apostila_aulas_praticas

Upload: planeri

Post on 09-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 apostila_aulas_praticas

    1/67

    ELETRNICA IV

    Apostila de Aulas Prticas

    Autor: Fernando Antnio Pinto Barqui

  • 8/7/2019 apostila_aulas_praticas

    2/67

    2

    Sumrio

    1. INTRODUO..............................................................................................................................3

    2. AMPLIFICADOR PUSH-PULL COM SADA COMPLEMENTAR.................................. 4

    3. AMPLIFICADOR SINTONIZADO ............................................................................................ 7

    4. MODULADOR DE AMPLITUDE.............................................................................................10

    5. MULTIPLICADORES ANALGICOS....................................................................................12

    6. MODULADOR DE FREQNCIA .......................................................................................... 14

    7. FONTES CHAVEADAS .............................................................................................................16

    DATASHEETS................................................................................................................................. 20

  • 8/7/2019 apostila_aulas_praticas

    3/67

    3

    1. INTRODUOO contedo desta apostila consiste das aulas experimentais do curso de Eletrnica IV, ministrado no

    Departamento de Eletrnica da Escola de Engenharia. Cada captulo corresponde a um experimento a ser

    montado e estudado em laboratrio. Esses experimentos foram, ao longo dos anos, sendo aprimorados

    didaticamente, de forma a apresentar ao aluno a constatao experimental dos conceitos bsicos, e essenciais,

    estudados na disciplina terica. Tambm so fornecidos todos os manuais dos componentes usados nos

    experimentos, disponibilizando ao aluno todas as informaes necessrias realizao dos projetos.

  • 8/7/2019 apostila_aulas_praticas

    4/67

    4

    2. AMPLIFICADOR PUSH-PULL COM SADA COMPLEMENTAR

    ASSUNTOProjeto de um amplificador de potncia, classe AB, com transistores de sada em simetria com-plementar.

    OBJETIVOFamiliarizar o aluno com as condies de operao e caractersticas particulares do circuito.

    PROJETO

    Fase 1- Projete o circuito da Figura 2.1 obedecendo as seguintes especificaes:

    1 - Potncia C.A. de sada de 1W.

    2 - Carga de 8.

    3 - Eficincia superior a 40%.

    4 - Freqncia de corte inferior menor que 50Hz.

    5 - Ganho de tenso o maior possvel.

    6 - Considerar nos clculos os transistores: TIP29C, TIP30C, BC547 e BC557.

    Consideraes:

    1 - Calcule os ganhos de tenso e potncia.

    2 - Mostre que a eficincia mxima real do estgio de sada dada por:

    =V

    V

    op

    cc4onde Vop a tenso de pico de sada.

    3 - Explique a funo dos seguintes componentes do circuito: R1, R2, D1, D2, D3, D4, C2 e C5.

    4 - Considere R1=R2=0.5.

    5 - Ajuste P1 at obter a tenso DC no ponto A igual a zero.

    Medidas:

    1 - Medir a polarizao aps os ajustes necessrios.

    2 - Medir os ganhos de tenso e de potncia.

    3 - Medir e traar o grfico de resposta em freqncia.

    6 - Medir a eficincia do circuito para a mxima tenso de sada, sem saturao.

  • 8/7/2019 apostila_aulas_praticas

    5/67

    5

    7 - Curto-circuitar os pontos B e C, e observar as alteraes na forma de onda de sada. Explicar estas

    alteraes.

    Fase 2- Projete o circuito da Figura 2.2 obedecendo as seguintes recomendaes:

    1 - Conservar os valores dos componentes calculados para o circuito da Figura 2.1, exceto o capacitor

    C1.

    2 - Identificar o tipo de realimentao empregada.

    3 - Calcular R6 para se obter um ganho de tenso realimentado de 4. Este ganho necessrio para que

    um sinal de entrada com 1V de amplitude produza potncia mxima na sada do amplificador. Esta

    uma especificao comum aos amplificadores de potncia comerciais.

    4 - Recalcular C1 para manter a freqncia de corte inferior menor que 50Hz.

    Medidas:

    1 -Medir a tenso DC no ponto A e comparar com a da Fase 1.

    2 - Medir o ganho de tenso.

    3 - Medir e traar o grfico de resposta em freqncia.

    6 - Curto-circuitar os pontos B e C, e observar as alteraes na forma de onda de sada. Comparar com o

    observado na Fase 1.

    Fase 3- Projete o circuito da Figura 2.4 obedecendo as seguintes recomendaes:

    1 - Monte o circuito da Figura 2.3 (a) utilizando um microfone de eletreto e um resistor R10=10k.

    2 - Fale ao microfone e observe a amplitude mxima do sinal AC em VMic.

    3 - Com a tenso VMic, projete o pr-amplificador da Figura 2.3 (b) de tal forma a se obter uma tenso

    mxima Vpr=1V e freqncia de corte inferior menor que 50Hz. Conecte o pr-amplificador ao

    amplificador da Fase 2, conforme a Figura 2.4, substitua a carga RL por um alto-falante de 8, faleao microfone e relate suas impresses.

    Figura 2.1: Amplificador Push-Pull.

  • 8/7/2019 apostila_aulas_praticas

    6/67

    6

    Figura 2.2: Amplificador Push-Pull com realimentao.

    Figura 2.3: Microfone de eletreto. a) Polarizao. b) Microfone mais amplificador.

    Figura 2.4: Amplificador Push-Pull mais microfone de eletreto.

  • 8/7/2019 apostila_aulas_praticas

    7/67

    7

    3. AMPLIFICADOR SINTONIZADO

    OBJETIVOEstudo de um amplificador sintonizado e sua aplicao como amplificador seletivo, multiplicador de

    freqncias e conversor.

    ESPECIFICAESProjetar um amplificador sintonizado, tomando por base, a Figura 3.1, com as seguintes

    caractersticas:

    1 - Vcc = 12V.

    2 - Freqncia da portadora ( ( )ec kHz i c = 400 ).

    3 - Ganho de tenso( )( )

    Aec

    ecV

    o c

    i c

    =

    20 .

    4 - Seletividade igual a 10.

    PROCEDIMENTOS

    1 - Medida das relaes de espiras das bobinas.

