the meter reads I3.Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 26: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-8: Meter Applications8-8: Meter Applications

Fig. 8-18: With 15 V measured across a known R of 15 Ω, the I can be calculated as V/R or 15 V / 15 Ω = 1 A.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 27: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-8: Meter Applications8-8: Meter Applications

Fig. 8-19: Voltage tests to localize an open circuit. (a) Normal circuit with voltages to chassis ground. (b) Reading of 0 V at point D shows R3 is open.Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 28: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-9: Checking Continuity 8-9: Checking Continuity with the Ohmmeterwith the Ohmmeter

The ohmmeter is a great tool for checking the continuity between two points.

When checking for continuity, make sure the ohmmeter is set on the lowest ohms range.

If continuity exists between two points, the ohmmeter will read a very low resistance such as zero ohms.

If there is no continuity between two points, the ohmmeter will read infinite ohms.

Page 29: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-9: Checking Continuity 8-9: Checking Continuity with the Ohmmeterwith the Ohmmeter

Fig. 8-20: Continuity testing from point A to wire 3 shows this wire is connected.Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 30: Analog and Digital Multimeters Topics Covered in Chapter 8 8-1: Moving-Coil Meter 8-2: Meter Shunts 8-3: Voltmeters 8-4: Loading Effect of a Voltmeter

8-9: Checking Continuity 8-9: Checking Continuity with the Ohmmeterwith the Ohmmeter

Fig. 8-21: Temporary short circuit at one end of a long two-wire line to check continuity from the opposite end.Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.