annual report 2000 - fraunhofer iof...division multiplexing 25 novel multilayer waveguide technology...

60
1 Fraunhofer IOF Jahresbericht 2000 Fraunhofer Annual Report 2000 Institut Angewandte Optik und Feinmechanik

Upload: others

Post on 02-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

1Fraunhofer IOF Jahresbericht 2000

Fraunhofer

Annual Report 2000

InstitutAngewandte Optikund Feinmechanik

Page 2: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

2 Fraunhofer IOF Jahresbericht 2000

Page 3: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

3Fraunhofer IOF Jahresbericht 2000

Contents

Preface 3

Fraunhofer IOF Profile 4

Fraunhofer IOF Statistics 8

The Fraunhofer-Gesellschaft –Overview 9

Selected Results 11

Optical coatings for soft x-rayapplications 12

Hard UV coatingsfor free electron lasers 14

Abrasion resistant antireflectioncoatings for plastic optics 15

Coating of new polymers foroptical applications 16

Substrates and optical coatingsfor 157 nm applications 17

Light scattering measurementwith 157 nm techniques 18

Electrostatic chucks for vacuumlithography 21

Wafer stage assemblyfor lon Projection Lithography 23

Miniaturized bulk-optical Mach-Zehnder filter for optical codedivision multiplexing 25

Novel multilayer waveguidetechnology for optical fan-outstructures 27

Integration of microoptics on waferswith vertical emitting lasers 29

Annual Report 2000Fraunhofer-Institutfür Angewandte Optikund Feinmechanik IOF

Selfcalibrating 360-degshape-measurement systems 31

Correction of 3-D coordinates usingconsistence check 34

Percutaneous transvascular aorticvalve replacement witha self-expanding stent-valve device 36

Names, Dates and Activities 37

Patents 41

Educational Activities 43

Scientific Publications 44

Directions to Fraunhofer IOF 53

Page 4: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

4 Fraunhofer IOF Jahresbericht 2000

Fraunhofer-Institut fürAngewandte Optik undFeinmechanik IOF

Postal and Visitors’ Address

Schillerstrasse 107745 JenaPhone +49 (0) 3641/ 807-202Fax +49 (0) 3641/ 807-600Internet http://www.iof.fhg.de

Institute Director

Prof. Wolfgang KarthePhone +49 (0) 3641/ 807-201e-mail [email protected]

For Initital Contacts

Astrid DeppePhone +49 (0) 3641/ 807-203e-mail [email protected]

Page 5: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

5Fraunhofer IOF Jahresbericht 2000

Preface

Dear reader,

The past year saw a stabilization ofthe Institute’s core competences anda growth of its business lines. As inthe years before, the account balanceand the earnings situation were posi-tive. A share of more than 80% ofthe 6.8 million Euro operating budgetwas covered by project earnings.45% of this budget resulted fromdirect contracts with industry andcommerce.

An important item in the balanceof accounts is the support given tobusinesses hived-off from theInstitute: GRINTECH started asa GmbH (private company limited byshares) marketing the know-how inion-exchanged glass used for micro-optical components and modules,and unique m.o.d.e. was incorporatedas an AG (public limited company)delivering micro-optic solutions withpower laser diodes. This increased thenumber of hive-offs to three; they allstill operate on the Institute’spremises.As a result, the Institute has becomea cramped place. There is no spacefor growth, although growth is bothnecessary and possible in view ofdevelopments in our business lines.Technical conditions such as floor loadcapacities and the technicalinfrastructure are utilized to the verylimits. Only with great difficulty didwe manage to install someindispensable, advanced equipmentfor optical coating and micro-opticalassembly.It is all the more satisfactory,therefore, that a new building forthe Institute is under construction onBeutenberg Campus, Jena’s newscience park. Progress on the site isconspicuous, and the Institute looksforward to enjoying improvedconditions from mid-2002. We aremuch obliged to the federal andThuringian state governments who

made grants for the new building,and we thank all those participatingin the construction work for theirefforts.

The Fraunhofer IOF has furtherstrengthened its position andefficiency within the scientificcommunity. The Institute collaboratedwith Jena’s Friedrich Schiller Universityin special research areas and DFG(German Research Society) projects,and conducted joint projects with theIlmenau University of Technology andnon-academic institutes. Outstandingactivities were the MikrotechnikThüringen MTT 2000 Conference,and the Institute’s active participationin drawing up the German Agendaof Optical Technologies for the 21st

Century. The Fraunhofer IOF is stillinvolved in following up the Agenda’srecommendations. The Institute is oneof the partners contributing to theinstallation of a regional opticsnetwork and to the creation of anOptical Technologies CompetenceNetwork in a contest organized bythe German Federal Ministry ofEducation and Research.

We wish to express our sincere thanksto all our partners in industry andin our scientific partner institutes fortheir excellent cooperation, and to theFederal Ministry of Education andResearch and the Thuringian StateMinistry of Science, Research and Artfor their support of the joint projects.

Last but not least, I give my heartfeltthanks to all Fraunhofer IOF staff fortheir highly competent work, theircommitment and their willingnessto face new challenges –indispensable ingredients forthe Fraunhofer IOF’s capabilityto master its future tasks.

Jena, January 2001

Page 6: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

6 Fraunhofer IOF Jahresbericht 2000

Fraunhofer IOF Profile

Profile

The Fraunhofer-Institut für Ange-wandte Optik und FeinmechanikIOF is engaged in research anddevelopment in the fields of opticaland mechanical processes,components, modules and systems.We develop, fabricate andcharacterize ultrastable metal/dielectric coatings for optical radiation(up to the extreme UV) of high energydensities, and micro-optical andintegrated optical componentsof glass, Si and polymers, and weupgrade methods for non-contactingoptical 3D form measurement andsurface topography acquisition. Ourcompetences include the designingof precision mechanical systems,precision manipulators and medicalinstruments, and the developmentof assembly processes including thosefor microsystems.

Fields of Work

The Fraunhofer-Institut fürAngewandte Optik und FeinmechanikIOF develops and designs optical andmechanical processes, components,modules and systems. Our main fieldsof activity are components andsubsystems for optical information,laser and illuminating technologies;optical testing and measuringmethods including optical sensors;modules for precision mechanicalsystems; optical coatings, and opticalinstruments and techniques formedical diagnosis and therapy.The projects carried out in these fieldsare supported by our corecompetences: Design and analysisof optical and optomechanicalsystems, micro-optical technologiesand systems, optical shape andsurface testing, and optical coating.We design, for example, ultrastablemultilayer dielectric/metal interferencefilters for the visible, ultraviolet, and

Profile

Le Fraunhofer-Institut für AngewandteOptik und Feinmechanik IOF estspécialisé en recherche et ledéveloppement dans les secteurs del’optique et des procèdés mécaniques,l’élaboration de composants, demodules et de systèmes.Nous développons, fabriquons etcaractérisons des traitements métal/diélectrique d’une extrême stabilité(jusque dans l’EUV) aux hautesénergies, des composants d’optiqueintégrés et de micro optique sur verre,Si et polymères et nous parachevonsdes méthodes de mesures optiques3D sans contact ainsi que desacquisitions de topographie desurfaces. Nos compétences incluent ledesign de systèmes mécaniques deprécision, des manipulateurs deprécision, des instruments médicauxet le développement et l’assemblagede procédés incluant ceux pour microsystèmes.

soft x-ray wavelength ranges down to1 nm and for energy densities up to30 J/cm², and develop the processesfor their manufacture.Micro-optical and integrated opticalcomponents designed at the Fraunho-fer IOF, made of plastic materials,silicon or glass, are largely used inindustry. Miniaturized optomechanicalsystems and passive and activecomponents developed at theFraunhofer IOF are employed intele- and data communication, sensortechnology, and in manufacturing,medical and environmentaltechnologies.Optical measurement methodsincluding non-contacting 3-D formmeasurement and surface defectcharacterization developed at theFraunhofer IOF are used in industrialapplications like Reverse Engineering,dental technique, automotive andairplane system developing, opticalelement construction, and qualitymanagement systems.In collaboration with, and undercontracts from, industrial corporationsthe institute develops and designsprecision mechanical systems, e.g. forprecise manipulators and top-resolution lithographic machines, anddevelops assembly techniques foroptical and micromechanical systems.The projects carried out at the Fraun-hofer IOF include methods andequipment for the measurement andtesting of the components mentioned,and the manufacture of prototypesand preproduction test series.By engaging the Fraunhofer IOF’scollaboration, industrial clients canenhance their manufacturingcapabilities and create new productsfor the market. The institute is partlyfunded by state, federal and EUprojects. Its permanent staff of 85 andabout as many temporary staff workin laboratories and offices totallingabout 3000 m² of floor space.

Page 7: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

7Fraunhofer IOF Jahresbericht 2000

Secteurs d’activités

Fraunhofer-Institut für AngewandteOptik und Feinmechanik IOF conçoitet développe des procédés optiques etmécaniques, des composants, desmodules et des systèmes. Nosprincipaux secteurs d’activités sont lescomposants et les systèmesd’information optique, les lasers et lestechnologies d’éclairage, les méthodesde mesures et de tests optiquesincluant les détecteurs optiques, lesmodules pour les systèmesmécaniques de précision, lestraitements optiques, et – dans uneplus large mesure – les instruments ettechniques optiques pour les thérapieset diagnostiques médicaux. Les projetsmenés à bien dans ces secteurs sont lefruit du fleuron de nos compétences:l’analyse et le design de systèmesoptiques et opto mécaniques, lessystèmes et technologies de la microoptique, les tests optiques de surfaceset contours ainsi que les couchesminces optiques. Nous fabriquons,à titre d’exemple, des filtresinterférentiels multicouches métal/diélectrique pour le visible, l’ultravioletet les rayons X mous jusqu’à deslongueurs d’onde de 1 nm etrésistants à des densités d’énergie de30 J/cm² et développons les procédéspour les fabriquer.Les composants d’optique intégréset de micro optique produits àFraunhofer IOF, sur verre, siliciumou sur matériaux plastiques sontlargement utilisés dans l’industrie.Les systèmes opto mécaniques et lescomposants passifs ou actifsdéveloppés à Fraunhofer IOF sontemployés dans la télé et datacommunication, les technologiesdes capteurs, dans l’industrie destechnologies médicales et del’environnement.Les méthodes optiques développées àFraunhofer IOF, telle que les mesuressans contact de forme 3D et lacaractérisation des défauts de surface

sont utilisées dans des applicationsindustrielles comme le ReverseEngineering, les techniques dedentisterie, la constructionaéronautique et automobile, lafabrication d’élément d’optique et lessystèmes de gestion de qualité.En collaboration ou sous contrats avecdes industriels, l’institut conçoit etdéveloppe des systèmes mécaniquesde précision, à savoir desmanipulateurs de précision et desmachines hautes résolution pour lalithographie, et développe destechniques d’assemblage pour lessystèmes optiques et micromécaniques.Les développements de projets menésà bien au Fraunhofer IOF incluent lesméthodes et équipement pour lesmesures et tests des composantsmentionnés, la manufacture deprototypes comme les tests de pré-production en série.En engageant une collaboration avecFraunhofer IOF, les clients industrielsaugmentent leur potentiel defabrication en créent de nouveauxproduits pour le marché.Cet institut est en partie financé parl’état, les projets européens etrégionaux. Son effectif permanentest de 80 personnes et compte autanten effectif temporaire dans seslaboratoires et bureaux qui s’étendentsur une surface de 3000 m².

Advisory Committee

The Advisory Committee supportsthe Fraunhofer Institute as well as theBoard of Directors of the Fraunhofer-Gesellschaft and is comprised of thefollowing members:

Dr. F.-F. von FalkenhausenCarl Zeiss Jena GmbH(Vorsitzender)

Prof. H.-J. TizianiUniversität Stuttgart,Lehrstuhlinhaber für Technische Optik(stellvertretender Vorsitzender)

Dr. K. BartholméMinisterialrat im Thüringer Ministeri-um für Wissenschaft, ForschungKultur (TMWFK)

Prof. R. SauerbreyFriedrich-Schiller-Universität Jena,Physikalisch-Astronomische Fakultät

Prof. J. Herrmann

Dr. N. StreiblRobert Bosch GmbH

Dr. L. RossJDS Uniphase PhotonicsGmbH & Co. KGGeschäftsführer

Prof. G. ScarbataTU Ilmenau, Fakultät für Elektro-technik und Informationstechnik,Fachgebiet MikroelektronischeSchaltungen und Systeme

Herr J. von Schaewen a. G.Ministerialrat im Bundesministeriumfür Bildung und Forschung, Bonn

Prof. B. WilhelmiJenoptik Strategische Technologie-entwicklung GmbH, Jena

Page 8: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

8 Fraunhofer IOF Jahresbericht 2000

DirectorProf. Wolfgang Karthe

Deputy DirectorDr. Norbert Kaiser

SecretaryUrsula Kaschlik

Public RelationsAstrid Deppe

Optical CoatingsDr. Norbert Kaiser

AdministrationAstrid Deppe

Technical ServicesDr. Hartwig Treff

Soft X-Ray and EUV-CoatingsDr. Sergey Yulin

Low-Temperature DepositionDr. Ulrike Schulz

VUV-CoatingsDipl.-Phys. Joerg Heber

InterferometryDr. Gunther Notni

Surface CharacterizationDr. Angela Duparré

Micro-Optics TechnologyDr. Peter Dannberg

Micro-Optics DesignDr. Peter Schreiber

Micro-Optical ModulesDipl.-Phys. Harald Kießling

Micro-Optics ApplicationsDr. Ralf Waldhäusl

MicroassemblyDr. Ramona Eberhardt

Precision SystemsDipl.-Phys. Stefan Risse

Medical EngineeringDr. Thomas Peschel

Optical SystemsDr. Gunther Notni

MicroopticsDr. Andreas Bräuer

Precision EngineeringDr. Volker Guyenot

Application Centerfor Microtechnology JenaDr. Claudia Gärtner

3D-MeasurementDipl.-Phys. Peter Kühmstedt

Organisational StructureContact Persons

Page 9: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

9Fraunhofer IOF Jahresbericht 2000

Competences of Fraunhofer IOF

Business fields

Devices and Subsystems foroptical information technology,laser technology andillumination

Optical test and measuringmethods/optical sensing

Modules for mechanicalprecision systems

Optical coatings

Medical – optical equipmentand methods

Compet

ence

s

Design

and

analy

sis o

f opt

ical a

nd

o

ptom

echa

nical

syste

ms

Micr

oopt

ics te

chno

logy

a

nd sy

stem

s

Optica

l sha

pe an

d su

rface

m

easu

remen

t

Optica

l coa

tings

tech

nolog

y

Page 10: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

10 Fraunhofer IOF Jahresbericht 2000

Fraunhofer IOF Statistics

Contracts (Industry)

Contracts (Government)

Federal Funding

0%

20%

40%

60%

80%

100%

1995 1996 1997 1998 1999 2000 1995 1996 1997 1998 1999 20000

1

2

3

4

5

6

Budget Budget (Mio Euro)

Staff (overall employment figures)

38%

34%

9%

14%5%

Scientists

Technicians

PhD students

Undergraduate and graduate students

Temporary contracts

1995 1996 1997 1998 1999 20000

20

40

30

10

45%

20%

35%

Budget year 2000

Staff year 2000

Page 11: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

11Fraunhofer IOF Jahresbericht 2000

The Fraunhofer-Gesellschaft – Overview

The Fraunhofer-Gesellschaft is theleading organisation of appliedresearch in Germany. It undertakescontract research on behalf ofindustry, the service sector, andgovernment.

Customers are provided with rapid,economical and immediatelyapplicable solutions to technicaland organisational problems.

The Fraunhofer-Gesellschaftworks within the framework ofthe European Union’s technologyprogrammes, striving to improve thecompetitiveness of European industrythrough the enhancement of technicalsystems and processes. The interna-tional collaboration is also promotedthrough Fraunhofer branches in theUSA and in Asia. The association´sheadquarter is in Munich.

Commissioned and funded by theFederal and State governments, theFraunhofer-Gesellschaft undertakesstrategical research projects whichcontribute to the development ofinnovations in key technologies andspheres of major public concern, suchas energy, transport and theenvironment.

A staff of around 9.000 are employedat 48 research establishmentsthroughout Germany, most of themare scientists and engineers.The operating performance of theFraunhofer-Gesellschaft in 1999was around 700 million Euro, ofwhich almost 600 million Euro wasaccounted for by contract research.

The Fraunhofer-Gesellschaft wasfounded in 1949 and is a recognisedpublic welfare institution. Among itsmembers are well-known companiesand private patrons who contributeto the promotion of its application-oriented policy.

The Fraunhofer-Gesellschaft takes itsname from the Munich scholar Josephvon Fraunhofer (1787-1826), whowas equally successful as a scientist,inventor and entrepreneur.

Page 12: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

12 Fraunhofer IOF Jahresbericht 2000

Page 13: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

13Fraunhofer IOF Jahresbericht 2000

Selected Results

Fraunhofer IOF research anddevelopment activities carried outduring 2000 and brought at leastto a preliminary stage of completionare presented here. The workundertaken by the variousdepartments at the institute illustratesthe competence in cooperating withboth private enterprises andmultiinterest projects.