    2 - Medidas dos fatores de Qualidade e de LX, segundo o esquema abaixo.

    onde:

    Cv uma dcada capacitiva;

    Cp a capacitncia parasita, que inclui a capacitncia do osciloscpio, da fiao, residual da dcada e da

    prpria bobina;

    ( )o

    v pC C=

    +

    1

    Lx

    Fazer as medidas de Lx em dois valores, o1 e o2, em torno de c, de

    modo que seja anulada a capacitncia Cp.

    - Medida de Qb.

  • 8/7/2019 apostila_aulas_praticas

    8/67

    8

    V = VZ( )

    R + Z( )o i

    s o

    o

    Z( ) = LQo b o (Qb >> 1)

    Dados Vi e Rs medir Vo mximo com o osciloscpio (ponta atenuadora) e calcular ( )Z o .

    3 - Calcule os componentes para atender as especificaes dadas;

    4 - Calcule a seletividade do circuito;

    5 - Responda:

    Qual o sinal observado na sada quando a entrada:

    - for um sinal senoidal de 400kHz;

    - for um sinal senoidal de 200kHz;

    - for um sinal senoidal de 133kHz;

    - for um sinal senoidal de 800 kHz;- for um sinal quadrado de 200kHz;

    - for um sinal quadrado de 133kHz;

    - for um sinal quadrado de 10kHz;

    6 - Monte o circuito e compare os valores previstos e calculados com os medidos.

    Medidas:

    - o ganho mximo em c;

    - a curva de resposta, assinalando os pontos de meia potncia;

    - a seletividade;

    - os sinais de sada de acordo com as entradas especificadas no item 5;

    - explique os resultados;

    - faa as observaes que julgue necessrias;

    7 - No circuito j montado, aplique base outro gerador de sinais, conforme a Figura 3.2.

    - atravs do gerador G1 um sinal de 800kHz;

    - atravs do gerador G2 um sinal de 1200kHz;

    8 - Qual o sinal que ser observado na sada (sobre RL)?

    9 - Comente e apresente as explicaes tericas para o observado.

  • 8/7/2019 apostila_aulas_praticas

    9/67

    9

    Figura 3.1: Amplificador sintonizado.

    Figura 3.2: Amplificador sintonizado como mixer.

  • 8/7/2019 apostila_aulas_praticas

    10/67

    10

    4. MODULADOR DE AMPLITUDE

    OBJETIVOEstudo de um circuito Modulador de Amplitude (AM).

    ESPECIFICAESProjetar um circuito Modulador de Amplitude, tomando por base, o circuito da Figura 4.1, de forma

    a atender as especificaes abaixo:

    1 - Freqncia da portadora igual a 400kHz.

    2 - Freqncia de corte inferior, para o sinal modulador, de 50Hz.

    3 - Freqncia de corte superior, para o sinal modulador, de 5kHz.

    PROCEDIMENTOS

    1 - Mea a indutncia L da bobina, sua relao de espiras e seu fator de qualidade Qb.

    2 - Calcule os capacitores C1 e C2 para que o circuito oscile na freqncia de 300kHz.

    3 - Calcule R1, R2, P, C3, C5 de forma a atender os itens 2 e 3 das especificaes.

    4 - Mostre que para se obter simetria nos ciclos positivo e negativo do sinal modulado Vo(t),

    necessrio que a resistncia equivalente no coletor de Q2 seja R VI

    eqcc

    cq

    =2

    . Calcule Ro para se obter

    Req.

    5 - Calcule C4 de tal forma que: na freqncia da portadora o capacitor seja um curto-circuito; nas fre-

    qncias moduladoras o capacitor seja um circuito aberto.

    MEDIDAS

    1 - Mea a freqncia da portadora.

    2 - Com um sinal de entrada de 1kHz, ajuste sua amplitude para um ndice de modulao de 50% e

    esboce o sinal de sada Vo(t) para as formas de onda quadrada, senoidal e triangular.

    3 - Mea o maior ndice de modulao que pode ser obtido sem que haja distoro no sinal de sada.

  • 8/7/2019 apostila_aulas_praticas

    11/67

    11

    Figura 4.1: Modulador de amplitude.

  • 8/7/2019 apostila_aulas_praticas

    12/67

    12

    5. MULTIPLICADORES ANALGICOSOBJETIVO

    Familiarizar o aluno quanto s tcnicas de multiplicao de sinais analgicos variantes no tempo e

    sua aplicao como moduladores em amplitude com e sem portadora, detectores sncronos, detectores defase, dobradores de freqncia, extratores de raiz quadrada, etc.

    INTRODUODurante muito tempo a multiplicao analgica foi conseguida atravs de vrias tcnicas como:

    - mtodo do quadrado da soma usando dispositivos no lineares que apresentem caractersticas

    quadrticas, predominantes ou no, como FETs, diodos ou transistores de juno, seguidos de

    filtros passa-faixa.

    - mtodo do quadrado da soma balanceada, usando os mesmos dispositivos anteriores, mas em cir-cuitos onde a portadora suprimida (mais de 40dB) ou reduzida (mais de 20dB). Em baixas fre-

    qncias pode-se simular um dispositivo com caractersticas quadrticas com operacionais e redes

    de realimentao providas de resistores e diodos em srie. Para cada tenso de entrada o ganho

    ser diferente e aproximao por partes poder ser quadrtica.

    - mtodo da modulao por largura de pulsos.

    - mtodo dos amplificadores logartmicos.

    - mtodo dos amplificadores de transcondutncia varivel [1].

    Todas estas tcnicas sero analisadas nas aulas tericas.

    A presente prtica ser sobre os moduladores balanceados de transcondutncia varivel e com os co-

    letores dos diferenciais cruzados, conhecidos como clulas de Gilbert[1]. Estas clulas so comuns a vrios

    integrados como multiplicadores de quatro quadrantes, moduladores, etc.

    TRABALHO PREPARATRIO

    1 - Estudar as caractersticas tcnicas do modulador balanceado MC1496.

    2 - Estudar os circuitos apresentados com as funes:

    - Modulador AM DSB

    - Modulador AM DSB SC

    3 - Usando a identidade

    ( ) ( ) ( ) ( ) sen a sen b sen a b sen a b= + + 1

    2

    1

    2

    sendo a tc= + e b tc= idealizar um circuito que possa fornecer uma tenso de sada proporcional ao desvio de fase entre os

    sinais a e b, sendo < 4 , onde ( )sen .

