“lagring av solenergi” - chalmers · “lagring av solenergi” kasper moth- poulsen, phd,...

27
“Lagring av Solenergi” Kasper Moth-Poulsen, PhD, FoAss Chalmers University of Technology, Sweden Giacomo Ciamician The Photochemistry of the FutureScience 1912 “With the relatively small reserves of coal that the past geological epoch have stored for us, it will never be desirable to produce from coal what nature generously offers us through solar energy.”

Upload: others

Post on 30-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • “Lagring av Solenergi”

    Kasper Moth-Poulsen, PhD, FoAss Chalmers University of Technology, Sweden

    Giacomo Ciamician “ The Photochemistry of the Future” Science 1912

    “With the relatively small reserves of coal that the past geological epoch have stored for us, it will never be desirable to produce from coal what nature generously offers us through solar energy.”

  • Okonventionel Solenergilagring

  • • We have limited resources, for a growing population

    • The resources we have will run out during the next 50-100 years

    • If we use the fossil fuels we have, we will see major climate, health and ecological effects on earth

    • We need to invest in renewable energy… • We need to develop renewable energy

  • https://www.mm.dk/guide-to-sustain

  • Giacomo Ciamician “ The Photochemistry of the Future” Science 1912

    “With the relatively small reserves of coal that the past geological epoch have stored for us, it will never be desirable to produce from coal what nature generously offers us through solar energy.”

  • Fornybar Energy mix Tyskland 1990-2011

  • Vad är problemen?

    V-164

    I dagsläget installers 36 MW sol panel värje månad I Danmark. 1000 MW förväntas installerad i 2020 (5 gånge urspungligt mål) Målet för hålbar energiproduktion är 35 percent renewable power production (2020) and 100 percent (i 2050). I dagsläget blir 20% av Danmarks el producerad från fornybar energikäl.

    Vi behöver utvekla effektiva energi lagringsmetoder för att kunna producera energi när vinden inte bläser eller solen inte skinner

  • Kemisk Solenergilagring

    Biological Systems (photosynthesis)

    Artificial Photosynthesis Water Splitting

    Molecular Solar Thermal (MOST)

    CO2 and H2O to C6H12O6

    H2O to H2 and O2

    CO2 and H2O to CH3OH

    Molecule to Molecule*

  • Molecular Solar Thermal • Solar Energy Storage • “closed cycle” = 0 emission • Long Term Energy Storage (months-years) • Energy Density Comparable to that of Batteries (but heat)

  • MOST: basic concepts

  • Moth-Poulsen, K., Ćoso, D., Börjesson, K., Vinokurov, N., Meier, S., Majumdar, A., Vollhardt, K.P.C., Segalman, R. A., Energy Environ. Sci. 5, 8534-8537, 2012.

    Molecular Solar Thermal Device

  • Solar Lamp (AM 1.5)

    Liquid Collection

    Outlet

    Inlet

    Syrringe pump

    Microfluidic

    Solar Collector Device

    Moth-Poulsen, K., Ćoso, D., Börjesson, K., Vinokurov, N., Meier, S., Majumdar, A., Vollhardt, K.P.C., Segalman, R. A., Energy Environ. Sci. 5, 8534-8537, 2012.

  • Irradiated area ≈ 6.51 cm2

    Moth-Poulsen, K., Ćoso, D., Börjesson, K., Vinokurov, N., Meier, S., Majumdar, A., Vollhardt, K.P.C., Segalman, R. A., Energy Environ. Sci. 5, 8534-8537, 2012.

  • 1

    Thermocouple

    Catalyst

    UHV chamber

    Thermocouple

    Run gram scale, Temperature rise limited by turn over number (TON) of catalyst, ≈ 15-20

    0 100 200 300

    0.0

    0.5

    1.0

    Tem

    pera

    tur r

    ise /

    K

    Time / s

  • Problem: Solar Spectrum Match

  • Photon up-conversion Energy increase

    In Out

  • The benchmark system

    Sensitizer (S): PdOEP (Palladium porphirin)

    Annihilator (A): DPA (9,10-diphenylanthracene)

    S + hν1 1S* 3S* TET

    3A* A TTA

    S + hν1 1S* 3S* TET

    3A* A TTA

    A + 1A* A + hν2

    hν1 < hν2

    2 hν1

    1 hν2

    TET = Triplet Energy Transfer TTA = Triplet-Triplet Annihilation

    Haefele, A., Blumhoff, J., Khnayzer, R. S. & Castellano, F. N. Getting to the (Square) Root of the Problem: How to Make Noncoherent Pumped Upconversion Linear. J. of Phys. Chem. Let. 3, 299–303 (2012).

  • Photon up-conversion vi triple-triplet annihilation

    Since the process is dependent on the population of triplets, the typical thing to do is to hit it with a big fat LASER

  • Pd Porphine

  • TTA up-conversion device for solar fuel production

    400 mm2 irradiated area

  • Device Performance: 130% energy conversion improvement (for λ >495 nm )

    Börjesson, Dzebo, Albinsson, Moth-Poulsen „Photon Upconversion Facilitated Molecular Solar Thermal Energy Storage” (submitted)

    With up-conversion

    Without up-conversion

  • Summary of MOST work 2012

    • Constructed first full-cycle demonstration device • Constructed device that utilizes photon up-conversion

  • Peter Vollhardt Rachel Segalman Dusan Coso Nikolai Vinokurov Zongrui Hou Charles. B. Harris Justin Lomont

    Post doc grant Danish Agency for Science, Technology and Innovation Chalmers Materials, Nano and Energy Area of Advance Swedish Research Council (VR)

    Kasper Moth-Poulsen Karl Börjesson Anders Lennartsson Victor Gray Bo Albinsson Damir Dzebo

    Chalmers

    MIT

    Funding:

    Arun Majumdar

    Berkeley

    Argonne

    Jeff Grossman Yosuke Kanai (now Univ N. Carolina)

    Lin X. Chen Son Nguyen Di-Jia Liu Michael Harpham

    Per-Ola Norrby

  • Victor Gray

    Anders Lennartsson Karl Börjesson Yuri Diaz-Fernandez

    Amaia Diaz de Zerio Tina Gschneidtner

    Alireza Movahedi

    Funding: Chalmers Materials, Energy and Nano AoA’s Swedish Research Council (Vetenskapsrådet)

  • Thank you!

    “Lagring av Solenergi”Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Kemisk SolenergilagringMolecular Solar ThermalSlide Number 11MOST: basic conceptsSlide Number 13Slide Number 14Slide Number 15Slide Number 16Problem: Solar Spectrum MatchPhoton up-conversionThe benchmark systemPhoton up-conversion vi triple-triplet annihilationSlide Number 21Slide Number 22Slide Number 23Summary of MOST work 2012Slide Number 25Slide Number 26Slide Number 27