Our competence matrix has beenadapted to the development ofbusiness fields and the concentrationof our competences. The qualitativeand quantitative extension of the corecompetence in the design of opticaland optomechanical systems, itsconcentration on microoptics andcombination with mechanicalprecision systems were continued.

In optical coating technology wefocused on the development of highperformance coatings for shortwavelength. With respect to the nextgenerations of photolithographyequipment the research activities wereextended in the wavelength rangefrom 157 nm to 1 nm. In the softx-ray range reflectivities of thecoatings of more than 67 % andthermal stability up to 600 °C havebeen achieved. Progress in opticalcoatings of plastics is also presentedin the report.

The projects in precision engineeringshow also the competence of theFraunhofer IOF for developingsemiconductor fabrication equipment.The great demands on positioningprecision in next generationlithography equipment could beachieved outstandingly for specialchucks and wafer stages. The know-how of the Fraunhofer IOF inmicrooptics is demonstrated by thepapers on devices for opticalcommunication and the examplesfor fiber assembling and wafer scalereplication. Progress in 3-D shape

measurement could be achievedby application in a few projects,the research capacity had to beincreased for this field. Furtherdevelopment of self-calibratingtechnique and evaluating methodsis presented. Last but not least anexample of the Fraunhofer IOFcooperation with clinical researchin described in the paper on cardio-therapy.

Page 14: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

14 Fraunhofer IOF Jahresbericht 2000

Introduction

A trend towards the utilization of evershorter light wavelengths can beobserved in many applications,including extreme ultraviolet (EUV)right on up into the range of soft x-rays. Photolithography is one of themost significant applications for shortwavelengths in the field of optics.This results from the fact that smallerstructures can be replicated onmicrochips with the help of shorterwavelengths. Thus the semiconductorindustry has enormous interest in thecontinuing development of thistechnology. By now work is beingconducted on lithography techniquesfor the distant future (NGL – nextgeneration lithography): As comparedwith other competing technologies,EUV lithography with wavelengths ofonly 10 to 14 nm appears to havevery good prospects. All materials areso absorptive within this spectralrange that imaging with lenses is notpossible. The optical system musttherefore be entirely made up ofmirrors. Because the reflectivity at anysingle interface is extremely small,adequate reflectivity can only beachieved within this spectral rangethrough the use of so-calledmultilayer mirrors. These consist ofmany individual layers made of twodifferent materials, each of which hasa thickness of about ¼ of thewavelength. Superposition of thereflex amplitudes at all interfaces(interference) results in reflectivity forthe entire system which can exceed70%, for example with the materialcombination molybdenum and siliconwhich is commonly used in the EUVrange. This presupposes themaintenance of extremely tightaccuracy tolerances as regards thethickness of the individual layers, aswell as minimal roughness at theinterfaces. The fact that the thickness

Optical coatingsfor soft x-ray applications

S. Yulin, T. Feigl, T. Kuhlmann, and N. Kaiser

of the layers amounts to only a fewatoms represents a great challenge forcoating technology, as well as forlayer analysis methods.

Multilayer mirrors for EUV

We focused our interest on thedevelopment of multilayer mirrors thatprovide not only high reflectivity, butalso a good thermal stability to takeinto account the heating of themultilayer by EUV irradiation of aplasma source that will be used infuture EUV-lithography tools. In fact,we have shown that the thermalstability of Si-based multilayer mirrorscan be considerably improved in twoways: (1) The replacement of Mo byMo2C and (2) the insertion of thinMo2C layers at the silicon interfaceswhich act as interdiffusion barriers(Fig.1). All multilayer mirrors wereprepared by dc-magnetron sputtering,designed for normal incidence atabout 13 nm and compared in termsor reflective properties and heatresistance in the temperature rangefrom 200 oC to 700 oC. X-rayscattering, transmission electronmicroscopy (Fig.2), atomic forcemicroscopy and synchrotron radiationwere used for the characterization ofthe multilayer structures. So far, weachieved a maximum NIR (normalincidence reflectivity) of 65.4 % at12.9 nm wavelength for Mo/Si,61.9 % at 13 nm wavelength forMo2C/Si and 59.9 % at 13.3 nmwavelength for Mo/Mo2C/Si/ Mo2Cmultilayers in as-deposited state(Fig. 3). The small angle X-rayreflectivity (Fig. 4) and the multilayerperiod of Mo/Si multilayer mirrordrastically decrease after annealing totemperatures above 300 oC, whereasthe corresponding changes inMo2C/Si and Mo/Mo2C/Si/ Mo2Cmultilayers occur after heating to

Fig. 1:Improvement of the thermal stability of Si-basedmultilayers by the replacement of Mo by Mo2Cand the insertion of Mo2C diffusion barriers.

Fig. 3:Normal incidence reflection (NIR) for differentmultilayer systems measured with synchrotronradiation at the PTB reflectometer at BESSY.

Fig. 2:TEM images of 7 nm Mo/Si and Mo2C/Simultilayer mirrors in as-deposited state and afterannealing at 700 °C for 2h.

Page 15: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

15Fraunhofer IOF Jahresbericht 2000

Fig. 4:Evolution of reflectivity at l = 0.154 nmfor different multilayer systems with increaseof annealing temperature.

Fig. 5:TEM images of Cr/Sc multilayers with periods2.35 nm and 1.57 nm.

Fig. 6:Reflectivity of Cr/Sc multilayers at the waterwindow wavelength l = 3.16 nm.

temperatures above 600 oC and500 oC, respectively. The high thermalstability and excellent reflective pro-perties of Mo2C/Si multilayer mirrorsprovide a good potential for their useas elements in EUV optics under heavyradiation load of plasma, synchrotronetc.

Multilayers mirrors for soft X-rays

The use of thin-film technologies forextremely short wavelengths is notrestricted to the field of photo-lithography. Optics for extremelyshort wavelengths are also requiredfor x-ray astronomy, for research withthe help of synchrotron radiation andfor the development of X-ray micro-scopes. For example, the wavelengthrange from 2.3 to 4.4 nm, the so-called water window, is of specialinterest in the field of X-ray micro-scopy. This energy range is situatedbetween the absorption edges ofoxygen and carbon, which means thatwater is significantly more trans-missive for X-ray radiation than areorganic molecules. This narrow rangeof wavelengths thus allows for goodcontrast for the examination ofbiological objects.The development of multilayer mirrorsfor this wavelength range is evenmore difficult than in the EUV rangebecause individual layers of less than1 nm thickness must be produced,and the number of periods must beincreased to approximately 300. Wehave chosen the material combination

Cr/Sc because of its high reflectiveproperties and the good interfacestability. The multilayers deposited bymagnetron sputtering show smoothinterfaces in the multilayer stack evenfor very small period spacings, asshown in TEM-images (Fig. 5).The reflectivity of the samples wasmeasured at the PTB reflectometerat BESSY in Berlin using the waterwindow wavelength l = 3.16 nm.For normal incidence the measuredreflectivity is 6%. For d = 1.86 nm weobtain R = 13% and for d = 3.17 nmthe measured reflectivity is R = 30%(Fig. 6).

Page 16: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

16 Fraunhofer IOF Jahresbericht 2000

Country Storage Ring Minimumwavelength

France SuperACO 300 nm

Germany DELTA 420 nm

Italy ELETTRA 218 nm [3]

Japan UVSOR 238 nm

NIJI-IV 212 nm

USA Duke University 194 nm

Table 1:Table of operating Storage Ring FEL’s

Fig. 1:EU Network ”Storage Ring Free Electron Lasersdown to 200 nm” Fraunhofer IOF manages andcoordinates the optical task.

Fig. 2:Dual Band Mirror HR @ 220 nm and 380 nmdesigned for the Elettra Storage RingFree Electron Laser.

Free Electron Lasers (FELs) are tunablesources of monochromatic andcoherent radiation delivering highpeak and average power. FELs havethe great advantage of being easilytunable in wavelength as well asbeing able to achieve very highaverage and peak powers withoutmaterial breakdown. Being intenseand tunable light sources in theUV/VUV range, they can fill the gapsin the wavelength regions covered byconventional lasers.At the moment, there are only sixoperating storage ring FELs in theworld and in all these facilities (listedin Table 1), there is a continuing effortto reduce lazing wavelength andimprove the quality of the FEL as anadvanced light source for scientificapplications. In particular, tunable andreliable operation with high powerbelow 200 nm is a very importanttarget since it cannot be presentlyobtained with conventional lasers.In the context of a EU network,Fraunhofer IOF is working for thethree European SRFELs, leading andcoordinating a large R&D program forthe design of prototype FEL mirrors.Indeed, it is crucial to produce highreflectivity and robust mirrors in orderto optimize the extracted powerrequired for most of the applications.The front mirror of the laser cavityreceives not only the first harmonicwhere the lasers operates but all thesynchrotron radiation emitted by theundulator: a wide spectrum extendingtowards X-rays. These short wave-lengths are responsible for the mirrordegradation which results fromchanges in the coating materials (highinduced absorption, color centers,heating ...) as well as from carboncontamination.For Fraunhofer IOF Jena, Plasma andIon Assisted Deposition techniqueshad provided dense films of lowabsorption also in the UV region closeto the electronic band gap of theoxide materials (SiO2, Al2O3, HfO2)

which were employed with very goodresults. The degradation tests havebeen successfully validated at boththe synchrotron facilities Super ACO(Orsay, France), Elettra (Trieste, Italy)and Delta (Dortmund, Germany).Checked tests have proven the goodrobustness of IOF mirrors able tomaintain their reflectivity even underextreme environmental conditions /1/,/2/ such as synchrotron radiation.More over, in May 1999, the ElettraFEL, ”third-generation” synchrotronradiation facility, lazed at both 356nm and 220 nm /3/ using IOF dualband mirror (Fig. 2).The lowest tuning range achieved was217.9 nm – 224.1 nm. New designsare currently in fabrication. As showsin table 1, ”218 nm” is yet actuallythe third world record, just behind theJapanese and the American machine.

References/1/ A. Gatto, et al.,

International Symposium onOptical Science and Technology,30 July – 4 August 2000, SanDiego, California USA, ”Towardsresistant UV mirrors at 200 nmfor free electron lasers –manufacture – characterisations –degradation tests”.

/2/ A. Gatto, et al.,International Conference, AnnualSymposium on Optical Materialsfor High Power Lasers, BoulderDamage Symposium, October16-18 2000, Colorado USA,”Achromatic Damage Investigationon mirrors for UV Free ElectronLasers”.

/3/ R. Walker, et al.,”European Project to Develop anUV/VUV FEL Facility on theELETTRA Storage Ring”Nucl. Inst. Meth. A 429 (1999)179-184 R., R. Walker et al.“The European UV/VUV FELproject at Elettra” EPAC 2000,Vienna.

Hard UV coatings for free electron laser

A. Gatto and N. Kaiser

Page 17: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

17Fraunhofer IOF Jahresbericht 2000

Fig. 2:Maximum temperature on backside of PMMAand silicon-substrates during coating withcommon antireflective system and using thenovel design AR_hard.

Fig. 1:Coating design AR_hard – schematicpresentation of the alternating high index(n = 2.0) and low index (n = 1.46) layers independence on geometrical thickness of coating.

Transparent plastics like PMMA,Polycarbonate, COC and Zeonex arewidely used today for optical andoptoelectronic components.Coating of these soft components ismainly intended to improve theirmechanical durability. Additionally,antireflection coating is necessary formany optical applications.Plasma-Ion Assisted Deposition(Plasma-IAD) using plasma sourceAPS is a well applied technique todeposit optical interference coatingswithout additional substrate heating.Nevertheless, temperature on apolymer substrate can reach a criticalvalue of about 90°C and higher ifthick layers have to be deposited.The increase of temperature is mainlydetermined by the high energy ofelectron beam gun during evaporationof high refractive material Ta2O5.A new coating design AR_hard (Fig. 1)has been developed to produce

Abrasion resistant antireflectioncoatings for plastic optics

U. Schulz, U.B. Schallenberg*, and N. Kaiser* mso jena Mikroschichtoptik GmbH

Fig. 3:Light Microscope image of PMMA-samplesafter rubbing with Steel Wool (F » 0.1 N)A – coating AR_hard, B – no coating

A B

200 µm

abrasion-resistant antireflectivecoatings on plastics. In contrastto other antireflective coatings, highrefractive index layers are almostevenly distributed over the stack.The total thickness of coatings ofthis design type can be adjusted fromabout 800 nm to over 2200 nm.The temperature on plastic substratesduring the PVD process has beenreduced compared to commoncoating stacks by using thinner layerswith high refractive index (Fig 2).

The coating has been deposited onPMMA, PC, Zeonex and COC.The average reflectance of plasticsurfaces was reduced from about4–5% to values lower than 0.5% inthe visible spectral range. Theabrasion resistance of the coatingsdeposited on plastics corresponds tothat of a single SiO2 layer of the samethickness (Fig. 3).

Page 18: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

18 Fraunhofer IOF Jahresbericht 2000

New polymers will play a major roleas materials for optics and optoelec-tronics in the next decades. A newclass of amorphous thermoplastics,the cycloolefinic polymers (knownas ZEONEX® and TOPAS®), wasintroduced to the world market aboutfive years ago /1/. These materialspromise considerable advantagesconcerning optical properties, heatdistortion temperature and wateruptake compared to PMMA and PC,which are still common materials foroptical applications until today.Surface functionalisation by thin filmcoatings is one of the mainrequirements for plastic optical parts.High scratch resistance, anti-reflectionproperties, electrical conductivity orwettability of polymer surfaces can beobtained by coating with inorganiclayer systems.For PVD (physical vapor deposition)-coating problems, like adhesion ofthe inorganic layer on the organicsubstrate, a solution must be foundfor every single polymer. Broad basiccoating knowledge exists only forPMMA and PC as a result of manyyears of research.Our investigations are part of theproject ”Polymere 2000”, which isfinanced by the Arbeitsgemeinschaftindustrieller Forschungsvereinigungen(AiF) under AiF-FV-Nr.12180BR. Morethan 10 different companies from theoptics and coating industry take partin the project committee.

Aim of this project is to investigatethe coatability of cyclopolyolefinsubstrates and their behavior underevaporating and pretreatmentconditions, to create a basicknowledge base for the developmentof industrial coating procedures.The behavior of ZEONEX® and TOPAS®

sample surfaces under pretreatmentand coating conditions, simulated byAr ion bombardment and UV radiationfrom a plasma, has been investigated.It was possible to increase the samples

Coating of new polymers for optical applications

P. Munzert, U. Schulz, and N. Kaiser

free surface energy with Ar-plasmapretreatment, even with shorttreatment times (< 5s). A high surfaceenergy value is a condition for goodcoating adhesion. For extremly longplasma treatment times a strongincrease of surface roughness as wellas a decrease of transmission in thevisible wavelength range weredetermined.

The results indicate that normalcoating conditions with pretreatmenttimes < 300s and moderateBIAS-voltage will not influencea polycycloolefin surface in a negativeway. Above that, very short plasmapretreatment is sufficient to increasefree surface energy values, so the”possible parameter window” ofPVD-coating processes should bemuch wider for the polycycloolefinsthan for PMMA or PC.

References

/1/ T. Kohara, Macromol. Symp. 101(1996) 571-579

Fig. 1:Molecular structure of the new polymersleft: Cycloolefin-Polymer (COP) ZEONEX®

right: Cycloolefin-Copolymer (COC) TOPAS®

Fig. 3:Rms-roughness and transmission (at 400nm)of a Zeonex substrate (1mm thick) dependingon Ar-plasma treatment time with 80V BIAS

Fig. 2:AFM images of a Zeonex substrate(left: untreated, right: after Ar-plasma treatment1800s, 80V BIAS)

Page 19: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

19Fraunhofer IOF Jahresbericht 2000

AFM scans of a normal polished and a super-polished CaF2 surface. Note the different heightscale. Super-polished samples show a bettersmoothness and a very low defect density.

Fig. 1:Normal polished CaF2 substrate

157 nm radiation of F2-excimer laseris considered to be one of thepromising exposure tools for the70 nm node in further integratedcircuit production. /1/, /2/ Similarto the general concept at 248 nmand 193nm, a 157 nm lithographictool will probably consist of thefollowing components:157 nm lithography laser, beamdelivery system, beam forming unitand projection optics, which alltogether form a closed, purgedbeam-line.

Due to material properties andexpected higher optical losses, theprojection optics will probably bea catadioptric one /3/, although allreflective designs have also beproposed for projection purposes /4/.Generally, different types of higheffective optical coatings are requiredfor 157 nm applications: highreflectors (HR) and antireflectioncoatings (AR) for different anglesof incidence.

Fluoride single layers and multi-layeroptical coatings for use in the vacuumultra-violet spectral region, especiallyat 157 nm have been deposited bya conventional vacuum processes.The optical properties have beenstudied to evaluated limiting factorson their performance. Additional tocoatings, surface and bulk propertiesof CaF2 substrates have beeninvestigated and first results on theinfluence of roughness and surfacecontamination on the transmittanceare presented.For dielectric mirrors, reflectancevalues of 95%–96% at near normalincidence have been measured at157nm for conventional depositedQWOT-mirror coatings. For both sideAR-coated CaF2, a residual reflectancewell below 1% and a hightransmittance have been obtained.The optical performance of thesemulti-layer coatings is limited by

Substrates and optical coatingsfor 157 nm applications

J. Heber and N. Kaiser

absorption (intrinsic, impurities) andby scattering losses due to themorphological and crystallinestructure of the fluoride films. Furtherinvestigations and optimisation oftechnology are necessary to improvethe optical performance of the layersystems.