  • 8/7/2019 apostila_aulas_praticas

    13/67

    13

    PRTICA

    1 - Montar um circuito modulador em amplitude da Figura 5.1 que possa funcionar como AM DSB eAM DSB SC numa freqncia de portadora c rad s= 2 100 10

    3e freqncia da moduladora

    m mf= 2 , fm variando de 100Hz a 3kHz.

    2 - Mea as polarizaes e observe no osciloscpio as formas de onda do item 1, medindo os ndices demodulao em amplitude para AM DSB.

    3 - Observe no analisador de espectro as formas de onda do item 1, anotando os resultados. Varie o poten-cimetro que reduz a portadora, medindo o melhor resultado.

    4 - Montar o circuito projetado como detector de fase. Caso necessite de um defasador de 2 utilize re-des RC.

    Figura 5.1: Modulador balanceado.

    Responda:

    - Em que se baseia a modulao sncrona? Onde usada?

    - Como se poderia obter um oitavador musical?

    - Como se poderia obter um extrator de raiz quadrada?

    Referncias

    [1] Manual da Motorola em anexo.

    [2] Design of Analog Integrated Circuits. P. Gray, M. Meyer. John Wiley, Mp.

  • 8/7/2019 apostila_aulas_praticas

    14/67

    14

    6. MODULADOR DE FREQNCIA

    OBJETIVOEstudo de um circuito Modulador de Freqncia (FM).

    ESPECIFICAESProjetar um circuito Modulador de Freqncia, tomando por base o circuito da Figura 6.1, de forma

    a atender as especificaes abaixo:

    1 - Freqncia da portadora igual a 40MHz.

    2 - Freqncia de corte inferior, para o sinal modulador, de 50Hz.

    3 - Freqncia de corte superior, para o sinal modulador, de 50kHz.

    PROCEDIMENTOS1 - Determine R4 e C4 de forma a atender as especificaes de freqncias de corte inferior e superior

    para o sinal modulador. Considere a capacitncia do diodo varactorem torno de 15pF.

    2 - Calcule C1, C2 e L para que o circuito oscile na freqncia de 40MHz. Para isto, reflita todas as ca-

    pacitncias e resistncias para o coletor do transistorBF494. A freqncia pode ser determinada pela

    frmula abaixo:

    fLCeq

    = 12

    .

    3 - A bobina deve ser confeccionada com fio rgido esmaltado (fio de enrolar motor), com uma nica ca-

    mada de espiras e com forma cilndrica. Para o clculo do nmero de espiras e das dimenses da bo-

    bina, deve ser usada a frmula abaixo:

    Lr N

    r h=

    +

    0 394

    9 10

    2 2.

    onde

    L - a indutncia em H.r - o raio da bobina em cm.

    N - o nmero de espiras.

    h - o comprimento da bobina em cm.

    MEDIDAS

    1 - Sem aplicar o gerador de sinais, varie o potencimetro P entre o mnimo e o mximo. Faa um

    grfico da freqncia de oscilao pela tenso no ponto A (que a tenso que polariza o diodo

    varactor), e calcule a constante ko do oscilador.

    2 - Conecte o gerador de sinais ao modulador, e com o auxlio do Analisador de Espectro, observe e

    anote a forma do sinal Vo(t) no domnio da freqncia. Fixe a freqncia do gerador de sinais em

  • 8/7/2019 apostila_aulas_praticas

    15/67

    15

    30kHz, e aumente a amplitude do sinais at que se observe o primeiro apagamento da portadora, que

    ocorre quando mf 2 4. , sendo mff

    fm=

    o ndice de modulao, f k V o B= o desvio de freqncia

    e fm a freqncia de modulao. Anote o valor da amplitude do sinal modulador.

    3 - Retire os capacitores C1 e C2, de forma que o circuito pare de oscilar. Mea a atenuao

    ( ) ( ) ( )H j V j V jB A = na freqncia de 30kHz. Com a amplitude anotada no item 4, calcule

    ( )k

    f

    H j V o

    m

    m A

    =2 4.

    maxe compare com o valor obtido no item 1.

    Figura 6.1: Circuito modulador de freqncia.

    OBS: Na modulao FM temos:

    ( ) ( )f t f f f ti c m= + cos

    ( ) ( ) i it 2 f t dt=

    ( ) ( )

    i c

    m

    mt 2 f tf

    f2 f t= + sen

  • 8/7/2019 apostila_aulas_praticas

    16/67

    16

    7. FONTES CHAVEADAS

    OBJETIVO

    Projetar e verificar o funcionamento dos conversores BOOST, FLYBACK e BUCK.

    PRTICA

    a) Conversor BOOST

    O circuito da Figura 7.1 um conversor BOOST operando no modo descontnuo. Dimensione RL e CLde forma a se obter VL=20V com =0.5 e uma variao mxima de 0.1V. A tenso VCC deve ser ajustada em5V, e Vp conforme a Figura 7.2. Assuma uma freqncia de chaveamento de 10kHZ.

    - equaes de projeto:

    Tempo de carregamento do indutor L, TC=T, 00.5

    Tempo de descarregamento do indutor L, TD=1T, 01(1-)

    Tenso de sada ( ) CCDTCCL VVVVV +=1

    , onde VT e VD so as tenses de conduo do transistor e

    diodo D1 respectivamente.

    A corrente no indutor na fronteira do modo contnuo para o descontnuo

    ( ) ( )L

    TVVI TCCfronteiraL

    2

    1_

    =

    Indutor( )

    L

    TCC

    I

    TVVL

    2

    1

    2

    = , onde IL a corrente DC na carga RL, e To perodo de chaveamento.

    Corrente mxima acumulada no indutor L,( )

    IV V T

    L

    CC T

    max =

    Capacitor em funo da mxima variao de tenso na sada, CI T

    V

    L

    L

    =

    - medidas:

    1) Simule o circuito.2) Mea a tenso de sada (ripple).

    3) Mea a variao de tenso na sada.

    4) Registre a tenso no ponto B.

