ansys optislang - dynardo gmbh...optimization hook ansys aim 1. define geometry_mass as objective 2....

31
1 Tutorial ANSYS optiSLang Optimization of a Steel Hook in ANSYS AIM

Upload: others

Post on 07-Apr-2020

35 views

Category:

Documents


0 download

TRANSCRIPT

1

Tutorial

ANSYS optiSLang Optimization of a Steel Hook in ANSYS AIM

2

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Optimization of a Hook

• How to change the hook, such that

the v. Mises stress will not exceed 300MPa,

• the mass will be as minimal as possible and

• certain geometry parameters will be within

predefined bounds?

Software recommendations:

• ANSYS AIM 17.2 or higher

• ANSYS Workbench optiSLang

plugin 5.2 or higher

3

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

DS_Angle (120-150°) DS_Thickness (15-25 mm) DS_Depth (15-25 mm) DS_LowerRadius (45-55 mm)

Optimization of a Hook

Design parameters

4

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Optimization of a Hook

Boundary conditions (in ANSYS AIM)

• F= 6000 N

• Fixed support

element size = 1.5mm

fixed support

Force F= 6000N

5

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Optimization of a Hook

Responses (in ANSYS AIM)

• For the objective and constraint condition the stress and mass are parameterized:

6

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Solver: ANSYS AIM

• Open the ready to use AIM project hook_AIM.wbpz

• Save the project in your project directory

1.

7

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Solver: ANSYS AIM

1. Open “Home”, “Units” and change Units to “Metric (kg,mm,s,°C,mA,mV)”

1.

8

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Sensitivity Analysis

1. Double-click on the sensitivity module to start a new sensitivity analysis

1. 1.

9

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Definition of Input Parameters

2.

1. Set Parameter type “Optimization” for all parameters

2. Specify the ranges of the geometry parameters

3. Press “Next”

1.

10

Optimization ● Hook ● ANSYS AIM

1. Define Geometry_Mass as objective

2. Multiply Geometry_Mass with 1e6 in the Expression field

(scale objective and constraint to the same order of magnitude)

3. Define a maximum stress

of 300 MPa as a constraint

4. Press “Next”

Tutorial ANSYS optiSLang © Dynardo GmbH

Definition of Objectives and Constraints

1.

2.

3.

4.

11

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Definition of Sampling Scheme

1. Keep the default Advanced Latin Hypercube Sampling (ALHS)

2. “Finish” the sensitivity wizard

1.

2.

12

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Running the Sensitivity Analysis

1. Start the sensitivity analysis

using “Update”

2. Now, the DOE is created in

the background and all designs

are calculated

3. Finally, the MOP is generated

1.

13

Optimization ● Hook ● ANSYS AIM

Results of the Sensitivity Analysis

• The approximation quality is excellent for both output variables

• The influence of the angle and the lower radius is relatively small

Tutorial ANSYS optiSLang © Dynardo GmbH

14

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Optimization using MOP

Link an optimization task to

the MOP box (Drag & Drop)

15

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Optimization using MOP

Alternative:

Transfer Data from MOP

to an Optimization Unit

16

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Optimization using MOP

• Parameters are linked automatically to the sensitivity system

• All parameters are automatically considered as non constant

• Press “Next”

17

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Optimization using MOP

1. “Import criteria” from the sensitivity system

2. Select “obj_Geomnetry_Mass” and “constr_Equivilent_Stress_max”,

press “OK”

3. Confirm criteria dialog with “Next”

1.

3.

2.

18

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Optimization using MOP

optiSLang helps you to find a suitable optimization algorithm. Support the

underlying (automatic) selection process with some additional information

about the solver and the problem itself.

1. Set the analysis status as “Preoptimized” (best design from Sensitivity)

2. Set the constraint violations to “Seldom”

3. Set failed designs to “None” (MOP gives always response values)

4. Set solver noise to “None” (MOP gives a smooth surface)

1.

2.

3.

4.

19

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Optimization using MOP

1. Suggested algorithm is NLPQL

2. Press “Finish”

1.

2.

20

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Optimization using MOP

1. Validation of the Best Design is default in the optimizer settings

2. Run the optimizer by using “Update” in the context menu

2.

1.

21

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Optimization using MOP

• The optimizer converges in a few iteration steps

• The responses and objective/constraints of the best design are verified

• Due to the global approximation the constraints of the best design may

be violated in the verification

Validate best design is very important for the optimization on the MOP

22

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Optimization using Direct Solver Calls

1. Drag a new optimization on the DOE of the sensitivity system

1.

23

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

1. Parameters are linked automatically to the sensitivity system

2. All parameters are automatically considered as non constant

3. Press “Next”

Optimization using Direct Solver Calls

24

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

1. Objectives and Constraints are linked automatically to the sensitivity

2. All Objectives and Constraints are automatically transferred

3. Press “Next”

Optimization using Direct Solver Calls

2.

3.

25

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

1. Use default settings at additional information page

2. Use Suggested algorithm ARSM

3. Press “Finish”

Optimization using Direct Solver Calls

2.

3.

1.

26

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

1. Run the optimizer

by using “Update”

in the context menu

1.

Optimization using Direct Solver Calls

27

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

• The ARSM converges to the global optimum

• In the post-processing the approximated and verified values of the

responses, objectives and constraints are indicated

Optimization using Direct Solver Calls

28

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Visualize the Optimal Design

1. Open the Workbench Design Table

2. Select the optimal design from the last optimization run

3. Use “Copy inputs to Current” to set input parameters to geometry

4. Update Geometry and visualize the results in the ANSYS AIM Study

2.

3.

29

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Visualize the Optimal Design

Optimal geometry Equivalent Stress

30

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

Initial vs. Optimal Design

Initial Design Optimal Design

Mass = 752g Mass = 612g

Equivalent Stress = 459,9 MPa Equivalent Stress = 299,9 MPa

31

Optimization ● Hook ● ANSYS AIM

Tutorial ANSYS optiSLang © Dynardo GmbH

If you have any questions belonging this tutorial do not hesitate to contact

[email protected]

phone +49 (0) 3643 9008-32