References

/1/ M. Rothschild, “Photolithographyat wavelengths below 200 nm”,Proc. SPIE 3274, pp.222-228,1998

/2/ T.M. Bloomstein, M.W. Horn,M. Rothschild, R.R. Kunz, S.T.Palmacci, R.B. Goodman,“Lithography with 157 nm lasers”,J.Vac.Sci.Technol. B15 (1997),6, p.2112-2116

/3/ J.H. Bruning,“Optical lithography – thirty yearsand three orders of magnitude”,Proc. SPIE 3051 (1997), 14-27

/4/ D.R. Shafer,“Projection lithography system andmethod using all-reflective opticalelements”,US – patent 5.686.728publ.11/11/97

Fig. 2:Super-polished CaF2 substrate

Page 20: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

20 Fraunhofer IOF Jahresbericht 2000

Light scattering measurementwith 157 nm techniques

A. Duparré, M. Flemming, S. Gliech, Ch. Petit, and J. Steinert

As a result of lithography systemsmoving to ever shorter wavelengths,industry and research are facingdrastically increasing requirementsfor low-scatter optics in the DUV/VUVspectral region. Hence, appropriatemethods for scattering measurementsat the wavelengths 193 nm and157 nm are necessary, which meetthe industrial needs.

In earlier reports, we reported ontotal scattering (TS) measurementsof optical coatings and substrates inthe visible, IR and UV extending to193 nm with a set-up operating in air/1,2/. In this report, a new scatteringinstrumentation for use at 157 nm(as well as 193 nm) is presented.

The design and construction of theequipment for measurements at157 nm was driven by the followingdemands:

– Measurements must be performedeither in vacuum or dry nitrogento avoid absorption of VUV lightby ambient oxygen and watervapor.

– Both operation in vacuum andnitrogen shall be possible, ascomparison of results obtainedunder different conditions isdesirable.

– Vacuum better than 1 x 10-4 mbaras well as high purity nitrogen arerequired.

– Time for sample change in themeasurement chamber shall notexceed several minutes.

– Easy 2D mapping of samplesurfaces.

– Easy change from backwardto forward scattering modus inthe chamber.

Fig. 1:System for total forward and backward scattermeasurement 157 nm / 193 nm.

Page 21: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

21Fraunhofer IOF Jahresbericht 2000

Fig. 3:Coblentz sphere, position for total forwardscatter measurement.

Fig. 2:157 nm / 193 nm TS set-up.

Fig. 4:Backscatter measurements from HR multilayer(fluoride) mirrors on CaF2 substrates, radiationsource: D2-lamp.

– Both excimer laser and deuteriumlamp as alternative radiationsources.

– High sensitivity.– Measurement procedure shall

follow the instructions ofISO/DIS 13696 as far as possible.

Furthermore,– VUV-set-up shall be suitable for

193 nm measurements as well.– The equipment (beam path,

detection system etc.) shall alsoenable transmission, reflectanceand lifetime experiments.

According to these requirements,we built the instrumentationschematically shown in Fig. 1.The well proven principles of thearrangement described in /1/ werekept similar wherever this waspossible. Main components of thenew set-up are:

– Coblentz sphere designed forscattering angular range from2° to 85° in the backward andforward directions.

– Two vacuum chambers(steel with special surfacetreatment, see picture of Fig. 2):measurement chamber containingthe Coblentz sphere withbackward/forward positioningsystem, sample positioning unit,detector unit; beam preparationchamber containing optics andbeam attenuator.

– Detector: photomultiplier(R1220, Hamamatsu).

– Two light sources: 30 W deuteriumlamp (L7293, Hamamatsu),excimer laser (LPF 220i, LambdaPhysik) with pulse energies> 25 mJ at 157 nm and > 275 mJat 193 nm.

– Two different systems of noisesuppression: lock-in-amplifier whenusing deuterium lamp, pulseintegrating system for excimer laseroperation.

Figs. 2 and 3 display pictures of theentire set-up and the Coblentz spherein forward scatter position, respec-tively.

The system was successfully testedand first measurements were carriedout. Even though optimization of theset-up has just started, high sensitivityhas been accomplished: scatter levelsas low as 1 ppm and < 10 ppm in theforward and backward directions,respectively. Change from forward tobackward modus takes only 10 s.Sample change is accomplished within6 minutes time.

Up to now, there is no establishedcalibration procedure nor standardavailable for 157 nm. Our futurestudies will address this problem andsearch for new solutions. As apreliminary attempt to ”calibrate” themeasured data, we used as a 100%signal the incident beam directed intothe Coblentz sphere, which is thenreflected on the detector.

In the following, first results ofmeasurements are presented. Boththe D2 lamp and the excimer laserwere used as radiation sources. Figs. 4and 5 refer to experiments with theD2 lamp, the other measurementswere performed with the excimerlaser.

Fig. 4 shows 1D scans of back-scattered light from multilayer fluoridemirrors. One mirror was measuredafter deposition, the other one afteraging effects had caused degradation.In Fig. 5, the results of backward andforward scatter measurements onground CaF2 are given. These samplesare used as diffuser discs in front ofthe detector in the 157 nm arrange-ments. Fig. 6 compares backscattermeasurements on HR fluoride mirrorsfrom different suppliers. Fig. 7provides the TS curves of differentlypolished CaF2 substrates together with

Page 22: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

22 Fraunhofer IOF Jahresbericht 2000

a two dimensional mapping for onesample. The forward and backwardscatter of a 157 nm AR coating onCaF2 with a corresponding two di-mensional mapping is given in Fig. 8.

References

/1/ A. Duparré, G. Notni:“Multi-type surface and thin filmcharacterization using lightscattering, scanning forcemicroscopy and white lightinterferometry.“ in: Al-Jumaily,G.A.: Optical metrology.SPIE Critical Revue Series.vol. CR 72, Bellingham/Wash.:SPIE 1999, pp. 213-231.

/2/ A. Duparré, S. Gliech, J. Steinert:”Roughness and scatteringinvestigations of surfaces andthin films for DUV, VUV and EUVapplications”,IOF Annual Reports 1999

Fig. 5:CaF2 diffuser, total scatter measurements,radiation source: D2-lamp.

Fig. 6:Backscatter measurements from HR multilayer(fluoride) mirrors on CaF2 substrates, radiationsource: excimer laser.

Fig. 7:Forward scattering measurements on CaF2 substrates with differentpolishing qualities, radiation source: excimer laser. Rms roughnesses ofthese samples calculated from measurements with mechanical profiler: lowscatter sample: » 0.3 nm, high scatter sample: » 0.8 nm.

Fig. 8:Forward and backward scattering measurements of AR coating on CaF2,radiation source: excimer laser

Page 23: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

23Fraunhofer IOF Jahresbericht 2000

Motivation

At ambient conditions, picking andplacing of silicon wafers or fixtureduring lithographic exposure is donewith vacuum chucks. This ensures flatadherence and avoids scratches andother damage as is common whenusing mechanical clamps. Insidevacuum, this principle doesn’t workand mechanical clamps are still usedwidely. As a consequence, wear andgeneration of particles, uncontrolledwafer bending and poor thermalcontact of the wafer to the supportare encountered.For advanced lithography applicationsthis is not acceptable and electrostaticchucking has emerged as a meansto avoid such problems. Through thegeneration of an electric fieldbetween wafer and supporting chuck,an attractive force is exerted on thewafer. The force is distributedhomogenously over the surface, canbe switched on/off and adjustedelectrically. It ensures flat waferadherence to the support as well asgood thermal contact. Handlingbehaves in many respects similar tovacuum gripping, while the principleworks inside and outside vacuum.

Chucking principle

The basic design of an electrostaticchuck is illustrated in Fig. 1. It closelyresembles that of a parallel platecapacitor, with the wafer being usedas one of the plates. The second is ametal electrode incorporated into aninsulating substrate that supports thewafer from below.

By applying a voltage U between thetwo plates, the wafer is attractedto the chuck. The thickness d of thedielectric film between the wafer andchuck electrode and the relativedielectric constant e of the film ma-terial contribute to the force. From

Electrostatic chucks for vacuum lithography

G. Kalkowski, S. Risse, G. Harnisch, and V. Guyenot

Fig. 1:Electrostatic chuck

theoretical considerations the electro-static force F per area A has beenestimated to

F/A = ½ e e0 (U/d) 2

with an ideally insulating dielectric /1/.

Here e0 denotes the electricpermittivity of free space. Fordielectrics with a finite conductivity,much higher forces due to so-calledJohnsen-Rahbek behavior are known/2/. There are different electricaldesign possibilities. In the basic designa single chuck electrode is used anddirect electrical contact of the voltagesource to the wafer is required.Implementing a bipolar or multipolarelectrode configuration circumventsthe need for contacting the waferdirectly and may be appropriate whenwafer charging by impinging electronsor ions is not a problem.

Materials investigations

Optimizing the chuck for a specificapplication includes a careful materialsselection. Alumina (clean and doped)and SiO2 are well-establisheddielectrics, while other materials areless common, albeit of great potentialfor vacuum lithography and

Fig. 2:Electrostatic forces versus voltage for variouschuck materials

Page 24: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

24 Fraunhofer IOF Jahresbericht 2000

measurement applications. We haveinvestigated a series of materials,including glass and glass-ceramicswith respect to its use as a dielectric inelectrostatic chucks /3/.Electrostatic forces were measured ina vacuum equal or better 10-4 mbarusing unipolar test chucks of about70-80 mm diameter and a dielectricfilm thickness around 250 µm. Theresults are displayed graphically inFig. 2. Note the logarithmic scales.Large differences in electrostatic forcefor quite similar geometry areapparent.In particular, the glass-ceramicdielectric is identified as a Johnsen-Rahbek system, providing forcesabout two orders of magnitude largerthan with quartz.By using this material as chuckdielectric, a highly attractive force onthe wafer at moderate voltage can beobtained.

Fig. 3:12-inch electrostatic chuck for Ion ProjectionLithography

Lithography chuck

Chuck designs of different size andmaterial for a diversity of lithographicapplications have been realized in ourinstitute. As an example, Fig. 3 showsa 12-inch chuck made out of glass-ceramics for use in Ion ProjectionLithography /4/. Planarity and absoluteheight dimensions of the chuckare controlled to µm precision. Thisensures a well-defined plane of focusfor the lithography process and a cleargeometrical relationship to theunderlying metrology stage. Electricaldesign is somewhat more complexthan described above due to a multi-polar electrode configuration, whichallows for flexible electrical adoptionto different process requirements. Infact, part of the chuck is evenmovable and can be extended orretracted with high precision to easewafer transfer off and onto the chuck.

References

/1/ T. Watanabe, T. Kitabayashi,C. Nakayama,”Relationship between ElectricalResistivity and Electrostatic Force inAlumina Electrostatic Chucks”,Jpn. J. Appl. Phys. 32 (1993) 864

/2/ D. Wright, L. Chen, P. Federlin,K. Forbes,”Manufacturing issues ofelectrostatic chucks“,J. Vac. Sci. Technol. B13 (1995)1910

/3/ G. Kalkowski, S. Risse, G. Harnischand V. Guyenot, “ElectrostaticChucks for LithographyApplications”, Proceedingsof Micro- and Nano- Engineering(MNE), Jena 2000, in print

/4/ in cooperation with LeicaMicrosystems Lithography GmbH(patent pending)

Page 25: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

25Fraunhofer IOF Jahresbericht 2000

In the framework of the Ion ProjectionLithography (IPL) project a resolutionand position repeatability of writtenpatterns better than 36 nm (stitchingerror) is required. This resolutionexceeds that of the best present opti-cal lithography systems approximatelyby a factor of six. Though the exactposition of the written pattern iscontrolled electronically during expo-sure via a pattern lock system a sub-micrometer stability of the waferposition is required.Furthermore the horizontal orientationof the ion-optical axis implies avertical orientation of the wafer stage,which results in additional challengesto the mechanical design. Because ofthe high dynamics of the steppingmotion a resonance frequency inexcess of 200 Hz is required for thewafer stage assembly.In the framework of the IPL project,the IOF, as a subcontractor of LeicaMicrosystems Lithography GmbHJena, is responsible for the deve-lopment of a wafer stage assemblywhich has to comply with the above-mentioned stability requirements.All major components of the waferstage assembly are made from glassceramics. The advantages of thechosen material are

– mirrors for interferometric positioncontrol may be incorporateddirectly into the stage body

– high specific stiffness and lowspecific weight allow for highdynamics and low powerconsumption of the drives

– high stability, no creep– non-magnetic.

The wafer stage assembly consists ofa lightweight glass ceramic metrologyunit, which carries the interferometermirrors and an exchangeableelectrostatic chuck. A small,pneumatically activated chuck forwafer handling is integrated into thecenter of the main chuck.

Wafer stage assembly for Ion Projection Lithography

C. Damm, T. Peschel, S. Risse, and U. C. Kirschstein** Leica Microsystems Lithography GmbH

The interferometer mirrors are ortho-gonal to each other with a precisionof 2 seconds of arc while the pyrami-dal error is below 15 seconds of arc.The remaining deformation of themetrology unit under gravity loadamounts to 40 nm which is close tothe theoretical limit of 30 nm which isset by the material properties whenan ideal mount is assumed.The whole assembly of metrology unitand chuck is mounted cinematically toa moveable frame via 6 solid-statehinges, which bind each degree offreedom separately. This way strains inthe mounting frame are completelydecoupled from the wafer stageassembly.The frame is clamped via piezoactuators to an vertically oriented800 mm long, hollow, Si/SiC ceramicsbeam with a bending stiffness of115 N/µm which is moved in thehorizontal direction for stepping fromone exposure area to the next one.For vertical motion the clamping isreleased and the wafer stage is liftedalong the beam to the next exposurearea.

Fig. 1:Finite element investigation of the deformationsof the metrology unit

Fig. 2:Assembled wafer-metrology unit with handlingchuck activated

Page 26: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

26 Fraunhofer IOF Jahresbericht 2000

Acknowledgement

The IPL project is labeled by MEDEAand is supported by the GermanMinistry of Education and ResearchBMBF under grant number 01 M2983C.

References

/1/ R. Kaesmaier and H. Löschner,Overview of the Ion ProjectionLithography European MEDEA andInternational Program,Proc. SPIE Vol 3997.

/2/ P. R. Yoder,“Opto-mechanical systemsdesign”, 2nd ed., New York, 1992

/3/ Schott; Technical Information”ZERODUR”

/4/ S. Risse, C. Damm, and T. Peschel,Glass ceramics assembliesfor astronomy, lithography andprecision mechanics, in EuropeanSociety for Precision Engineeringand Nanotechnology- EUSPEN -: Precision Engineering -Nanotechnology.(Proceedings of the 1st Interna-tional EUSPEN Conference. Vol.1),McKeown, P. ed., Aachen, 1999(Berichte aus der Fertigungs-technik)

/5/ S. Risse, T. Peschel, C. Damm, andU. Kirschstein, A new metrologystage for Ion ProjectionLithography made of glassceramics, in OptomechanicalEngineering and Vibration Control,Derby, E.A. ed., Washington: SPIE,1999

Fig. 3:Mount frame for the metrology unit attached tothe ceramics beam.The whole wafer stage assembly is integratedinto the IPL machine. In its working position theceramics beam is connected with two linearmagnetic drives which move the whole waferstage assembly during stepping.

Page 27: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

27Fraunhofer IOF Jahresbericht 2000

Introduction

With the increase in voice and datacommunications over the recent years,the need for bandwidth is growingwith an exponential rate. Multiplexingtechniques for multiple use of existingfiber transmission lines are thepreferred way to satisfy this need.Optical code division multiplexing(CDM) has been demonstrated to bean interesting transmission techniquefor access and metro networks, wherereduction of implementation andmaintenance cost is a vital issue /1/.In the framework of the germanKomNet field trial a CDM systemapplying periodic spectral encodingof directly driven LEDs operating at155.52Mbit/s per channel wasdemonstrated /2/. For encoding fiberMach-Zehnder filters with freespectral ranges of FSR = 10-20GHzworking in the wavelength region of1550±35 nm were used. The opticaldecoding filters at the receivers areminiaturized bulk-optical Mach-Zehnder interferometers (MZI) withtheir FSR matched to the respectiveencoding filter FSR at the transmitter.The development and manufacturingof these MZI decoding filters will bedescribed in this paper.

Optics design

From the system specifications, therequired parameter of the MZI arederived: The FSR of the MZI mustmatch the transmitter FSR to betterthan 10-5 which is guaranteed byadjusting the optical path differenceby a piezo actuator. The minimumrequired contrast of theinterferometer is 20dB even forrandom polarization of the incominglight. The basic design of the MZI issketched in Fig. 1.Design calculations with ray tracing(ZEMAX) and the free space wavepropagation software package GLAD

Miniaturized bulk-optical Mach-Zehnderfilter for optical code division multiplexing

P. Schreiber, B. Höfer, and G. Borchhardt

(Fig. 2) showed, that the most criticalparameter of the optical elements arepolarization dependent phaseretardations of the beam splitters andthe piezo-actuated reflecting prism.Thermal behavior and adjustmenttolerances turned out to be lesscritical because active FSR fine-tuningis provided during operation.