    5) Verifique a corrente de carga e descarga do indutor, observando a tenso no ponto A. V V I A CC = 100 .

    6) Varie de 0.1 a 0.5, e plote um grfico de VL em funo de .7) Compare os resultados prticos com os calculados e os obtidos previamente por simulao. Justifique as

    discrepncias.

  • 8/7/2019 apostila_aulas_praticas

    17/67

    17

    Figura 7.1: Conversor BOOST.

    Figura 7.2: Fonte de excitao dos conversores BOOST e FLYBACK.

    b) Conversor FLYBACK

    O circuito da Figura 7.3 um conversor FLYBACK operando no modo descontnuo. Dimensione RL e

    CL de forma a se obter VL=-20V com =0.5 e uma variao mxima de 0.1V. A tenso VCC deve ser ajustadaem 5V, e Vp conforme a Figura 7.2. Assuma uma freqncia de chaveamento de 10kHZ.

    - equaes de projeto:

    Tempo de carregamento do indutor L, TC=T, 00.5

    Tempo de descarregamento do indutor L, TD=1T, 01(1-)

    Tenso de sada ( ) DTCCL VVVV =1

    , onde VT e VD so as tenses de conduo do transistor e diodo

    D respectivamente.

    Indutor( )( )

    LV V T

    V V I

    CC T

    D L L

    =

    2 2

    2, onde IL a corrente DC na carga RL, e To perodo de chaveamento.

    Corrente mxima acumulada no indutor L,( )

    IV V T

    L

    CC T

    max =

    Capacitor em funo da mxima variao de tenso na sada, CI T

    V

    L

    L

    =

  • 8/7/2019 apostila_aulas_praticas

    18/67

    18

    - medidas:

    1) Simule o circuito.

    2) Mea a tenso de sada (ripple).

    3) Mea a variao de tenso na sada.

    4) Registre a tenso no ponto A.

    5) Verifique a corrente de carga e descarga do indutor, observando a tenso no ponto B. V IB = 100 .

    6) Varie de 0.1 a 0.5, e plote um grfico de VL em funo de .7) Compare os resultados prticos com os calculados e os obtidos previamente por simulao. Justifique as

    discrepncias.

    Figura 7.3: Conversor FLYBACK.

    c) Conversor BUCK

    O circuito da Figura 7.4 um conversor BUCK. Dimensione RL e CL de forma a se obter VL=5V com

    =0.5 e uma atenuao mnima, do filtro LC, de 0.01 na freqncia de chaveamento. A tenso VCC deve serajustada em 10V, e Vp conforme a Figura 7.5. Assuma uma freqncia de chaveamento de 10kHZ. Considere

    tambm a possibilidade poder variar de um valor mnimo de 0.2 a um mximo de 1.

    - equaes de projeto:

    Tempo de carregamento do indutor L, TC=T, 0.21

    Tenso de sada ( ) ( )V V V V L CC T D= 1 , onde VT e VD so as tenses de conduo do transistor e

    diodo D respectivamente.

    Capacitor( ) AL

    TC

    2

    2

    2= , onde A a atenuao do filtro LC na freqncia de chaveamento, T o

    perodo de chaveamento.

    A corrente mnima na carga ILmin que garante a corrente I no indutor maior que zero, com mnimo ( )

    ( )TDCCL VVVL

    TI +

    =

    2

    1 minminmin_

    .

    O resistor mximo admissvel min_

    min_

    max_

    L

    L

    LI

    VR =

  • 8/7/2019 apostila_aulas_praticas

    19/67

    19

    - medidas:

    1) Simule o circuito (ripple).

    2) Mea a tenso de sada.

    3) Mea a variao de tenso na sada.

    4) Registre a tenso no ponto A.

    5) Varie de 0.2 a 1, e plote um grfico de VL em funo de .6) Compare os resultados prticos com os calculados e os obtidos previamente por simulao. Justifique as

    discrepncias.

    Figura 7.4: Conversor BUCK.

    Figura 7.5: Fonte de excitao do conversor BUCK.

  • 8/7/2019 apostila_aulas_praticas

    20/67

    20

    DATASHEETS

  • 8/7/2019 apostila_aulas_praticas

    21/67

    Philips Semiconductors Product specification

    High-speed diodes 1N4148; 1N4448

    FEATURES

    Hermetically sealed leaded glass

    SOD27 (DO-35) package

    High switching speed: max. 4 ns

    General application

    Continuous reverse voltage:

    max. 75 V

    Repetitive peak reverse voltage:

    max. 75 V

    Repetitive peak forward current:

    max. 450 mA.

    APPLICATIONS

    High-speed switching.

    DESCRIPTION

    The 1N4148 and 1N4448 are high-speed switching diodes fabricated in planar

    technology, and encapsulated in hermetically sealed leaded glass SOD27

    (DO-35) packages.

    Fig.1 Simplified outline (SOD27; DO-35) and symbol.

    The diodes are type branded.

    handbook, halfpage

    MAM246

    k a

    LIMITING VALUES

    In accordance with the Absolute Maximum Rating System (IEC 134).

    Note

    1. Device mounted on an FR4 printed circuit-board; lead length 10 mm.

    SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

    VRRM repetitive peak reverse voltage 75 V

    VR continuous reverse voltage 75 V

    IF continuous forward current see Fig.2; note 1 200 mA

    IFRM repetitive peak forward current 450 mA

    IFSM non-repetitive peak forward current square wave; Tj = 25 C prior to

    surge; see Fig.4

    t = 1 s 4 A

    t = 1 ms 1 A

    t = 1 s 0.5 A

    Ptot total power dissipation Tamb = 25 C; note 1 500 mW

    Tstg storage temperature 65 +200 C

    Tj junction temperature 200 C

  • 8/7/2019 apostila_aulas_praticas

    22/67

    Philips Semiconductors Product specification

    High-speed diodes 1N4148; 1N4448

    ELECTRICAL CHARACTERISTICS

    Tj = 25 C unless otherwise specified.

    THERMAL CHARACTERISTICS

    Note

    1. Device mounted on a printed circuit-board without metallization pad.

    SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

    VF forward voltage see Fig.3

    1N4148 IF = 10 mA 1 V

    1N4448 IF = 5 mA 0.62 0.72 V

    IF = 100 mA 1 V

    IR reverse current VR = 20 V; see Fig.5 25 nA

    VR = 20 V; Tj = 150 C; see Fig.5 50 A

    IR reverse current; 1N4448 VR = 20 V; Tj = 100 C; see Fig.5 3 A

    Cd diode capacitance f = 1 MHz; VR = 0; see Fig.6 4 pFtrr reverse recovery time when switched from IF = 10 mA to

    IR = 60 mA; RL = 100 ;

    measured at IR = 1 mA; see Fig.7

    4 ns

    Vfr forward recovery voltage when switched from IF = 50 mA;

    tr = 20 ns; see Fig.8

    2.5 V

    SYMBOL PARAMETER CONDITIONS VALUE UNIT

    Rth j-tp thermal resistance from junction to tie-point lead length 10 mm 240 K/W

    Rth j-a thermal resistance from junction to ambient lead length 10 mm; note 1 350 K/W

  • 8/7/2019 apostila_aulas_praticas

    23/67

    Philips Semiconductors Product specification

    High-speed diodes 1N4148; 1N4448

    GRAPHICAL DATA

    Fig.2 Maximum permissible continuous forward

    current as a function of ambient

    temperature.

    handbook, halfpage

    0 100 200

    300

    200

    0

    100

    MBG451

    Tamb (oC)

    IF(mA)

    Device mounted on an FR4 printed-circuit board; lead length 10 mm.

    Fig.3 Forward current as a function of forward

    voltage.

    handbook, halfpage

    0 1 2

    600

    0

    200

    400

    MBG464

    VF (V)

    IF(mA)

    (1) (2) (3)

    (1) Tj = 175 C; typical values.

    (2) Tj = 25 C; typical values.

    (3) Tj = 25 C; maximum values.

    Fig.4 Maximum permissible non-repetitive peak forward current as a function of pulse duration.

    Based on square wave currents.

    Tj = 25 C prior to surge.

    handbook, full pagewidth

    MBG704

    10 tp (s)1

    IFSM(A)

    102

    101

    104102 103

    10

    1

  • 8/7/2019 apostila_aulas_praticas

    24/67

    Philips Semiconductors Product specification

    High-speed diodes 1N4148; 1N4448

    Fig.5 Reverse current as a function of junction

    temperature.

    (1) VR = 75 V; typical values.

    (2) VR = 20 V; typical values.

    handbook, halfpage

    0 100Tj (

    oC)200

    103

    102

    101

    102

    10(1)

    1

    IR(A)

    MGD290

    (2)

    Fig.6 Diode capacitance as a function of reverse

    voltage; typical values.

    f = 1 MHz; Tj = 25 C.

    handbook, halfpage

    0 10 20

    1.2

    1.0

    0.6

    0.4

    0.8

    MGD004

    VR (V)

    Cd(pF)

  • 8/7/2019 apostila_aulas_praticas

    25/67

    Philips Semiconductors Product specification

    High-speed diodes 1N4148; 1N4448

    Fig.7 Reverse recovery voltage test circuit and waveforms.

    handbook, full pagewidth

    t rr

    (1)

    IFt

    output signal

    t rt

    t p

    10%

    90%VR

    input signal

    V = V I x RR F S

    R = 50S

    IF

    D.U.T.

    R = 50i

    SAMPLINGOSCILLOSCOPE

    MGA881

    (1) IR = 1 mA.

    Fig.8 Forward recovery voltage test circuit and waveforms.

    t r

    tt p

    10%

    90%I

    inputsignal

    R = 50S

    I

    R = 50i

    OSCILLOSCOPE

    1 k 450

    D.U.T.

    MGA882

    Vfr

    t

    outputsignal

    V

  • 8/7/2019 apostila_aulas_praticas

    26/67

  • 8/7/2019 apostila_aulas_praticas

    27/67

    Philips Semiconductors Product specification

    NPN general purpose transistors BC546; BC547

    THERMAL CHARACTERISTICS

    Note

    1. Transistor mounted on an FR4 printed-circuit board.

    CHARACTERISTICS

    Tj = 25 C unless otherwise specified.

    Notes

    1. VBEsat decreases by about 1.7 mV/K with increasing temperature.

    2. VBE decreases by about 2 mV/K with increasing temperature.

    SYMBOL PARAMETER CONDITIONS VALUE UNIT

    Rth j-a thermal resistance from junction to ambient note 1 0.25 K/mW

    SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT

    ICBO

    collector cut-off current IE

    = 0; VCB

    = 3 0 V 15 nA

    IE = 0; VCB = 30 V; Tj = 150 C 5 A

    IEBO emitter cut-off current IC = 0; VEB = 5 V 100 nA

    hFE DC current gain IC = 10 A; VCE = 5 V;

    see Figs 2, 3 and 4BC546A 90

    BC546B; BC547B 150

    BC547C 270

    DC current gain IC = 2 mA; VCE = 5 V;

    see Figs 2, 3 and 4BC546A 110 180 220

    BC546B; BC547B 200 290 450

    BC547C 420 520 800

    BC547 110 800

    BC546 110 450

    VCEsat collector-emitter saturation

    voltage

    IC = 10 mA; IB = 0.5 mA 90 250 mV

    IC = 100 mA; IB = 5 m A 200 600 mV

    VBEsat base-emitter saturation voltage IC = 10 mA; IB = 0.5 mA; note 1 700 mV

    IC = 100 mA; IB = 5 mA; note 1 900 mV

    VBE base-emitter voltage IC = 2 mA; VCE = 5 V; note 2 580 660 700 mV

    IC = 10 mA; VCE = 5 V 770 mV

    Cc collector capacitance IE = ie = 0; VCB = 10 V; f = 1 MHz 1.5 pF

    Ce emitter capacitance IC = ic = 0; VEB = 0.5 V; f = 1 MHz 11 pF

    fT transition frequency IC = 10mA; VCE = 5 V; f = 100 MHz 100 MHz

    F noise figure IC = 200 A; VCE = 5 V;

    RS = 2 k; f = 1 kHz; B = 200 Hz

    2 10 dB

  • 8/7/2019 apostila_aulas_praticas

    28/67

    Philips Semiconductors Product specification

    NPN general purpose transistors BC546; BC547

    Fig.2 DC current gain; typical values.

    handbook, full pagewidth

    0

    250

    50

    100

    150

    200

    MBH723

    102 101

    hFE

    1 IC (mA)10 103102

    VCE = 5 V

    BC546A.