Components

Standard reflecting prisms operatingwith total internal reflection (TIR)cause large phase retardancesbetween the p- and s-components ofthe incoming light. To suppressdepolarization during reflection on thelegs of the prism, a special coating ofthis element is necessary to replaceTIR. The coating designed andfabricated by the company mso jenaguaranteed a reflection of more than99% at a retardance of the reflectedbeam below 1° over the wholewavelength range (Fig. 3).All other optical components areselected commercially availableminiature non-polarizing beamsplitters, aspheres and right angleprisms. Because manufacturers do notspecify the retardance of the non-polarizing beam splitters extensivemeasurements of polarizationbehavior of these elements werecarried out. The utilized beam splittersshowed orientation dependentretardation and a beam splitting ratiorequiring proper orientation andcombination of elements for eachmodule to satisfy the designconstraints. The customized piezo-drive including tilt adjustment screwsfor the first beam splitter and thereflecting prism was supplied by thecompany piezosystem jena.

Fig. 1:Schematic design of the Mach-Zehnderinterferometer

Fig. 3:Phase behavior of the non-polarizing reflectioncoating

Fig. 2:Point spread function for constructive anddestructive interference, respectively, calculatedwith GLAD

Page 28: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

28 Fraunhofer IOF Jahresbericht 2000

Assembly

The proper distance of the reflectingprism to achieve the required FSR andthe pointing and parallelism of theinterfering beams are the most criticalparameters to be maintained duringassembly. Both are disturbed mainlyby wedge errors of the beam splitters.The beam splitters and the reflectionprism are positioned onto the housingof the piezo-drive by means ofprecision alignment elementsequipped with a vacuum gripper.To assess the state of adjustment,each filter was assembled with eithera fiber-coupled DFB laser diode or thesignal from the transmitter LED withthe matched filter applied. After theoptimum position was found, theelements were attached onto thepiezo housing with UV-curing glue.To optimize differential detectoroperation of the two photodiodes anadjustable knife edge obscuration isapplied to equalize the electricaloutput of both diodes.

Results

For the specified FSR range of10-20GHz a total of 10 matchedfilters (Fig. 4) with frequency spacingof about 1 Ghz were manufacturedwith typical responses as sketched inFig 5. The prototypes showedsufficient mechanical and thermalstability. In agreement with the designcalculations and the characterizationof the utilized elements, the contrastof the interferometers and thedependence of the filter responsecurves from the state of polarizationare well within the specification.

Acknowledgement

This work was funded under contract01 BP 813/1 by the German Ministryof Education, Science, Research andTechnology. We like to thankDr. Pfeiffer from Alcatel SEL AG,Dr. Goering and Mr. Martin fromcompany piezosystem jena andMr. Schallenberg from companymso jena for support and fruitfuldiscussions during the project.

References

/1/ Cahill, M. J. L., Pendock, G.J.,Sampson D. D., Hybrid coherencemultiplexing / coarse wavelength-division multiplexing passiveoptical network for customeraccess”, Phot. Techn. Lett. 9(1997) 1032.

/2/ Haisch, H., Pfeiffer, Th., ”Photonictechnologies in hybrid accesssystems”, Int. Topical Workshopon contemporary photonictechnologies, paper WB-1,Tokyo 2000

Fig. 4:Mach-Zehnder filter (cover removed) integratedinto receiver module

Fig. 5:Typical transmission curve of the interferometerin dependence from piezo actuator voltage

Page 29: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

29Fraunhofer IOF Jahresbericht 2000

The increase of packaging densities aswell as the ongoing integration ofmicrooptic and electronic componentsleads to the opening of the thirddimension for integrated opticdevices, see e.g. /1/ and referencestherein. The rapid progress in this areadrives the development of newmaterials and technologies. Thosehave to meet the requirements of theapplications with regard to thefabrication tolerances but also to theopportunities for cost-effective mass-production /2,3/.Within the framework of the project”DONDODEM” (Development of newdielectric and optical materials andprocess-technologies for low costelectrical and/or optical packaging andtesting of pre-competitivedemonstrators), sponsored by theBrite Euram contract, the IOFdeveloped a novel three-dimensionaloptical multilayer fan-out structure.It was the first time in the focusedfield of application that such a highlyintegrated device was conceived andrealized. The scale of this workincluded all steps from design up tocarrying out a suitable manufactiontechnology.The aim of the fan-out structure is tobring together signals coming fromdifferent sources so that they can bedetected at the output with onesensor. Essential for the design is toachieve equal path lengths for allwaveguides which leads to the layout,composed of four uncoupled layers ofwaveguides. All of them are shown inFig. 1.The incoming signals will be fed intothe device by standard fiber 1 x 8arrays butt-coupled to the input facet.BPM and FEM calculations predict atotal loss of 1.6 dB @ l = 1.3 mm fora 5 mm x 5 mm quadratic waveguidecross-section and a device length of41 mm. Pitch, layer distance andcross-sections have to be designed insuch a way that the fields at theoutput do not overlap.

Novel multilayer waveguide technology for opticalfan-out structures

U. Streppel, P. Dannberg, C. Waechter, A. Oelschlaeger and A. Braeuer

Experimental investigations show thatthe inorganic-organic ORMOCERäcopolymers, developed by the Fraun-hofer Institute of Silicate Research,Würzburg, offer the potential fora multilayer technology. Especiallyproperties like temperature stability ofup to 250°C, low absorption in thetelecommunication wavelengthsregions and the possibility to structurethe material by commonphotopatterning processes qualifypolymers of the ORMOCERä familyfor the manufacturing of highlyintegrated waveguide devices.The stacking process for realizingthe different layers of the fan-outstructure follows a successive schemeof spinning, photopatterning andheating steps. A key point for thedevice operation is an excellentwaveguide homogeneity regardingthe index distribution and the cross-sections. To this end, severalprocessing steps had to be optimized:

– The structures are sensitiveto exposure parameters likeexposure gap and time. The actualheight of the stack has to becarefully considered.

– Back reflection of light from thesubstrate during exposure has to beavoided. Otherwise scatteringeffects will occur and lead towaveguide broadening. The realexposure conditions would changefrom core layer to core layer independence on the changingstructure in deeper layers.

– Layers manufactured so far had tobe passivated prior to thepreparation of the following layer.If material diffuses into deeperregions, index gradients will appear,losses and cross-talk will increase.

The final technology scheme whichmeets the requirements mentionedabove is shown in Fig. 3.Before the preparation of ORMOCERälayers an UV-absorbing undercladding

Fig. 1:Design of fan-out structure, four stacked layersof single mode waveguides

Fig. 3:Technology scheme for the stacking process

Fig. 2:Waveguide after exposure and dissolving theunexposed material

Page 30: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

30 Fraunhofer IOF Jahresbericht 2000

is manufactured (a). This measureleads to precise waveguide cross-sections (Fig. 2) and a homogeneousindex distribution in the stack withoutany gradients in the cladding layers(Fig. 4).

The further technological steps(compare Fig. 3b-d) are:

– Spinning and curing of claddingmaterial (b)

– Spinning of waveguide layer (corematerial), photo-structuring in amask aligner by a proximityexposure (c) and washing out theunexposed uncured polymer

– Spinning of cladding layer andflood exposure (d)

– Continuation at step (b) afteractivation of the last surface by anoxygen plasma treatment andrepetition until four layers (compareFig. 5) are prepared

In conclusion, the developed newstacking technology enables for thefabrication of vertically stackedintegrated optics devices with highprecision. The demonstrated fan-outstructure represents passive circuitswithout any evanescent coupling ofwaveguides, neither horizontally norvertically. Decreasing of the height ofthe cladding layers and of thewaveguide spacings leads to couplingvia the evanescent fields in both trans-versal directions. Consequentially, thisis the formation of an array ofdirectional couplers. The fact that thedescribed fabrication process is alsoapplicable to these structures /2/proves its potential for future verticallyintegrated optoelectronic applications.

The authors wish to thank M. Popall,Fraunhofer Institute of SilicateResearch, Würzburg (Germany), forsupplying them with the ORMOCERmaterial.

References

/1/ C. Waechter, Th. Hennig,A. Braeuer, and W. Karthe:“Integrated optics towards thirddimension”, Proc. SPIE 3278(1998) 102

/2/ C. Waechter, Th. Bauer,M. Cumme, P. Dannberg,W. Elflein, Th. Hennig,U. Streppel and W. Karthe:„Active and Passive Componentsof 3D Integrated Optics“,Proc. SPIE 3936 (2000) 130

/3/ L. Eldada and L.W. Shacklette:”Advances in Polymer IntegratedOptics”, IEEE J. Sel. Topics inQuant. Electron. 6 (2000) 54

Fig. 5:Stack of 4 waveguides

Fig. 4:Stack of single mode waveguides according tothe technology scheme of Fig. 3

Page 31: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

31Fraunhofer IOF Jahresbericht 2000

Fig. 2:Beam shaping by microoptic elements (blue) ontop of VCSELs (gold) on a wafer scale

Arrays of vertical cavity surfaceemitting lasers (VCSELs) are availableas light source for various opticalsystems such as optical networks,parallel optical interconnects atonboard- and on-chip level(see Fig. 1), high speed printing,display systems and more.VCSELs are predestinate for use inarrays because of their verticalemission with low divergence and lowthreshold current /1/.UV moulding enables for thegeneration of micro-optic elementson top of a wafer equipped withVCSELs by a wafer scale process.The process requires only one singlealignment and replication step /2/.

Subject of the investigations aredesign, generation andcharacterization of microopticalelements directly on top of VCSELs ona wafer scale (see Fig.2).

The design calculations aim for lowestbeam divergence of the VCSELbeam in order to avoid crosstalkbetween neighboring channels.Another goal is to reduce wavefrontdeviations, which hedge refocusing.The collimation characteristics isdetermined by the present VCSELpitch (250 µm) and the laser N.A.(0.1 ... 0.2 according to the drivecurrent). It turns out that an optimumdistance between lens and VCSELis like 350 µm (Fig. 3), the corres-ponding curvature radius is 150 µm.This leads to a 55% illumination ofthe lens aperture which theoreticallymeans diffraction limitation and fullbeam power transmission. The beampropagation void of crosstalk islimited to 2,5 mm.The generationof the structure requires selectionof a suitable polymer materialand an appropriate uv-mouldingprocess.Thermal and mechanical stability,and optical characteristics liketransparency and stability of the

Integration of microoptics on waferswith vertical emitting lasers

G. Mann, P. Dannberg, W. Buß and M. Popall** Fraunhofer Institut Silikattechnik Würzburg ISC

refractive index are deciding factorsfor choosing a polymer whichembodies the microoptical structure.

A cooperative project with the ISCWürzburg /3/ discloses thatormocersä (organic-inorganiccopolymers) in combination withphotoinitiators are material classconvenient concerning processing,stability and optical demands.

The lifetime of the polymer structuremay decrease by duty in direct contactto the VCSEL emitter face. Absorptionof light leads to yellowing anddegradation which impairs the opticalperformance /4/. In order to test thelongtime stability time acceleration isimplemented by using much higherbeam power density than at theVCSELs emitter face. Furthermore, the

Fig. 1:Application of 2D VCSEL arrays in an paralleloptical interconnect at on-board-level

Fig. 4:The lifetime of different polymers dependson their composition, notable variations occur

VCSELs wavelength of 873 nm isdisplaced by 488 nm, which increasesthe absorption.

Depending on the polymer compo-sition the measured lifetimes spreadfrom seconds to hours, as Fig. 4shows. Estimation commits a resultinglifetime of 9 years for the favoritematerial combination, available fortemperature and humidity ina laboratory’s environment.

Fig. 3:The optical system consists of the VCSEL emitterface a) and the polymer lens b), which ischaracterized by its length c) and its curvatureradius d).

Page 32: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

32 Fraunhofer IOF Jahresbericht 2000

The generation of the microopticalstructure is realized by photopoly-merisation through a mask in combi-nation with uv-moulding usinga replication tool [2]. Optimizing theprocess achieves accurate surfacereplication, optical transparency andselective patterning. Selective pro-cessing allows to develop isolatedstructures, which are separated byfree space e.g. for electrical bonding.By applying an exposure regimefilamentary inhomogenities of therefractive index are suppressed, thegenerated structures in one- and two-dimensional arrays are shown in Fig. 5and Fig. 6. The replication isreproducible with a lens curvatureradius deviation of 2…5 µm.

The emission of a VCSEL arrayintegrated with microopticalstructures showed no intensitychanges after the replication processand following 1700 hours operation.The optical performance of the systemdisplays that proper alignmentbetween mask and substrate isfeasible. Fig. 7 shows the test setup.The residual beam spread is < 1°,which enables for transmissionwithout crosstalk over 2,5 mm.

References

/1/ Carl Wilmsen, Henryk Temkin,Larry A. Coldren: ”Vertical CavitySurface Emitting Lasers”, Cam-bridge University Press (1999) pp.334-412

/2/ P. Dannberg, L. Erdmann, R.Bierbaum, A. Krehl, A. Braeuer,E.B. Kley: „Micro-optical elementsand their Integration to glass andoptoelectronic wafers“, SpringerVerlag, Microsystem Technologies6 (1999) pp. 41-47

/3/ K. Rose, H. Wolter, W. Glaubitt.“Multifunctional acrylatealkoxysilanes for polymericmaterials”, Wat. Res. Symp. Proc.271 (1992) 731 pp.

/4/ Norman S. Allen, Michele Edge:„Fundamentals of PolymerDegradation and Stabilisation“,Elsevier Applied Science (1992)pp. 75-102

Fig. 5:Photopolymerisation process is controlled bya exposure regime which generates clear,mechanical stabile structures

Fig. 7:Test setup for 1D-array VCSELs withpolymer lenses, the lasers are bondedto a board

Fig. 6:Generation of isolated structures in arrays isthe most complicated application for selectivephotopolymerisation

Page 33: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

33Fraunhofer IOF Jahresbericht 2000

Introduction – problem description

It is quite difficult when using nor-mally fringe projection, triangulationor light sectioning 3-D-measurementtechniques to obtain a full-body view,i.e. to measure 360-deg around. Forthis, the sensor or the object have tobe moved into multiple, overlappingmeasuring positions so as to view theentire surface. The resulting pointclouds taken from the different viewsthen have to be merged intoa common coordinate system toobtain the final complete3-D view by time consuming matchingprocedures or the viewing positionshave to be known a-priori with a highaccuracy.

Our solution – measurementprinciple

At the IOF a concept of selfcalibrating3-D-measurement using structured-light illumination with a digital-lightprojection unit (DMD) has beendeveloped overcoming these problems/1, 2/. On the basis of this conceptmeasurement set-ups have beendeveloped, which have the abilityto obtain a full-body view withina selfcalibrating measurementprocedure, whereas the necessarymerging of the single views takesplace fully automatically and is donewithout any marker on the objectsurface, objects features, othermerging procedure or high accurateobject/sensor handling system.To get an automatically, selfcalibratingfull-body the following measurementcondition has to fulfil. Two or morecameras have to image the objectfrom the desired different views.Neighbouring cameras should haveoverlapping area of their viewingfields, see Fig. 1. During the measure-ment procedure it have to ensuredthat these neighbouring camerasmeasure phase values for ³ 2 pro-

jector positions, whereas from eachprojector position two sets of fringesystems rotated by 90° have toproject. These phase values in theoverlapping areas can be used likethe markers in photogrammetry tocalculate the orientation of theprojectors to each other by using abundle adjustment calculation. Thiscan be done step by step around thecomplete object. As a result one getdifferent single 3-D views within oneworld coordinate system. It should bepointed that because all of thecalculations are performed within oneworld-coordinate system, no furtherfitting/merging of the single viewshave to be performed to get a whole-body view. Because of that an errorbetween the overlapping views(patches) cannot occur i.e. ahomogeneous all-over-all accuracy isachieved.

On the basis of this strategy differentmobile and stationary arrangementshave been proposed.

A) Mobile camera – projectornetworkThe simplest arrangement consists ofone mobile projection unit and twomobile cameras, as shown in Fig. 2and Fig.3. Both of the camerascapture the image simultaneouslyhaving a small overlapping area, whileprojecting the two sets of fringesfrom at least two different positions.Then one of the cameras can changein its position to get an other view ofthe object. The projection of thefringes is now repeated from otherpositions. Subsequent the othercamera can change its position and afurther set of fringes have to project.These procedure can be repeated asmuch as necessary to get the wholebody measurement, i.e. one can “go”step by step completely around theobject. The calculation of all of thenecessary orientation parameters and3-D coordinates then takes place

Selfcalibrating 360-deg shape-measurement systems

G.Notni, M.Heinze, G.H.Notni and P. Kuehmstedt

Fig. 1:Basic camera – fringe projector arrangement forwhole body measurement.

Fig. 2:Mobile selfcalibrating camera – fringe projectornetwork for whole body measurement.

Fig. 3:Mobile camera-fringe projector network whilemeasuring the owl above the entrance of theFraunhofer IOF.

Page 34: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

34 Fraunhofer IOF Jahresbericht 2000

within one calculation after theconsumption of the measurementvalues. It should be pointed out thatno information of the position of theprojector(s) as well as of the camerasduring the whole measurement isnecessary.