    Fig.3 DC current gain; typical values.

    handbook, full pagewidth

    0

    300

    100

    200

    MBH724

    102 101

    hFE

    1 IC (mA)10 103102

    VCE = 5 V

    BC546B; BC547B.

  • 8/7/2019 apostila_aulas_praticas

    29/67

    Philips Semiconductors Product specification

    NPN general purpose transistors BC546; BC547

    Fig.4 DC current gain; typical values.

    handbook, full pagewidth

    0

    600

    200

    400

    MBH725

    102 101

    hFE

    1 IC (mA)10 103102

    VCE = 5 V

    BC547C.

  • 8/7/2019 apostila_aulas_praticas

    30/67

    Philips Semiconductors Product specification

    PNP general purpose transistors BC556; BC557

    FEATURES

    Low current (max. 100 mA)

    Low voltage (max. 65 V).

    APPLICATIONS

    General purpose switching and amplification.

    DESCRIPTION

    PNP transistor in a TO-92; SOT54 plastic package.

    NPN complements: BC546 and BC547.

    PINNING

    PIN DESCRIPTION

    1 emitter

    2 base

    3 collector

    Fig.1 Simplified outline (TO-92; SOT54)

    and symbol.

    handbook, halfpage1

    3

    2

    MAM281

    3

    2

    1

    LIMITING VALUES

    In accordance with the Absolute Maximum Rating System (IEC 134).

    SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

    VCBO collector-base voltage open emitter

    BC556 80 V

    BC557 50 V

    VCEO collector-emitter voltage open base

    BC556 65 V

    BC557 45 V

    VEBO emitter-base voltage open collector 5 V

    IC collector current (DC) 100 mA

    ICM peak collector current 200 mA

    IBM peak base current 200 mA

    Ptot total power dissipation Tamb 25 C 500 mW

    Tstg storage temperature 65 +150 C

    Tj junction temperature 150 C

    Tamb operating ambient temperature 65 +150 C

  • 8/7/2019 apostila_aulas_praticas

    31/67

    Philips Semiconductors Product specification

    PNP general purpose transistors BC556; BC557

    THERMAL CHARACTERISTICS

    Note

    1. Transistor mounted on an FR4 printed-circuit board.

    CHARACTERISTICS

    Tj = 25 C unless otherwise specified.

    Notes

    1. VBEsat decreases by about 1.7 mV/K with increasing temperature.

    2. VBE decreases by about 2 mV/K with increasing temperature.

    SYMBOL PARAMETER CONDITIONS VALUE UNIT

    Rth j-a thermal resistance from junction to ambient note 1 250 K/W

    SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT

    ICBO

    collector cut-off current IE

    = 0; VCB

    = 30 V 1 15 nA

    IE = 0; VCB = 30 V; Tj = 150 C 4 A

    IEBO emitter cut-off current IC = 0; VEB = 5 V 100 nA

    hFE DC current gain IC = 2 mA; VCE = 5 V;

    see Figs 2, 3 and 4BC556 125 475

    BC557 125 800

    BC556A 125 250

    BC556B; BC557B 220 475

    BC557C 420 800

    VCEsat collector-emitter saturation

    voltage

    IC = 10 mA; IB = 0.5 mA 60 300 mV

    IC = 100 mA; IB = 5 mA 180 650 mV

    VBEsat base-emitter saturation voltage IC = 10 mA; IB = 0.5 mA; note 1 750 mV

    IC = 100 mA; IB = 5 mA; note 1 930 mV

    VBE base-emitter voltage IC = 2 mA; VCE = 5 V; note 2 600 650 750 mV

    IC = 10 mA; VCE = 5 V; note 2 820 mV

    Cc collector capacitance IE = ie = 0; VCB = 10 V; f = 1 MHz 3 pF

    Ce emitter capacitance IC = ic = 0; VEB = 0.5 V; f = 1 MHz 10 pF

    fT transition frequency IC = 10 mA; VCE = 5 V; f = 100 MHz 100 MHz

    F noise figure IC = 200 A; VCE = 5 V; RS = 2 k;

    f = 1 kHz; B = 200 Hz

    2 10 dB

  • 8/7/2019 apostila_aulas_praticas

    32/67

    Philips Semiconductors Product specification

    PNP general purpose transistors BC556; BC557

    Fig.2 DC current gain; typical values.

    handbook, full pagewidth

    0

    300

    100

    200

    MBH726

    101

    hFE

    1 IC (mA)10 103102

    VCE = 5 V

    BC556A.

    Fig.3 DC current gain; typical values.

    handbook, full pagewidth

    0

    300

    200

    100

    400MBH727

    102 101

    hFE

    1 IC (mA)10 103102

    VCE = 5 V

    BC556B; BC557B.

  • 8/7/2019 apostila_aulas_praticas

    33/67

    Philips Semiconductors Product specification

    PNP general purpose transistors BC556; BC557

    Fig.4 DC current gain; typical values.

    handbook, full pagewidth

    0

    300

    200

    100

    600

    500

    400

    MBH728

    102 101

    hFE

    1 IC (mA)10 103102

    VCE = 5 V

    BC557C.

  • 8/7/2019 apostila_aulas_praticas

    34/67

    Philips Semiconductors Product specification

    NPN medium frequency transistors BF494; BF495

    FEATURES

    Low current (max. 30 mA)

    Low voltage (max. 20 V).

    APPLICATIONS

    HF applications in radio and television receivers

    FM tuners

    Low noise AM mixer-oscillators

    IF amplifiers in AM/FM receivers.

    DESCRIPTION

    NPN medium frequency transistor in a TO-92; SOT54

    plastic package.

    PINNING

    PIN DESCRIPTION

    1 base

    2 emitter

    3 collector

    Fig.1 Simplified outline (TO-92; SOT54)

    and symbol.

    handbook, halfpage1

    3

    2

    MAM258

    3

    1

    2

    QUICK REFERENCE DATA

    SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

    VCBO collector-base voltage open emitter 30 V

    VCEO collector-emitter voltage open base 20 V

    ICM peak collector current 30 mAPtot total power dissipation Tamb 25 C 300 mW

    hFE DC current gain IC = 1 mA; VCE = 10 V

    BF494 67 220

    BF495 35 125

    fT transition frequency IC = 1 mA; VCE = 10 V; f = 100 MHz 120 MHz

  • 8/7/2019 apostila_aulas_praticas

    35/67

    Philips Semiconductors Product specification

    NPN medium frequency transistors BF494; BF495

    LIMITING VALUES

    In accordance with the Absolute Maximum Rating System (IEC 134).

    Note

    1. Transistor mounted on an FR4 printed-circuit board.

    THERMAL CHARACTERISTICS

    Note

    1. Transistor mounted on an FR4 printed-circuit board.

    CHARACTERISTICS

    Tamb = 25 C unless otherwise specified.

    SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

    VCBO collector-base voltage open emitter 30 V

    VCEO collector-emitter voltage open base 20 V

    VEBO emitter-base voltage open collector 5 V

    IC collector current (DC) 30 mA

    ICM peak collector current 30 mA

    Ptot total power dissipation Tamb 25 C; note 1 300 mW

    Tstg storage temperature 65 +150 C

    Tj junction temperature 150 CTamb operating ambient temperature 65 +150 C

    SYMBOL PARAMETER CONDITIONS VALUE UNIT

    Rth j-a thermal resistance from junction to ambient note 1 420 K/W

    SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

    ICBO collector cut-off current IE = 0; VCB = 2 0 V 100 nA

    IE = 0; VCB = 20 V; Tamb = 150 C 4 A

    IEBO emitter cut-off current IC = 0; VEB = 4 V 100 nA

    hFE DC current gain IC = 1 mA; VCE = 1 0 V

    BF494 67 220

    BF494B 100 220

    BF495 35 125

    BF495B 100 125

    VBE base-emitter voltage IC = 1 mA; VCE = 10 V 650 740 mV

    Cre feedback capacitance IC = 0; VCB = 10 V; f = 1 MHz 1 pF

    fT transition frequency IC = 1 mA; VCE = 10 V; f = 100 MHz 120 MHz

  • 8/7/2019 apostila_aulas_praticas

    36/67

    TIP29, TIP29A, TIP29B, TIP29CNPN SILICON POWER TRANSISTORS

    P R O D U C T I N F O R M A T I O N

    JULY 1968 - REVISED MARCH 1997Copyright 1997, Power Innovations Limited, UK

    q Designed for Complementary Use with the

    TIP30 Series

    q 30 W at 25C Case Temperature

    q 1 A Continuous Collector Current

    q 3 A Peak Collector Current

    q Customer-Specified Selections Available

    B

    C

    E

    TO-220 PACKAGE(TOP VIEW)

    Pin 2 is in electrical contact with the mounting base.MDTRACA

    1

    2

    3

    absolute maximum ratings at 25C case temperature (unless otherwise noted)

    NOTES: 1. This value applies for tp 0.3 ms, duty cycle 10%.

    2. Derate linearly to 150C case temperature at the rate of 0.24 W/C.

    3. Derate linearly to 150C free air temperature at the rate of 16 mW/C.

    4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, IB(on) = 0.4 A, RBE = 100 ,

    VBE(off) = 0, RS = 0.1 , VCC = 20 V.

    RATING SYMBOL VALUE UNIT

    Collector-base voltage (IE = 0)

    TIP29

    TIP29A

    TIP29B

    TIP29C

    VCBO

    80

    100

    120

    140

    V

    Collector-emitter voltage (IB = 0)

    TIP29

    TIP29A

    TIP29B

    TIP29C

    VCEO

    40

    60

    80

    100

    V

    Emitter-base voltage VEBO 5 V

    Continuous collector current IC 1 A

    Peak collector current (see Note 1) ICM 3 A

    Continuous base current IB 0.4 A

    Continuous device dissipation at (or below) 25C case temperature (see Note 2) Ptot 30 WContinuous device dissipation at (or below) 25C free air temperature (see Note 3) Ptot 2 W

    Unclamped inductive load energy (see Note 4) LIC2 32 mJ

    Operating junction temperature range Tj -65 to +150 C

    Storage temperature range Tstg -65 to +150 C

    Lead temperature 3.2 mm from case for 10 seconds TL 250 C

  • 8/7/2019 apostila_aulas_praticas

    37/67

    TIP29, TIP29A, TIP29B, TIP29CNPN SILICON POWER TRANSISTORS

    JULY 1968 - REVISED MARCH 1997

    P R O D U C T I N F O R M A T I O N

    NOTES: 5. These parameters must be measured using pulse techniques, tp = 300 s, duty cycle 2%.

    6. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

    Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

    electrical characteristics at 25C case temperature

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    V(BR)CEOCollector-emitter

    breakdown voltage IC = 30 mA

    (see Note 5)

    IB = 0

    TIP29

    TIP29A

    TIP29B

    TIP29C

    40

    60

    80

    100

    V

    ICESCollector-emitter

    cut-off current

    VCE = 80 V

    VCE = 100 V

    VCE = 120 V

    VCE = 140 V

    VBE = 0

    VBE = 0

    VBE = 0

    VBE = 0

    TIP29

    TIP29A

    TIP29B

    TIP29C

    0.2

    0.2

    0.2

    0.2

    mA

    ICEOCollector cut-off

    current

    VCE = 30 V

    VCE = 60 V

    IB = 0

    IB = 0

    TIP29/29A

    TIP29B/29C

    0.3

    0.3mA

    IEBOEmitter cut-off

    currentVEB = 5 V IC = 0 1 mA

    hFEForward current

    transfer ratio

    VCE = 4 V

    VCE = 4 V

    IC = 0.2 A

    IC = 1 A(see Notes 5 and 6)