B) Stationary measurementsystem – kolibri™A possible stationary self-calibratingmeasurement set-up for whole bodymeasurement – named ”kolibri”™ –according to the above concept isshown in Fig. 4 and 5 /3, 4/. Here theobject under measure is put ona holder which is mounted ona frame. At this frame the cameras(c1–c5, for example) are mountedso that the position of the cameraswith respect to the object are fixedduring the whole measurementprocedure.To get the necessary differentprojection directions for the self-calibration (i.e. at least two) theprojector P, illuminating theobject via the mirror m, is rotatedwith respect to the fixed object andcameras.

The procedure of data consumptionis the following one. At each rotation(projection) position the mentionedtwo grating sequences rotated by 90°are projected onto the object.All cameras capture these fringepictures simultaneously. On the basisof these fringe pictures at least4 phase values for each pixel of thecamera can be calculated. Using thesephase values, the 3-D-coordinates aswell as all of the orientationparameters are calculated.As described before each camerameasures its own single view (patch),whereby the different patchesautomatically fit together to the full-body view because they are measuredin the same world-coordinate system.

The following features of themeasurement system have beenrealized:

– measurement field:Æ 100–600 mm

– maximum number of simultaneousmeasured patches (cameras): 12

– maximum number of measurementpoints: 3 Mio.

– maximum number of measurementpoints per patch:250 000 (512 x 512 pixel)

– measurement accuracy:1/20 000 of the illuminated field< 20 µm standard deviation

– measurement time(with 12 cameras): 30 s–5 minFig. 4:

Schematic representation of a self-calibratingmeasurement system – kolibri.

Fig. 6:Schematic representation of a self-calibratingmeasurement system – kolibri-duo.

Fig. 5:View within the measurement system kolibri.

Page 35: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

35Fraunhofer IOF Jahresbericht 2000

The only restriction of the measure-ment set-up kolibri is that it is noteasily possible to measure an objectfrom the top and from beneath withinone measurement procedure, becauseonly one projection unit can be usedilluminating the object within one halfsphere.

C) Stationary measurementsystem – kolibri-duo™To solve the mentioned problem it isstraightforward to illuminate andobserve the object at the same timefrom the top and beneath. Theschematic arrangement of sucha measurement setup is shownin Fig. 6 – named kolibri-duo.

Measurement examples showing thepower of this system-concepts areshown in Fig. 7, 8 and 9.

Conclusions

The developed system-concept(s)ensure a high number of objectpoints, quick data acquisition, anda simultaneous determination ofcoordinates and system parameters(self calibration), making the systemcompletely insensitive to environmen-tal changes. Furthermore, there is nonecessity of any marker on the objectsurface and a subsequent matching ofthe single views is not required toobtain a full-body measurement.These all giving the possibility to usethe systems directly in a productionline.

Fig. 7:The owl above the entrance of the IOF (STL-dataset).

Fig. 9:Point-cloud of an automotive part measuredwith kolibri.

Fig. 8:Seat measured with kolibri (STL-data set).

References

/1/ Kirschner V., Schreiber W.,Kowarschik R., Notni G.,“Self-calibrating shape-measuringsystem based on fringeprojection”, Proc.SPIE (3102) p.5-13, 1997

/2/ Schreiber W., Notni G.“Theory and arrangements of self-calibrating whole-body three-dimensional measurement systemsusing fringe projection technique”Optical Engineering 39 (2000)S.159-169

/3/ Notni G., Schreiber W.,Heinze M., Notni G.H.“Flexible autocalibrating full-body3-D measurement system usingdigital light projection”Proc.SPIE 3824 (1999) S.79-87

/4/ Schreiber W., Notni G.“Vorrichtung zur Bestimmung derraeumlichen Koordinaten vonGegenstaenden”PCT/EP99/08272

Page 36: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

36 Fraunhofer IOF Jahresbericht 2000

Fig. 2c:brake drum: photo of the object

Motivation – problem description

Optical 3-D measurement methodsoften lack on the fact that somefaulty measurement points within the3-D points cloud appear, so called”scattered points”, which can stronglyinfluence the quality of the 3-D data.Normally available 3-D-shapemeasurement systems then usefiltering or complex mask operationsto reduce these faulty points.The problem is, that by these methodsneighbourhood relations between thedifferent measurement points areused yielding to an averaging and atthe end a ”bending” of the datapoints.We have developed a new methodusing only information’s on a singlepoint and not on their surroundingsfor a detection and automaticmasking of these faulty points whichutilised a consistence check method.

Method of solution

The basis of this method is that the3-D coordinates in the developed3-D-measurement systems /1, 2, 3/are calculated from an overestimatedequation system, i.e. that more than3 phase values can be used tocalculate the 3-D coordinates of asingle measurement point. Thedeveloped check consists on the

Correction of 3-D coordinatesusing consistence check

P. Kuehmstedt, M. Heinze, J. Gerber, and G. Notni

following procedure: At the first the3-D coordinates are calculated usingall phase values. The next step is abackward calculation of so-calledtheoretical phases based on thesecoordinates. The difference of themeasured phase values and thesetheoretical phases giving a phase errorfor each measurement. Then thecomplete set of all phase errors isnormalized. In the consistence testphase values whose normalized phaseerror is over a given limit arecancelled, i.e. they do not fit thisconsistence check and are notconsidered in further calculations.This procedure is repeated iterativelyuntil the single-phase errors are ina given limit.So faulty measurement points areremoved, especially values near thesurface of the measured object whichare not detected by usual filters.

Result

In the example we are showingon two different objects the effectof these algorithm. In both cases thechecked point clouds contain areduced number of inconsistent pointsand can be analysed more easily.Looking at the parameters of theconsistence check, the minimumnumber of valid phase measurementsis 3 in theory, but in practice,a suitable number of this parameteris 4 to 5 phase-values.The normalized relative phase errorshould by between 2.5 up to4 in maximum.With the method ”Consistence Checkof 3-D coordinates” one reduces thetotal number of measured points byabout 10 to 20%. In addition, theprogram offers the possibility tocalculate quality parameters (accuracyas a scalar value for one point) foreach data point and its coordinatecomponents (x, y, z) separately(accuracy of the 3 coordinates).

Fig. 1a:metal fitting: without consistence check – faultydata points

Page 37: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

37Fraunhofer IOF Jahresbericht 2000

Geometry parameters like angles anddistances of objects can be estimatedautomatically on the resulting pointcloud.

References

/1/ Schreiber W., Notni G.”Theory and arrangements of self-calibrating whole-body3-dimentional systems using fringeprojection technique”Optical Engineering 39 (2000)p. 159-169

/2/ Kowarschik R., Kuehmstedt P.,Gerber J., Schreiber W., Notni G.”Adaptive optical three-dimensio-nal measurement with structuredlight”Optical Engineering 39 (2000)p. 150-158

/3/ Notni G, Heinze M., Notni G.H,Kuehmstedt P.Selfcalibrating 360-degshape-measurement systemswithin this Annual Report

Fig. 2b:brake drum: with consistence check – reducedpoint cloud, no faulty data points;463442 à 408639 points equal 12% reduction

Fig. 1b:metal fitting: with consistence check – reducedpoint cloud, no faulty data points

Fig. 2a:brake drum: without consistence check – faultydata points

Page 38: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

38 Fraunhofer IOF Jahresbericht 2000

Besides surgical replacement fortreatment of aortic valve stenosis orinsufficiency sufficient alternatives stilllack. Due to high risks of open heartoperation especially in elderly andmulti-morbid patients a minimalinvasive therapeutically approachwould be favorable.A possible solution of these problemscan be seen in a transvascularimplantation of a so-called bio-valvewhich is made of porcine heart valveby chemical fixation. This bio-valve isattached to the distal end of a Nitinol-stent. The stent valve device can beimplanted with a catheter by foldingit to a diameter of 6 mm. The self-expanding stent deflates the bio-valvein an orthotopic position in the leftoutlet tract pushing the old valve intothe aortic vessel wall.A newly designed self-expandingNitinol- stent was designed as theresult of a cooperation of Friedrich-Schiller-University and Fraunhofer In-stitute in Jena. The Nitinol- stent wasdesigned to stabilize the bio-valveafter deflation in a physiologicalmanner. Its construction wasoptimized for high flexibility as well asstiffness to provide a optimumplacement in the outlet tract of thebeating heart.For correct placement of thecommissures the coronary ostialsshould be marked by guidingcatheters. Fluoroscopy and transe-sophageal echo are useful for optimalimplantation of the valve-stent device.

We tested the self-expanding stentvalve device in an artificial circulationmodel achieving the following results:

– no dislocation occurred up topressure load of > 200 mmHg

– maximum transvavular pressuregradient was < 22 mmHg underflow rate of 5 l/min

– leakage flow was < 500 ml/minunder pulsatile pressure load of120/80 mmHg

– diameter of the folded devicebelow 6.5 mm

Due to these promising results in vitrowe intend to perform animalexperiments with the self-expandingstent valve device.

References

/1/ H.R. Andersen, J. M. Hasenkam,L.L. Knudsen, US Patent 5,411,552

/2/ H.R. Andersen, J. M. Hasenkam,L.L. Knudsen,„Transluminal implantationof artificial heart valves“,European Heart Journal, 1992

/3/ H.R. Figulla, N. Eitge, M. Ferrari,„Konstruktion und in vitro Testungeiner perkutan implantierbarenAortenklappe“, Z Kardiol 85(Suppl 2, 1996): 161

Percutaneous transvascular aortic valve replacementwith a self-expanding stent-valve device

M. Ferrari*, I. Tenner*, H.R. Figulla*, C. Damm, and T. Peschel*Clinic of Internal Medicine, Friedrich-Schiller-University Jena, Germany

Fig. 2:Prototype of the stent-valve device

Fig. 1:Impantation of the stent-valve device

Page 39: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

39Fraunhofer IOF Jahresbericht 2000

Dr. Michel Têtu,Co-Director CIPI and Theme Leader,Photonics for Information Technology,Canadian Institute for PhotonicInnovation CIPI, Quebec

Vic DiCiccio,Vice-President Research, OntarioCentre of Excellence CITO, Canada

Richard Normandin,Director General IIT, National ResearchCouncil NRC, Institute forMicrostructural Systems IMS, Ottawa

John Deacon,Senior Mission RepresentativePhotonics, Industry Canada, Ottawa

Dr. Bill Bhaneja,Program Manager, Science andTechnology Program of the CanadianEmbassy in Germany, Berlin

Horimasa Kawai,P. E., Hitachi Chemical Co., Ltd.,Ichihara, Japan

Takeshi Okamoto,Matsushita Electric Works, Ltd.,Shizuoka, Japan

Toshitake Kitagawa,Toshiba Corporation, Yokohama,Japan

Mark Worthington,Vice President,Optical Disc Research & Development,Burstein Technologies,Inc., Irvine, CA, USA

Raj R. Barathur,Ph. D., Executive Vice President,Technology Integration, BursteinTechnologies, Inc., Irvine, CA, USA

David O’Bryan,Ph. D., Executive Vice President,Burstein Technologies,Inc., Irvine, CA, USA

Jorma Virtanen,Ph.D., Vice President & Director, ChiefScientist, Burstein Technologies, USA

Names, Dates and Activities

International Guests

Dr. Toshikuni Kaino,Tohoku University, Sendai, Japan

Dr. Naomichi Okamoto,Shizuoka University, Shizuoka, Japan

Dr. Nobutaka Tanigaki,NIMCR (Nat. Inst. of Materials andChemical Research), Ibaraki, Japan

Dr. Tetsuyuki Kurata,Mitsubishi Electric Corporation,Hyogo, Japan

Masatoshi Toda,Mitsubishi Rayon Co., LTD,Tokio, Japan

Dr. Nobuo Miyadera,Hitachi Chemical Co., LTD,Ibaraki, Japan

Dr. Lyong Sun Pu,Fuji Xerox Co., LTD, Kanagawa, Japan

Junji Yokoi,Japan Chemical Innovation Institute,Tokio, Japan

Prof. Colin Webb,Oxford Institute for Laser Science,Oxford, UK

Nicola Smoker,MA(Cantab)MIChemE Ceng MBA,Telford, UK

Dr. Geoff Hogan,Clarendon Laboratory, Oxford, UK

Antony Hurden,Scientific Generics Limited,Cambridge, UK

Dave Rimmer,Pilkington Optronics, Wales, UK

Dr. David Williams,DERA, Malvern

Dr. Gerry F. Lynch,President and CEO, PhotonicsResearch Ontario PRO,Toronto, Canada

Dr. Bernard S. Hockley,Principle Scientific Investigator,Toronto, Canada

Page 40: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

40 Fraunhofer IOF Jahresbericht 2000

Dr. Chang Kwon Hwangbo,Inha University, Korea,Dept. of Physics

Dr. I.V. Kozhevnikov,Lebedev Physical Institute, Moscov,Russia

Pascal Marlier,BIPE, France

Robert Breault,ProIncorporation, Optics ClusterArizona, USA

Prof. R. Bruch,University of Nevade, Reno, USA

Prof. C. E. Webb,Oxford Institute

Dr. Alexandre Gatto,ENSPM, LOSCM, Institut Fresnel,Marseille, France

Dr. Sergey Yulin,Kharkov State Polytechnic University,Kharkov, Ukraine

Mag. Georg Strauss,University Innsbruck, Innsbruck,Austria

Prof. Johann Pulker,University Innsbruck, Innsbruck,Austria

Tan Fong Hock,Singapore Productivity and StandardsBoard, Singapur, Singapur

Dang Xuan Cu,NACENTECH, Hanoi, Vietnam

Dr. Pham Hong Tuan,NACENTECH, Hanoi, Vietnam

Corentin Bresson,University Paris VI, France

Bernhard Schaffer,University Graz, Graz, Austria

Dr. Keith Bates,MIT Lincoln Lab, Lexington, USA

Dr. J.M. BennettNaval Air Warfare Center,China Lake, CA, USA

Dr. J. FerréUniversity Barcelona, Spain

Dr. Ch. PetitUniversity Paris VI, France

Co-operation with Institutes andCompanies in other Countries

Austria:University Graz, Prof. Leising

Ireland:Trinity College Dublin, Prof. W. Blau

France:CNC Cachan, Prof. Zyss

France:CEA Saclay, Prof. Nunzi

Italy:University “La Sapienze“,Dr. Michelotti

USA:CREOL Orlando, Prof. Stegeman

Sweden:ACREO Norköping, Prof. Robertson

Japan:Tohoku University, Prof. T. Kaino

Russia:Lebedev Institute Moscov,Prof. A.V. Vinogradov

Page 41: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

41Fraunhofer IOF Jahresbericht 2000

Memberships

A. Bräuer– Conference Program Committee

“Linear Optical Propertiesof Waveguides”, SPIE USA

– Conference Program Committee“Micromachining technologyfor Micro-optics”, SPIE USA

– Member of the AMA adviseryboard for “Optical Sensing”

– Referee for journal “AppliedOptics”

A. Duparré:– Topical Editor ”Applied Optics”,

Optical Thin Films– Assessor Board Member

of the Australian Research Council– Chair International Conference

”Optical Metrology Roadmapfor the Semiconductor, Optical,and Data Storage Industries”, SPIESymposium 2000, San Diego, USA

– Chair International Conference”Optical Metrology Roadmapfor the Semiconductor, Optical,and Data Storage Industries”, SPIESymposium 2001, San Diego, USA

– Program Committee MemberInternational Conference ”Opticaland Infrared Thin Films”, SPIESymposium 2000, San Diego, USA

– DIN-Normenausschuss NAFuO, AAO18 AK2, “Optische Komponentenund Werkstoffe”

– ISO-Committee Member ISO/TC172/SC 9/WG 6

R. Eberhardt:– DIN-Normenausschuss NAFuO,

AA F3, “Fertigungsmittelfür Mikrosysteme”

C. Gärtner:– Member of the „Cooperation

Network from Jena“– Member of the “OptoNet e.V.”

V. Guyenot:– Member of the Board of the

Scientific-Technical AdvisoryCommittee of the Fraunhofer-Society (Hauptkommissiondes Wissenschaftlich-TechnischenRats der Fraunhofer-Gesellschaft)

– Member of the Board of theScientific Club ”Ophthalmo-Innova-tion of Thuringia” (OpthalmoInnoThüringen e.V.)

N. Kaiser:– Member of Advisory Board

“Laser and Optoelectronics”– Member of the International

Program Committee “InternationalSymposium on Laser InducedDamage in Optical Materials”,Boulder, USA

– Chairman FDS Technical Committee„Thin films for optics andoptoelectronics“

– Member of Technical ProgramCommittee “8th Topical Meetingon Optical Interference Coatings”,Banff, Alberta, Canada

W. Karthe:– Speaker of the Fraunhofer Alliance

Surface Technology and Photonics– Scientific Advisory Board of

Jenoptik AG – Member– Scientific Advisory Board of the

Institute Microelectronical andMechatronical Systems – Member

– Board of Curators of the TechnicalCollege Jena – Member

– Board of Curators of theHermsdorf-Institute TechnicalCeramics – Member

– Advisory Board of the VDI-Competence Field of OpticsTechnologies – Member

– Scientific Board of AMA – Member– Experts Group German Agenda

Optical Technologies for the 21st

Century – Member– Board Member Journal Microsystem

Technology– Program Committee Member

Opto 2000 Congress

– Program Committee MemberMicro.tec 2000 Congress

– Program Committee MemberWorkshop Mikrooptik 2000

– Program Committee MemberAnnual Conference 2000 of theGerman Society for Applied Optics(DGaO)

– Program Committee ChairMicrotechnology Thuringia MTT2000 Conference

– Jury Member for Innovation AwardThuringia

– Study group Integrated Optics –Member

– Study group MicrosystemTechnology at VDI TZ IT Teltow

– Special Committee Microoptics ofGMM-Society

– Referee for Journal “Applied Physics“– Referee for AiF-Society– Referee for Thuringian Foundation

for Technology and InnovationPromotion (STIFT)

– Board Member of MicrotechnologyThuringia Association (MTT e.V.)

– Board Member of OptoNetAssociation (OptoNet e.V.)

P. Kühmstedt:– Association of the German Precision

Mechanics and Optical Industries(F+O Association), trade associationimaging&photo technology

G. Notni:– AMA association– Editorial Board “Zeitschrift für

Angewandte Gewässerökologie“– VDI/VDE-GMA board 3.32. “Optical

3D-measurement“– Association of the German Precision

Mechanics and Optical Industries(F+O Association), trade associationmedical technology

T. Possner:– DIN-Normenausschuss NAFuO,

AA O21, “Integrierte Optik”– ISO standardization committee

TC 172/SC 9 WG 7 (microlensarrays)

Page 42: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

42 Fraunhofer IOF Jahresbericht 2000

– Program Committee MOC/GRIN– Member of the European Optical

Society (EOS)

U. Schulz:– DIN-Normenausschuss NAFuO,

AA O2 AK3, “Umweltprüfungenfür optische Geräte”

R. Waldhäusl:– Referee for journal “Applied

Optics” and “Optical Engineering”– Bio Regio– Working group for chemical and

biological micro technique

Ch. Wächter:Program Committee“Integrated Optics Devices IV”,SPIE- The International Societyfor Optical Engineering

Special Events

Winter school optical thin films,02.- 03. March 2000 in Tabarz

Workshop of the DGM committee“Optical Thin Films“of the DGM and the FDS committee“Coatings for Optics andOptoelectronics”, 30 May 2000in Freiburg im Br.

Science Fair Participation

L.O.B. 200008.03. – 09.03., Berlin– Selfcalibrating optical

3-D-measurement system „Kolibri“– Optical 3-D-Digitizer– Beam transformation systems

for high power laser diode barsand stacks

– Polymeric microoptical components

Hannover Messe 200020.03. – 25.03., HannoverFhG – Fraunhofer Vision– Selfcalibrating optical

3-D-measurement system “Kolibri”FhG – Surface Technology– Coatings on polymers, interference

filters, laser mirrors, Fresnel lensesKompetenzzentrum-ZentrumCC UPOB e.V.– Reproduction of natural optical

nanostructures with interferencecoatings

Research Location Thuringia– Polymeric microoptical and

microfluidic components

OPTO/MTT 200009.05. – 11.05., Erfurt– Hybrid assembly of micro systems– Metrology system for Ion Projection

Lithography– Quality assesment using light

scattering techniques– Micro-optical elements– Beam transformation systems

for high power laser diode bars andstacks

– Polymeric micro-optical andmicrofluidic components

Control 200016.05. - 20.05., SinsheimFhG - Fraunhofer Vision– Selfcalibrating optical

3-D-measurement system „Kolibri“– Quality assesment using light

scattering techniques

ACHEMA 200022.05. – 27.05., Frankfurt/ Main– Bio-sensors– Polymeric microoptical and

microfluidic components

OPTATEC 200027.06. – 30.06., Frankfurt/Main– Assembly of micooptical systems– Metrology system for Ion Projection

Lithography– Quality assesment using light

scattering techniques– Microoptical elements and systems– Beam transformation systems for

high power laser diode bars andstacks

– Polymeric microoptical components

Micro and Nano-Engineering19.09. – 21.09., Jena– Precision systems for astronomy,

lithography and precisionmechanics

– Design and integrationof microassembly processesfor industrial applications

– Design and rapid prototyping ofmicrooptical elements and systems

Canadian International DentalCongress/Fair22.09. – 23.09., Toronto– ”Hint-El’s DentaCad System”

Conference and Exhibition onMicro & Nanoscale Technologiesfor the Biosciences28.11. – 30.11., Montreux– Microfluidic components

Euromold 200029.11. – 02.12., Frankfurt/ MainFhG - Rapid Prototyping– Selfcalibrating optical

3-D-measurement system “Kolibri”

Page 43: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

43Fraunhofer IOF Jahresbericht 2000

Patent Awards

19852149Meßanordnung zur simultanen,berührungsfreien Bestimmungder Koordinaten von Meßpunkten,der Orientierungsparameterdes Sensors und von Korrektur-parametern für die MeßwerteDr. G. Notni, Dr. W. Schreiber

19812981.5-09Vorrichtung zur Ausführunglinearer BewegungenB. Höfer, P. Pertsch

US 60550563D-Meßanordnung zur Ganz-körpererfassung und Einmesseneiner entsprechendenMeßanordnungP. Kühmstedt, Dr. G. Notni,Dr. W. Schreiber

19604255 C2Vorrichtung zur optischenErfassung beschleunigungs-und/oder neigungsbedingterBewegungen eines Körpersin einem MediumH. Kießling, Dr. M. Palme,(R. Baur, B. Link, H. Schiffl,K.-D. Wierzioch: TEMIC)

DE 44 04 608 C2Vorrichtung für Eingriffein eine röhrenförmige KörperhöhleG. Harnisch

6,151,168Optische Anordnungzur Symmetrierung der Strahlungvon LaserdiodenDr. P. Schreiber, (Dr. Poßner: GRINTECGmbH), (Dr. Göring: piezosystem jenaGmbH)

Patents Pending

00/36412Anordnung zur Strahlumlenkungin WellenleitergeometrienDr. Ch. Wächter,(Prof. Lederer; U. Peschel:Friedrich-Schiller-Universität Jena)

00/36273Vorrichtung zum Dispensieren undAuslesen doppelseitiger Arraysim CD-FormatProf. W. Karthe, Dr. R. Waldhäusl,Dr. A. Bräuer,(Dr. R. Kindervater: GeneDisc AG)

00/36232Abriebfeste Antireflex-beschichtung für KunststoffeDr. U. Schulz, Dr. N. Kaiser,(U. Schallenberg: mso)

00/36205Hochauflösendesein- und zweidimensionalesberührungsloses WegmesssystemDr. P. Schreiber, Dr. U. Zeitner,Dr. A. Bräuer, Dr. P. Dannberg,(Dr. Stegmüller, H. Brunner: OSRAM)

00/36204Substrat mit gering lichtstreuenderOberflächeDr. A. Duparré, Dr. G. Notni

00/36202Modenselektierende Phasen-strukturen für HalbleiterlaserDr. U. Zeitner,(Dr. R. Güther: FBH Berlin)

00/36167Verfahren und Vorrichtung zurberührungslosen Messung vonräumlichen Koordinaten mitvariabler Kamera undProjektoranordnungDr. G. Notni, M. Heinze

Patents

Page 44: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

44 Fraunhofer IOF Jahresbericht 2000

00/36036Verfahren zur Ausrichtungeines optischen Elementesin Bezug zur Rotationsachseeiner WelleDr. G. Kalkowski, St. Risse,G. Harnisch, A. Gebhardt

00/36034Vorrichtung zur Befestigung undVerankerung von Herzklappen-prothesenC. Weber, Dr. Th. Peschel, Ch. Damm,(Prof. H.-R. Figulla, Dr. M. Ferrari:Friedrich-Schiller-Universität Jena)

00/36007Verfahren zur gleichzeitigenErfassung von 3D-Form und Farbevon Objekten bei Beobachtungmit monochromen KamerasDr. G. Notni

00/36337Modularer mikrooptischerRaumlichtschalterDr. A. Bräuer, W. Buß, Prof. W. Karthe,Dr. P. Schreiber, Dr. Ch. Wächter

00/36086Abrissvorrichtungzur HaftfestigkeitsprüfungDr. U. Schulz, G. Harnisch, U. Schmidt

00/36069Sensorelement zur optischenDetektion von chemischenoder biochemischen AnalytenN. Danz, Dr. R. Waldhäusl

00/36050Methode zur Eliminierungbzw. Reduzierung des Einflussesvon Strukturen auf Oberflächenoder Schichten auf das Trans-missions- bzw. Reflexionsverhaltenvon ObjektenDr. A. Duparré, St. Gliech, J. Steinert,Dr. G. Notni

00/36049Sputtern von Schichtsystemenmit schichtdickenabhängigerSubstrat-BIAS-SpannungT. Feigl, Dr. S. Yulin, W. Stöckl,Dr. N. Kaiser

00/36040Thermisch stabile Mo2C/Si-Schichtsysteme für denEUV-SpektralbereichDr. S. Yulin, T. Feigl, Dr. N. Kaiser

00/36039Thermisch stabiles Schichtsystemzur Reflexion von Strahlungim extremen ultraviolettenSpektralbereich (EUV)Dr. S. Yulin, T. Feigl, Dr. N. Kaiser

00/36038Thermisch stabiles Schichtsystemzur Reflexion von Strahlung imextremen ultraviolettenSpektralbereich (EUV)Dr. S. Yulin, T. Feigl, Dr. N. Kaiser

Page 45: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

45Fraunhofer IOF Jahresbericht 2000

Diploma Theses

Helbig, Lars“Aufbau und Charakterisierungeines Messplatzes zurevaneszenten Feldanregungfluoreszenter Moleküle”,Fachhochschule Leipzig, 07/00

Haase, René”Aufbau und Charakterisierungeines Detektorsystems für dieFluoreszenzmessung mit einemPhotomultiplier auf der Basis derevaneszenten Feldanregung”,Fachhochschule Leipzig, 07/00

Rau, Sven-Tino“Untersuchung eines durchstimm-baren frequenzverdoppelten,diodengepumpten Mikrokristall-Laser für den Einsatz in der opti-schen Formvermessung mittelsSpeckleinterferometrie“,Fachhochschule Jena, 02/00

Munzert, Peter“Entwicklung eines Mikrowellen-Niederdruckplasmaprozesses zurOberflächenaktivierung vonPMMA“,Fachhochschule Jena, 02/00

Fischer, Rainer“Untersuchungen zu Farbwieder-gabeeigenschaften, Montage- undFügeprozessen sowie der Prüfungvon Mehrfach-CCD-Farbköpfen”,Fachhochschule Jena, 12/00

Müller, Sandra“Experimentelle Untersuchungenzur Charakterisierung vonaerodynamischen doppel-sphärischen Lagern”,Fachhochschule Jena, 11/00

Educational Activities

Steinkopf, Ralf“Entwicklung und Test einerHandhabungseinrichtung zurInspektion von Mikrobauteilen”,Fachhochschule Schmalkalden,11/2000

Thaut, Michael“Untersuchungen zur auto-matisierten Justage mittels Impuls-antrieben für die Feinwerk- undMikrotechnik”,Fachhochschule Jena, 12/00

Dissertations

Recknagel, Rolf-Jürgen, Dr. rer. nat.“Defekterkennung an Oberflächenmittels Waveletmethoden“,Friedrich-Schiller-Universität Jena,12/00

Uhlendorf, Christina, Dr. rer. nat.“Konfokale Mikroskopie mitphasenkonjugierendem Spiegel”,Friedrich-Schiller-Universität Jena,06/00

Feigl, Torsten, Dr. rer. nat.“Struktur und Eigenschaftenvon Schichtsystemen für denEUV-Spektralbereich“,Friedrich-Schiller-Universität Jena,10/00

Siebenhaar, Christian, Dr. rer. nat.“Präzisionsjustage durch Einlei-tung von mechanischen Impulsen”,Technische Universität Ilmenau,11/00

Page 46: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

46 Fraunhofer IOF Jahresbericht 2000

Scientific Publications

Publications

Apel, O.; Mann, K.; Heber, J.;Thielsch, R.:Nonlinear absorption phenomenain oxide coatings for 193 nmIn: Gregory J. Exarhos; Arthur H.Guenther; Mark R. Kozlowski;Keith L. Lewis; M. J. Soileau (eds.):Laser-Induced Damage in OpticalMaterials, Proc. SPIE vol. 3902,p. 235-241; Bellingham: SPIE, 2000;ISBN 0-8194-3508-2

Becker, H.; Gärtner, C.:Polymer microfabrication methodsfor microfluidic analytical applicationsIn: Electrophoresis 21 (2000),p. 12-26; ISSN 0173-0835

Becker, H.; Gärtner, C.:Mikrotechnik – Ein ganzer KosmosIn: CADWORLD 5 (2000), p. 72-73;Vaterstetten: IWT-Verlag,ISSN 1435-9766

Bosch, S.; Leinfeller, N.; Quesnel, E.;Duparré, A.; Ferré-Borrull, J.; Günster,S.; Ristau, D.:A new procedure for the opticalcharacterization of high qualitythin filmsIn: Al-Jumaily, G.A.; Duparré; A.;Singh, Bhanwar: Optical MetrologyRoadmap for the Semiconductor,Optical, and Data Storage Industries.SPIE Proc. vol. 4099, p. 124-130;Bellingham, Wash.: SPIE, 2000;ISBN 0-8194-3744-1

Buß, W.; Mohaupt, M.; Woldt, G.:Wafer level integration of micro-opticelements and photodiodes byassembly and structuring ofa glass-silicon wafer stackIn: Reichl, H. (Eds.): FhG-IZM: “SystemIntegration in Micro Electronics”,p. 311-318; Berlin: VDE-Verlag, 2000;ISBN 3-8007-2548-7

Dannberg, P.; Erdmann, L.; Krehl, A.;Wächter, C.; Bräuer, A.:Integration of optical interconnectsand optoelectronic elements onwafer-scaleIn: Materials Science in SemiconductorProcessing vol.3 (2000) no.5-6,p.437-441; ISSN 1369-8001

Dannberg, P.; Erdmann, L.;. Bierbaum,R.; Krehl, A.; Bräuer, A. Kley, E.B.:Micro-optical elements and theirintegration to glass and optoelectronicwafersIn: Microsystem Technologies 6(2000) 2, p. 41-47; ISSN: 0946-7076

Dannberg, P.; Mann, G.;Wagner, L.; Braeuer, A.:Polymer UV-molding for micro-opticalsystems and opto-electronic-integrationIn: Sing H. Lee, Eric G. Johnson:Micromachining Technology for Micro-Optics; Proceedings SPIE vol. 4179,p. 137-145; Bellingham,Wash.: SPIE, 2000;ISBN 0-8194-3835-9

Danz, N.; Waldhäusl, R.; Bräuer, A.:Novel Bio-Chips using integratedoptical waveguides for fluorescenceexcitationIn: Proceedings OPTO 2000.Optical Sensors & MeasuringTechniques; p.187-192;Wunstorf: AMA Service GmbH

Eberhardt, R.; Mohaupt, M.;Scheller, T.:Hybrid assembly of microopticalsystemsIn: Proceedings vol.1 MICRO.tec 2000:Applications, trends, visions;p.459-464;Berlin: VDE-Verlag, 2000;ISBN 3-8007-2579-7

Feigl, T.; Yulin, S.; Kaiser, N.;Thielsch, R.:Magnetron sputtered EUV mirrorswith high thermal stabilityIn: Elizabeth A. Dobisz (ed.): EmergingLithographic Technologies IV.SPIE Proc. vol. 3997, p. 420-430;Bellingham: SPIE, 2000;ISBN 0-8194-3615-1

Ferré-Borrull, J.; Duparré, A.;Quesnel, E.:Roughness and light scatteringof ion-beam-sputtered fluoridecoatings for 193 nmIn: Applied Optics vol. 39 (2000)no. 31, p. 5854-5864;ISSN 0003-6935

Ferré-Borrull, J.; Duparré, A; Steinert,J.; Ristau, D.; Quesnel, E:Microroughness analysis of thin filmcomponents for VUV applicationsIn: Al-Jumaily, G.A.; Duparré; A.;Singh, Bhanwar: Optical MetrologyRoadmap for the Semiconductor,Optical, and Data Storage Industries.SPIE Proc. vol. 4099, p. 82-90;Bellingham, Wash.: SPIE, 2000;ISBN 0-8194-3744-1

Frank, M.;. Kaiser, N.:Manufacturing technologiesfor miniaturized interference filtersIn: Microsystem Technologies 6(2000) 3, p. 77-81; ISSN: 0946-7076

Gärtner, C.; Becker, H.:CAD-Lösungen in der Mikro-technologie – Auf zu neuen UfernIn: CADWORLD 4 (2000), p. 24-25;Vaterstetten: IWT-Verlag,ISSN 1435-9766

Page 47: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

47Fraunhofer IOF Jahresbericht 2000

Gärtner, C.; Blümel, V.; Höfer, B.;Kräplin, A.; Poßner, T.; Schreiber, P.:Flexible microassembly setup foroptical beam transformation systemsfor high power diode laser bars andstacksIn: Proceedings vol.1 MICRO.tec 2000:Applications, trends, visions; p.39-42Berlin: VDE-Verlag, 2000;ISBN 3-8007-2579-7

Gärtner, C.; Blümel, V.; Höfer, B.;Kräplin, A.; Poßner, T.; Schreiber, P.:Assembly processes for micro-opticalbeam transformation systems for highpower diode laser bars and stacksIn: M. E. Motamedi; Rolf Goering:MOEMS and Miniturized Systems.SPIE Proceedings vol. 4178 (2000)p. 147-155; Bellingham, Wash.:SPIE 2000; ISBN 0-8194-3834-0

Gärtner, C.; Blümel, V.; Kräplin, A.;Poßner, T.:Micro-assembly processes for beamtransformation systems of high powerlaser diode barsIn: MST News 1 (2000), p. 23-24;Teltow: VDI/VDE-Verlag

Gatto, A.; Thielsch, R.; Kaiser, N.;et al.:Towards resistant UV mirrors at 200nm for free electron lasersmanufacture: characterizations,degradation testsIn: Alexander J. Marker, Eugene G.Arthurs: Inorganic Optical Materials II.SPIE Proc vol. 4102,p. 261-275; Bellingham: SPIE, 2000;ISBN 0-8194-3747-6

Gengenbach, U.; Eberhardt, R.:Montagelösungen für hybride Mikro-systemeIn: F&M – Feinwerktechnik,Mikrotechnik, Mikroelektronik vol.108 (2000) no.3, p. 40-43;ISSN 0944-1018

Gerber, J.; Notni, G.; Kühmstedt, P.:Von der Punktwolke zum StichmaßIn: Verein Deutscher Ingenieure (ed.):Bildverarbeitung im industriellenEinsatz(VDI Berichte, 1572), p. 79-86; Düssel-dorf: VDI-Verlag, 2000;ISBN 3-18-091572-2

Gilev, O.N.; Asadchikov, V.E.;Duparré, A.; et al.:X-ray investigation of a near surfacelayer of metal samplesIn: Al-Jumaily, G.A.; Duparré; A.;Singh, Bhanwar: Optical MetrologyRoadmap for the Semiconductor,Optical, and Data Storage Industries.SPIE Proc. vol. 4099, p. 279-289;Bellingham, Wash.: SPIE, 2000;ISBN 0-8194-3744-1

Gliech, S.; Steinert, J.; Flemming, M.;Duparré; A.:DUV/VUV light scatteringmeasurement of optical componentsfor lithography applicationsIn: Al-Jumaily, G.A.; Duparré; A.;Singh, Bhanwar: Optical MetrologyRoadmap for the Semiconductor,Optical, and Data Storage Industries.SPIE Proc. vol. 4099, p. 74-81;Bellingham, Wash.: SPIE, 2000;ISBN 0-8194-3744-1

Göring, R.; Wippermann, F.;Kubitz, K.; Dannberg; P.; Leibeling, G.;Bräuer, A.:Fiber optic switches using transmittivemicrooptical componentsIn: Proceedings vol.1 MICRO.tec 2000:Applications, trends, visions;p.115-119;Berlin: VDE-Verlag, 2000;ISBN 3-8007-2579-7

Kadkhoda, P.; Müller, A.; Ristau, D.;Duparré, A.; et al.:International round-robin experimentto test the International Organizationfor Standardization total-scatteringdraft standardIn: Applied Optics 39 (2000) 19,p. 3321-3332; ISSN 0003-6935

Kaiser, N.:Advances in optical interferencecoatingsIn: Proceedings OPTO 2000.Optical Sensors & MeasuringTechniques; p.25-29;Wunstorf: AMA Service GmbH

Kaiser, N.; Yulin, S.; Feigl, T.:Si-based multilayers with high thermalstabilityIn: W. M. Kaiser; R. H. Stulen:Soft X-Ray and EUV Imaging Systems.SPIE Proc. vol.4146,p. 91-100; Bellingham: SPIE, 2000;ISBN 0-8194-3791-3

Karthe, W.:Microoptical Componentsand SystemsIn: Proceedings Vol.1 MICRO.tec2000: Applications, trends, visions;p. 101-102;Berlin: VDE-Verlag, 2000;ISBN 3-8007-2579-7

Karthe, W.; Eberhardt, R.; Scheller, T.:Hybrid Integration of MicroopticalSystems – Step by Step to Wafer ScaleIntegrationIn: Proceedings EUSPEN – PrecisionEngineering and Microtechnology,p. 89-101; Voerde: Verlag Rhiem,2000; ISBN 3-926832-24-X

Kießling, H.; Hommel, B.; Müller, W.:The injection moulding of finestructurized optical surfacesIn: Proceedings vol.1 MICRO.tec 2000:Applications, trends, visions;p. 471-472; Berlin: VDE-Verlag, 2000;ISBN 3-8007-2579-7

Page 48: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

48 Fraunhofer IOF Jahresbericht 2000

Kowarschik, R.; Kühmstedt, P.; Gerber,J.; Schreiber, W.; Notni, G.:Adaptive optical three-dimensionalmeasurement with structured lightIn: Optical Engineering 39 (2000) 1,p. 150-158; ISSN 0091-3286

Kozhevnikov, I.V.; Asadchikov, V.E.;Bukreeva, I.N.; Duparré, A.; et al.:X-ray study of the roughness ofsurfaces and interfacesIn: Al-Jumaily, G.A.; Duparré; A.;Singh, Bhanwar: Optical MetrologyRoadmap for the Semiconductor,Optical, and Data Storage Industries.SPIE Proc. vol. 4099, p. 267-278;Bellingham, Wash.: SPIE, 2000;ISBN 0-8194-3744-1

Leinfeller, N.; Quesnel, E.; Duparré, A.;Ferré-Borull, J. ; et al.:Optical characterization of materialsdeposited by different processes: theLaF3 in the UV-visible regionIn: Michael L. Fulton: Optical andInfrared Thin Films. SPIE Proc vol.4094, p. 15-22; Bellingham: SPIE,2000; ISBN 0-8194-3739-5

Li, B.C.; Martin, S.; Welsch, E.;Thielsch R.; Heber J.; Kaiser N.:Pulsed top-hat beam thermal lens: asimple and sensitive tool for in situmeasurement on ultraviolet dielectriccomponentsIn: Gregory J. Exarhos; Arthur H.Guenther; Mark R. Kozlowski; Keith L.Lewis; M. J. Soileau (eds.): Laser-Induced Damage in Optical Materials,Proc. SPIE vol. 3902, p. 470-478;Bellingham: SPIE, 2000;ISBN 0-8194-3508-2

Pertsch, T.; Dannberg, P.; Elflein, W.;Bräuer, A.; Peschel, U.; Lederer, F.:Optical Wannier-Stark state beating inwaveguide arraysIn: Quantum Electronics and LaserScience Conference, OSA TechnicalDigest (Optical Society of America,Washington, DC, 2000), p. 92;ISBN 1-55752-607-9

Peschel, T.; Damm, C.; Heilemann, W.:Design of the science-fold mirrorsfor the Gemini TelescopesIn: Philippe Dierickx (ed.):Optical Design, Materials, Fabrication,and Maintenance, SPIE Proc vol. 4003,p. 436-441; Bellingham: SPIE, 2000;ISBN 0-8194-3628-3

Pfeil v., A.; Wyrowski, F.:Wave-optical structure design with thelocal plane-interface approximationIn: Journal of Modern Opticsvol. 47 (2000) no. 13,p. 2335 – 2350; ISSN 0950-0340

Pfeil v., A.; Wyrowski, F.;Drauschke, A.; Aagedal, H.:Analysis of optical elements with thelocal plane-interface approximationIn: Applied Optics vol. 39 (2000)no. 19, p. 3304-3313

Recknagel, R.-J.; Kowarschik, R.;Notni, G.:High-resolution defect detection andnoise reduction using waveletmethods for surface measurementIn: Journal of Optics A: Pure andApplied Optics vol. 2 (2000) no. 6,p. 538-545; ISSN 1464-4258

Schallenberg, U.; Jakobs, S.; Buß, W.:Spectral-sensitive on-chip masking ofSi-PIN-diodes using patterned andself-blocked optical coatingsIn: Michael L. Fulton:Optical and Infrared Thin Films.SPIE Proc. vol.4094; p. 1-6;Bellingham, Wash.: SPIE, 2000;ISBN 0-8194-3739-5

Schreiber, W.; Notni, G.:Theory and arrangements ofself-calibrating whole-bodythree-dimensional measurementsystems using fringe projectiontechniqueIn: Optical Engineering 39 (2000) 1,p. 159-169; ISSN 0091-3286

Schreiber, W.; Notni, G.:Selbsteinmessendes optisches3-D-Meßsystem mit Mehrbildverbandauf der Basis strukturierterBeleuchtungIn: W.-D. Prenzel (ed.): Jahrbuchfür Optik und Feinmechanik,47. Jahrgang; Berlin: Schiele & Schön,2000; p. 87-113; ISBN 3-7949-0645-4

Schulz, U.; Munzert, P.; Kaiser, N.:PVD Coating of plastics for opticalapplicationsIn: H. A. Meinmema, C.I.M.A. Spee,M.A. Aegerter (eds.): Proceedings ofthe 3rd International Conference onCoatings on Glass, p. 573-575;ISBN 0-90-901455-x

Schulz, U.; Schallenberg, U.;Kaiser, N.:Abrasion resistant antireflectioncoating for plasticsIn: Michael L. Fulton:Optical and Infrared Thin Films.SPIE Proc vol. 4094, p. 100-106;Bellingham: SPIE, 2000;ISBN 0-8194-3739-5

Steinert, J.; Gliech, S.; Wuttig, A.;Duparré, A.; Truckenbrodt, H.:Advanced Methods for surface andsubsurface defect characterization ofoptical componentsIn: Al-Jumaily, G.A.; Duparré, A.;Singh, Bhanwar: Optical MetrologyRoadmap for the Semiconductor,Optical, and Data Storage Industries.SPIE Proc. Vol. 4099, p. 290-298;Bellingham, Wash.: SPIE, 2000;ISBN 0-8194-3744-1

Page 49: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

49Fraunhofer IOF Jahresbericht 2000

Thielsch, R.; Feigl, T.; Kaiser, N.; et al.:Comparsion of the optical propertiesand UV radiation resistance of HfO2

single layers deposited by reactiveevaporation, IAD, and PIADIn: Gregory J. Exarhos; Arthur H.Guenther, Mark R. Kozlowski,Keith L. Lewis, M. J. Soileau (eds.):Laser-Induced Damage in OpticalMaterials; SPIE Proceedings vol. 3902,p. 182-193; Bellingham: SPIE, 2000;ISBN 0-8194-3508-2

Thielsch, R.; Gatto, A.; Heber, S.; Mar-tin, S.; Kaiser, N.:Comparative study of the UV-opticaland structural properties of SiO2,Al2O3, and HfO2 single layersdeposited by reactive evaporation, ionassisted deposition and plasma ionassisted depositionIn: Alexander J. Marker, Eugene G.Arthurs: Inorganic Optical Materials II.SPIE Proc vol. 4102, p. 276-288;Bellingham: SPIE, 2000;ISBN 0-8194-3747-6

Thielsch, R.; Heber, J.; Kaiser, N.;Martin, S.; Welsch, E.: Critical issueson the assessment of laser induceddamage thresholds of fluoridemultilayer coatings at 193 nmIn: Gregory J. Exarhos; Arthur H.Guenther; Mark R. Kozlowski;Keith L. Lewis; M. J. Soileau (eds.):Laser-Induced Damage in OpticalMaterials, Proc. SPIE vol. 3902,p. 224-234; Bellingham: SPIE, 2000;ISBN 0-8194-3508-2

Tittelbach, G.; Guyenot, V.; Palme,M.; Fischer, R.; et al.:Investigations into the Assemblyof Multi-CCD Prism Beamsplittersfor TV-CamerasIn: Proceedings OPTO 2000. OpticalSensors & Measuring Techniques,p. 43-48;Wunstorf: AMA Service GmbH, 2000

Wächter, C.; Bauer, Th.; Cumme, M.;Dannberg, P.; Elflein, W.; Hennig, Th.;Streppel, U.; Karthe W.:Active and passive componentsof 3D integrated opticsIn: Giancarlo C. Righini, SeppoHonkanen: Integrated Optics DevicesIV; Proceedings. SPIE vol. 3936,p. 130-138; Bellingham, Wash.: SPIE,2000; ISBN 0-8194-3553-8

Zeitner, U.D.; Wyrowski, F.:Consideration on the use of designfreedoms for resonator originatedbeam shapingIn: Dickey, F.M.; Holswade, S.C. (eds.):Laser Beam Shaping. SPIE Proceedingsvol. 4095 (2000), p. 69-73;Bellingham, Wash.: SPIE 2000;ISBN 0-8194-3740-9

Zeitner, U.D.; Wyrowski, F.;Zellmer, H.:External design freedom foroptimalization of resonator originatedbeam shapingIn: IEEE Journal of QuantumElectronics vol.36 (2000) 10,p. 1105-1109; ISSN 0018-9197

Page 50: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

50 Fraunhofer IOF Jahresbericht 2000

Lectures and Poster Sessions

Bernitzki, H.; Duparré, A.; Gliech, S.;et al.: Reflectance and scatter lossesof 157 nm HR-coatingsPoster: SEMATECH InternationalSymposium on 157 nm, 14-16November 2000, San Diego, CA, USA

Bräuer, A.; Gabler, T.; Elflein,W.; Hörhold, H.-H.:Nonresonant c(3)-nonlinearitiesin polyconjugated PPV-polymersinvestigated by waveguide methodsLecture: COST Meeting, June 2000,Patras, Greece

Bräuer, A.; Kießling, H.; Dannberg, P.:Replication of refractive and diffractiveoptical elementsLecture: EUSPEN-Seminar on PrecisionEngineering and Microtechnology,19-20 July 2000, Aachen, Germany

Bräuer, A.:Neuartige mikrooptische Modulebasierend auf UV-gestütztenHerstellungstechnologien inPolymerenLecture: Institutsseminar desMax-Born-Instituts, October 2000,Berlin, Germany

Bräuer, A.; Dannberg, P.; Mann, G.:Präzisionsmikrooptik in temperatur-stabilen PolymerenLecture: Workshop Mikrooptik,October 2000, Hagen, Germany

Brenner, K.-H.; Bähr, J.; Schmelcher,T.; Zeitner, U.D.:Design and fabrication of arbitrarynon-separable continous phaseelementsLecture: Topical meeting,18–22 June 2000, Quebec, Canada

Duparré, A.:Metrologie in Mikro- und NanotechnikLecture: Wissenschaftliche Tage derWestsächsischen Hochschule Zwickau,26 October 2000, Zwickau, Germany

Duparré, A.:Scatter measurement with 157 nmtechiquesLecture: Third International UV LaserSymposium for 157 nm, 1-2 Novem-ber 2000, Fort Lauderdale, USA

Duparré, A.; Kozhevnikov, I.; Gliech,S.; Steinert, J.; Notni, G.:Surface characterization of opticalcomponents for the DUV, VUV,and EUVLecture: MNE - InternationalConference on Micro- andNanoengineering 2000,18-21 September 2000, Jena,Germany

Duparré, A.; Notni, G.:Methoden zur Charakterisierungvon Oberflächen und SchichtenLecture: Fachseminar begleitend zur5. Optatec- International Trade Fairfor Optics and Optoelectronics, June2000, Frankfurt: Diffractive Optics andMicro Optics 2000, 18-22 June 2000,Quebec, Canada

Dannberg, P.; Bräuer, A.; Göring, R.:Replication for precise microopticalstructuresPoster: Conference on Micro- andNano-Engineering, September 2000,Jena, Germany

Eberhardt, R.:State of the art and futurerequirements for optical transparentadhesives in microoptics andoptoelectronicsLecture: IEEE-CPMT Workshop Poly2000; 4-5 December 2000,London, UK

Feigl, T.; Yulin, S.; Kaiser, N.:EUV-multilayers with high thermalstabilityPoster: 5th International Conferenceon the Physics of X-Ray MultilayerStructures, 5-9 March 2000,Chamonix, France

Feigl, T.; Lauth, H.; Yulin, S.;Kaiser, N.:Heat resistance of EUV multiolayermirrors for long-time applicationsLecture: MNE - InternationalConference on Micro- andNanoengineering 2000,18-21 September 2000, Jena,Germany

Ferrari, M.; Tenner, I.; Figulla, H.R.;Damm, C.; Peschel, T. Weber, C.:Percutaneous transvascular aorticvalve replacement with self-expandingstent valve deviceLecture: Konferenz SMIT 2000,6-9 September 2000, Gelsenkirchen,Germany

Gatto, A.:IOF UV mirrors and SR IrradiationLecture: Optics workshop “StorageRing Free Electron Laser at 200 nm”,Institut Fresnel - LOSCM, Marseille,07 July 2000, Marseille, France

Gatto, A.:UV-R-and T mappings for FELirradiated mirrorsLecture: Optics workshop “StorageRing Free Electron Laser at 200 nm”,Institut Fresnel - LOSCM, Marseille,07 July 2000, Marseille, France

Gatto, A.:Materials structural propertiesinvestiagtions on EBD and PIADirradiated UV mirrorsLecture: Optics workshop “StorageRing Free Electron Laser at 200 nm”,Institut Fresnel - LOSCM, Marseille,07 July 2000, Marseille, France

Gatto, A.:Hard UV Optics for Hostile Environ-ment - Materials - Design - IrradiationTestsLecture: School of Optics - CREOL,University of Central Florida, 23October 2000, Orlando, USA

Page 51: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

51Fraunhofer IOF Jahresbericht 2000

Gatto, A.; Kaiser, N.:Hard mirrors for Free Electron LaserLecture: Lawrence Livermore NationalLaboratory (LLNL), University ofCalifornia, 28 July 2000, Livermore,CA, USA

Gatto, A.; Kaiser, N.:Resistant UV mirrors for Free ElectronLasers, Manufacture – charcterizations– degradation testsLecture: X. International ConferenceNonresonant Laser-Matter interaction– NLMI-10, 21-23 August 2000,St. Petersburg, Russia

Gatto, A.; Kaiser, N.; et al.:Achromatic damage investigationson mirrors for UV-free electron lasersLecture: XXXII Annual Symposiumon Optical Materials for High PowerLasers, 16-18 October 2000, Boulder,CO, USA

Gatto, A.; Thielsch, R.:Realization of a double band mirrorat 220 nm and 380 nmLecture: Optics workshop “StorageRing Free Electron Laser at 200 nm”,Eindhoven University, Eindhoven,23 November 1999, The Netherlands

Gliech, S.; Duparré, A.; Notni, G.:Streulichtmessanordnung zur Unter-suchung von Oberflächen und Schich-ten für die Optik, Halbleitertechnik,Kunststoff- und MaterialverarbeitungPoster: 101. Jahrestagung der DGaO,13-17 June 2000, Jena, Germany

Guyenot, V.; Eberhardt, R.:Montage und Justierungmikrooptischer BauelementeLecture: InnovationskolloquiumUniversität Klagenfurt, 28 September2000, Klagenfurt, Germany

Kaiser, N.:Neue Anwendungsfelder optischerSchichtenLecture: Fachseminar begleitendzur 5. Optatec- International TradeFair for Optics and Optoelectronics,June 2000, Frankfurt, Germany

Kaiser, N.:Advances in optical interferencecoatingsLecture: OPTO 2000 – 4th InternationalConference and Exhibition onOptoelectronics, May 2000, Erfurt,Germany

Kaiser, N.:Vakuumgestützte Zukunftstechno-logien in der OptikLecture: Frühjahrstagungder Deutschen Physikalischen Gesell-schaft, 27-31 March 2000,Regensburg, Germany

Kalkowski, G., Risse, S., Harnisch, G.,Guyenot, V.:Electrostatic chucks for lithographyapplicationsPoster: MNE - InternationalConference on Micro- andNanoengineering 2000,18-21 September 2000, Jena,Germany

Karthe, W.:Microoptical Components andSystemsLecture: MICROtec 2000,25-27 September 2000, Hannover,Germany

Karthe, W.:Herstellung mikrooptischer Kompo-nenten und SystemeLecture: Mikrotechnische Produktion –quo vadis? Forschungszentrum Karls-ruhe, 29 November 2000, Karlsruhe,Germany

Karthe, W.:Montage mikrooptischer SystemeLecture: Workshop Optische Techno-logien für das 21. Jahrhundert,13-15 February 2000, Stuttgart,Germany

Kießling, H.:Replikation feinststrukturierteroptischer Oberflächen für diffraktiveund integriert optische ElementeLecture: Workshop OptischeTechnologien für das 21. Jahrhundert,13-15 February 2000, Stuttgart,Germany

Kuhlmann, T.:Beschichtungen für kurze und extremkurze WellenlängenLecture: Fachseminar begleitend zur5. Optatec- International Trade Fairfor Optics and Optoelectronics,June 2000, Frankfurt, Germany

Kuhlmann, T.; Feigl, T.; Yulin, S.;Kaiser, N.:Damage resistant Si-basedmultilayer mirrorsPoster: 2nd International Workshopon EUV-Lithography, 17-19 October2000, San Francisco, USA

Kühmstedt, P.; Heinze, M.;Schreiber, W.:Korrektur von 3-D Messdaten durchKonsistenzprüfungPoster: 101. Jahrestagung der DGaO,13-17 June 2000, Jena, Germany

Laux, S.; Bernitzki, H.; Klaus, M.;Lauth, H.; Kaiser, N.:Long time radiation resistant opticalcoatings for UV-Excimer laserapplicationsLecture: XXXII Annual Symposiumon Optical Materials for High PowerLasers, 16-18 October 2000,Boulder, CO, USA

Page 52: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

52 Fraunhofer IOF Jahresbericht 2000

Laux, S.; Bernitzki, H.; Lauth, H.;Kaiser, N.:Optische Schichten fürdie 248 nm-ExcimerlaseranwendungLecture: 101. Jahrestagung der DGaO,13-17 June 2000, Jena, Germany

Letzkus, F.; Butschke, J.; Eberhardt,R.; Mohaupt, M.; et al.:Manufacturing process of a measuringdevice for the pattern lock system inthe ion beam lithographyPoster: MNE - InternationalConference on Micro- andNanoengineering 2000, 18-21 Sep-tember 2000, Jena, Germany

Luthardt, R.; Kühmstedt, P.; Faust, A.:Girrbach-Dentaltechnik GmbH – CAD/CAM-Systeme in der ZahnmedizinLecture: Informationsveranstaltungfür Zahnärzte, 5 April 2000, Baunatal,Germany

Luthardt, R.; Holzhüter, M.;Kühmstedt, P.; Walter, M.:Digital 3D-measurements of thedimensional stability of gypsummaster castsPoster: International Associationof Dental Research, Central EuropeanDivision, 24-26 August 2000, Warsaw,Poland

Mohaupt, M.; Eberhardt, R.;Bär, M.; Kölbel:Vereinzeln und Ordnen vonMikrobauteilen aus dem SchüttgutLecture: 2. Öffentliches Statusseminarµfeed 2, 18 October 2000, Villingen-Schwenningen, Germany

Mohaupt, M.; Steinkopf, R.;Eberhardt, R., Bär, M.:Handhabungssystem zur Prüfungmikromechanischer KomponentenLecture: 2. Öffentliches Statusseminarµfeed 2, 18 October 2000, Villingen-Schwenningen, Germany

Notni, G.:Selbstkalibrierendes 3D-Messsystem“kolibri”Lecture: 5. IPA-Anwenderforum RapidProduct Development, 5-6 September2000, Stuttgart, Germany

Notni, G.:3-D Vermessung: Bedeutungfür die ZahnheilkundeLecture: BundesfachschaftstagungZahnmedizin – BuFaTa 2000,2-4 June 2000, Jena, Germany

Notni, G.; Duparré; A.:Oberflächencharakterisierung undSub-Surface- Defekterkennung anoptischen FunktionsflächenLecture: Optik-Kolloquium 2000,Institut für Technische Optik,23 February 2000, Stuttgart, Germany

Notni, G.; Reichel, F.:Design and application of LC, DMD,and laser projection systemsfor 3D-shape measurementLecture: 12th International Symposiumon Electronic Imaging, January 2000,San Jose, USA

Notni, G.H.; Notni, G.:Simultanes Erfassen der 3D-Form undFarbe mittels Streifenprojektion beiBeobachtung mit MonochromkamerasPoster: 101. Jahrestagung der DGaO,13-17 June 2000, Jena, Germany

Pertsch, T.; Dannberg, P.; Elflein W.;Bräuer, A.; Peschel, U.; Lederer, F:Temperature controlled beam steeringin polymer waveguide arraysLecture: International Symposiumon Optical Science and Technology,30 July - 4 August 2000, San Diego,CA, USA

Pertsch, T.; Glas, P.; Wrange, M.;Lederer, F.:An all fiber phase locking setup formulticore fiber lasersLecture: 2000 Conference on Lasersand Electro-Optics Europe,10-15 September 2000, Nice, France

Pertsch, T.; Glas, P.; Wrange, M.;Lederer, F.:An all fiber phase locking setup formulticore fiber lasersPoster: 2000 Conference on Lasersand Electro-Optics Europe,10-15 September 2000, Nice, France

Pertsch, T.; Peschel, U.; Lederer, F.:Wannier-Stark solitons in waveguidearrays with linear potentialLecture: NATO Advanced ResearchWorkshop ”Nonlinearity and Disorder:Theory and Applications”;2-6 October 2000, Tashkent,Uzbekistan

Peschel, T.; Damm, C.; Gebhardt, A.;Kirschstein, U.C.:Adjustment and mounting of stencilmasks for Ion Projection LithographyLecture: MNE - InternationalConference on Micro- andNanoengineering 2000,18-21 September 2000, Jena,Germany

Peschel, T.; Damm, C.; Risse, S.;Kirschstein, U.C.:Wafer stage assembly for IonProjection LithographyLecture: MNE - InternationalConference on Micro- andNanoengineering 2000,18-21 September 2000, Jena,Germany

Page 53: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

53Fraunhofer IOF Jahresbericht 2000

Pfeil v.; A.; Wyrowski, F.:Strukturdesign optischer Elementeunter Anwendung der Näherunglokaler ebener GrenzflächenLecture: 101. Jahrestagung der DGaO,13-17 Juni 2000, Jena, Germany

Recknagel, R.-J.; Kowarschik, R.;Notni, G.:Hochauflösende Defektdetektionmittels WavelettransformationLecture: 101. Jahrestagung der DGaO,13-17 Juni 2000, Jena, Germany

Schiek, R.; Elflein, W.; Pertsch, T.;Tünnermann, A.; Parameswaran,K.; Fejer, M.:Femtosecond all-optical switchingin a lithium niobate directional couplerwith cascaded nonlinearityLecture: Kauai Conference 2000,June 2000, Kauai, Hawaii, USA

Schreiber, P.; Freyhold v., T.:Strahlformoptik für Hochleistungs-Breitstreifenlaserdioden als Basiseiner hocheffizienten Pumpquellefür Faser- und MikrofestkörperlaserLecture: 101. Jahrestagung der DGaO,13-17 Juni 2000, Jena, Germany

Schreiber, P.; Zeitner, U.D.:Refraktive Strahlformer hergestelltdurch Laserlithographie undDiamond-TurningLecture: Workshop Mikrooptik 2000,28-29 September 2000, Hagen,Germany

Schreiber, P.; Zeitner, U.D.;Dannberg, P.:Design and Manufacturingof Refractive Beam Shaping ElementsLecture: International Conference onOptical Design and Fabrication 2000,15-17 November 2000, Tokyo, Japan

Schreiber, P; Dannberg, P.:LD-Liniengenerator mit einem Arrayasymmetrischer ZylinderlinsenLecture: 101. Jahrestagung der DGaO,13-17 June 2000, Jena, Germany

Schulz, U.:Beschichtung von Kunststoffenfür die OptikLecture: Fachseminar begleitendzur 5. Optatec- International TradeFair for Optics and Optoelectronics,June 2000, Frankfurt, Germany

Schulz, U.; Kaiser, N.;Schallenberg, U.:Plasma-IAD of abrasion resistantantireflection coatings on plasticsPoster: SPIE 45th Annual Meeting,30 July -04 August 2000, San Diego,CA, USA

Schulz, U.; Munzert, P.; Kaiser, N.:Surface modification of PMMA causedby glow discharge plasma ormicrowave plasma to improve coatingadhesionPoster: 7. International Conferenceon Plasma Surface Engineering,17-21 September 2000,Garmisch-Partenkirchen, Germany

Schulz, U.; Kaiser, N.:PVD Coatings of plastics for opticalapplicationsLecture: 3rd International Conferenceon Coatings on Glass,October/November 2000,Maastricht, The Netherlands

Steinert, J.; Ferré-Borrull, J.;Duparré, A.:Extending the capabilities of ScanningProbe Microscopy for microroughnessanalysis in surface engineeringLecture: 4th International Conferenceon the Development andTechnological Application of ScanningProbe Methods, SXM 4, 25–27 Sep-tember 2000, Münster, Germany

Steinert, J.; Gliech, S.; Duparré, A.:Rauheits- und Streulichtuntersu-chungen an Oberflächen und Schich-ten für den VUV-, EUV- und X-ray-BereichLecture: 101. Jahrestagung der DGaO,13-17 June 2000, Jena, Germany

Uhlendorf, K.; Notni, G. Kowarschik, R.:Auflösungserhöhung durch dieAusnutzung von Interferenzeffektenin konfokalen Mikroskopen mitphasenkonjugierendem SpiegelLecture: 101. Jahrestagung der DGaO,13-17 June 2000, Jena, Germany

Waldhäusl, R.; Danz, N.; Schmidt,K.; Vetter, D.:Planarer Bio-Chip auf der Basisintegriert-optischer WellenleiterLecture: 10. Heiligenstädter Kollo-quium, Technische Systeme fürBiotechnologie und Umwelt, October2000, Heiligenstadt, Germany

Wippermann, F.; Göring, R.; Kubitz,K.; Dannberg, P.; Leibeling, G.;Bräuer, A.:Fiber optic switches using transmittivemicro optical componentsLecture: MICROtec 2000, 25-27 Sep-tember 2000, Hanover, Germany

Yulin, S.; Feigl, T.; Kaiser, N.:Si-based multilayers with highthermal stabilityLecture: X. International ConferenceNonresonant Laser-Matter interaction– NLMI-10, 21-23 August 2000,St. Petersburg, Russia

Zeitner, U.; Wyrowski, F.:Nutzung von Designfreiheiten bei derresonatorinternen LaserstrahlformungLecture: 101. Jahrestagung der DGaO,13-17 June 2000, Jena, Germany

Zeitner, U.D.:Anwendungsbeispielediffraktiver OptikLecture: Institutsseminardes Heinrich-Hertz-Instituts,July 2000, Berlin, Germany

Page 54: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

54 Fraunhofer IOF Jahresbericht 2000

Page 55: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

55Fraunhofer IOF Jahresbericht 2000

The Fraunhofer IOF is located in theformer Carl Zeiss building called”Die Eule” (“The Owl”) on the cornerof Teichgraben and Leutragraben-Schillerstrasse, directly across from theGoethe Galerie shopping mall.

By Train

To avoid confusion, realize that Jenahas four railway stations or “Bahn-hof”: Westbahnhof, Saalbahnhof,Paradiesbahnhof and BahnhofGöschwitz.

If you take the Frankfurt/Main - Dres-den Intercity (IC) route, change trainsin Weimar and leave the train at Jena-Westbahnhof.

If you take the Berlin-München(Munich) Intercity (IC) route, leave thetrain at Jena-Paradiesbahnhof.

From both railway stations you willreach the Fraunhofer IOF after a shortdowntown walk of approximately fiveminutes.

By Car

Leave the A4 motorway (Autobahn)at the Jena-Göschwitz exit, and driveto the city on the B 88 road. Justbefore Paradies Bahnhof, a smallrailway station on the right, you getto a small roundabout, where youtake a slight left turn on toHaeckelstrasse. Proceed to the firsttraffic light and turn right on toSchillerstrasse. On Schillerstrasse youpass the main post office on the left,and after one more block you will findthe Fraunhofer IOF on the right handside on the corner of Teichgraben,directly across from the GoetheGalerie shopping mall. Garage parkingis available under the Goethe Galerie.

Directions to Fraunhofer IOF

By Airplane

From the Erfurt airport, followthe signs directing you to the A4motorway (Autobahn), exit Erfurt-Ost.On the A4 drive eastward (directionDresden). Leave the A4 at theJena-Göschwitz exit. Then followthe directions given above under“By Car”.

From the Halle/Leipzig airport, followthe signs directing you to the A9motorway (Autobahn). On the A9drive south (direction Munich) untilyou reach the Hermsdorfer Kreuzintersection, then turn right andfollow the A4 motorway westward(direction Erfurt). Leave the A4 atthe Jena-Göschwitz exit. Then followthe directions given above under“By Car”.

Page 56: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

56 Fraunhofer IOF Jahresbericht 2000

Fraunhofer InstitutAngewandte Optikund Feinmechanik

Page 57: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

57Fraunhofer IOF Jahresbericht 2000

Notizen

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Page 58: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

58 Fraunhofer IOF Jahresbericht 2000

Notizen

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Page 59: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

59Fraunhofer IOF Jahresbericht 2000

Imprint

EditingProf. Wolfgang Karthe

Technical supportAstrid Deppe

LayoutSatzstudio Sommer GmbH, Jena

PrintingDruckhaus Gera

Contact Person and Postal Address

Fraunhofer-Institutfür Angewandte Optik undFeinmechanik IOFDiplom Kauffrau Astrid DeppeSchillerstrasse 107745 JenaPhone +49 (0) 3641/ 807-203Fax +49 (0) 3641/ 807-610e-mail [email protected] http://www.iof.fhg.de

Microoptical beam shaperfor laser diodes

Micro groove structureof self-acting air-bearing

Selfcalibrating optical 3-D-measurementsystem “Kolibri“ with case

Plastics for opticalapplications

Page 60: Annual Report 2000 - Fraunhofer IOF...division multiplexing 25 Novel multilayer waveguide technology for optical fan-out structures 27 Integration of microoptics on wafers with vertical

60 Fraunhofer IOF Jahresbericht 2000