    40

    15 75

    VCE(sat)Collector-emitter

    saturation voltageIB = 125 mA IC = 1 A (see Notes 5 and 6) 0.7 V

    VBEBase-emitter

    voltageVCE = 4 V IC = 1 A (see Notes 5 and 6) 1.3 V

    hfeSmall signal forward

    current transfer ratioVCE = 10 V IC = 0.2 A f = 1 kHz 20

    |hfe|Small signal forward

    current transfer ratioVCE = 10 V IC = 0.2 A f = 1 MHz 3

    thermal characteristics

    PARAMETER MIN TYP MAX UNIT

    RJC Junction to case thermal resistance 4.17 C/W

    RJA Junction to free air thermal resistance 62.5 C/W

    resistive-load-switching characteristics at 25C case temperature

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    ton Turn-on time IC = 1 A

    VBE(off) = -4.3 V

    IB(on) = 0.1 A

    RL = 30

    IB(off) = -0.1 A

    tp = 20 s, dc 2%

    0.5 s

    toff Turn-off time 2 s

  • 8/7/2019 apostila_aulas_praticas

    38/67

    JULY 1968 - REVISED MARCH 1997

    TIP29, TIP29A, TIP29B, TIP29CNPN SILICON POWER TRANSISTORS

    P R O D U C T I N F O R M A T I O N

    TYPICAL CHARACTERISTICS

    Figure 1. Figure 2.

    Figure 3.

    TYPICAL DC CURRENT GAIN

    vsCOLLECTOR CURRENT

    IC

    - Collector Current - A

    0001 001 01 10

    hFE

    -DCCurrentGain

    1

    10

    100

    1000TCS631AD

    VCE = 4 V

    TC

    = 25C

    tp = 300 s, duty cycle < 2%

    COLLECTOR-EMITTER SATURATION VOLTAGE

    vsBASE CURRENT

    IB

    - Base Current - mA

    01 10 10 100 1000

    VCE(sat)-Collecto

    r-EmitterSaturationVoltage-V

    001

    01

    10

    10TCS631AE

    IC = 100 mA

    IC

    = 300 mA

    IC

    = 1 A

    BASE-EMITTER VOLTAGEvs

    COLLECTOR CURRENT

    IC - Collector Current - A

    001 01 10

    VBE-Base-Em

    itterVoltage-V

    05

    06

    07

    08

    09

    10TCS631AF

    VCE = 4 V

    TC = 25C

  • 8/7/2019 apostila_aulas_praticas

    39/67

    TIP29, TIP29A, TIP29B, TIP29CNPN SILICON POWER TRANSISTORS

    JULY 1968 - REVISED MARCH 1997

    P R O D U C T I N F O R M A T I O N

    MAXIMUM SAFE OPERATING REGIONS

    Figure 4.

    THERMAL INFORMATION

    Figure 5.

    MAXIMUM FORWARD-BIASSAFE OPERATING AREA

    VCE

    - Collector-Emitter Voltage - V

    10 10 100 1000

    IC-C

    ollectorCurrent-A

    001

    01

    10

    10

    100SAS631AC

    TIP29TIP29ATIP29BTIP29C

    tp

    = 300 s, d = 0.1 = 10%

    tp = 1 ms, d = 0.1 = 10%

    tp

    = 10 ms, d = 0.1 = 10%

    DC Operation

    MAXIMUM POWER DISSIPATIONvs

    CASE TEMPERATURE

    TC

    - Case Temperature - C

    0 25 50 75 100 125 150

    Ptot-MaximumP

    owerDissipation-W

    0

    10

    20

    30

    40TIS631AB

  • 8/7/2019 apostila_aulas_praticas

    40/67

    TIP30, TIP30A,TIP30B, TIP30CPNP SILICON POWER TRANSISTORS

    P R O D U C T I N F O R M A T I O N

    JULY 1968 - REVISED MARCH 1997Copyright 1997, Power Innovations Limited, UK

    q Designed for Complementary Use with the

    TIP29 Series

    q 30 W at 25C Case Temperature

    q 1 A Continuous Collector Current

    q 3 A Peak Collector Current

    q Customer-Specified Selections Available

    B

    C

    E

    TO-220 PACKAGE(TOP VIEW)

    Pin 2 is in electrical contact with the mounting base.MDTRACA

    1

    2

    3

    absolute maximum ratings at 25C case temperature (unless otherwise noted)

    NOTES: 1. This value applies for tp 0.3 ms, duty cycle 10%.

    2. Derate linearly to 150C case temperature at the rate of 0.24 W/C.

    3. Derate linearly to 150C free air temperature at the rate of 16 mW/C.

    4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, IB(on) = -0.4 A, RBE = 100 ,

    VBE(off) = 0, RS = 0.1 , VCC = -20 V.

    RATING SYMBOL VALUE UNIT

    Collector-base voltage (IE = 0)

    TIP30

    TIP30A

    TIP30B

    TIP30C

    VCBO

    -80

    -100

    -120

    -140

    V

    Collector-emitter voltage (IB = 0)

    TIP30

    TIP30A

    TIP30B

    TIP30C

    VCEO

    -40

    -60

    -80

    -100

    V

    Emitter-base voltage VEBO -5 V

    Continuous collector current IC -1 A

    Peak collector current (see Note 1) ICM -3 A

    Continuous base current IB -0.4 A

    Continuous device dissipation at (or below) 25C case temperature (see Note 2) Ptot 30 WContinuous device dissipation at (or below) 25C free air temperature (see Note 3) Ptot 2 W

    Unclamped inductive load energy (see Note 4) LIC2 32 mJ

    Operating junction temperature range Tj -65 to +150 C

    Storage temperature range Tstg -65 to +150 C

    Lead temperature 3.2 mm from case for 10 seconds TL 250 C

  • 8/7/2019 apostila_aulas_praticas

    41/67

    TIP30, TIP30A,TIP30B, TIP30CPNP SILICON POWER TRANSISTORS

    JULY 1968 - REVISED MARCH 1997

    P R O D U C T I N F O R M A T I O N

    NOTES: 5. These parameters must be measured using pulse techniques, tp = 300 s, duty cycle 2%.

    6. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

    Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

    electrical characteristics at 25C case temperature

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    V(BR)CEOCollector-emitter

    breakdown voltage IC = -30 mA

    (see Note 5)

    IB = 0

    TIP30

    TIP30A

    TIP30B

    TIP30C

    -40

    -60

    -80

    -100

    V

    ICESCollector-emitter

    cut-off current

    VCE = -80 V

    VCE = -100 V

    VCE = -120 V

    VCE = -140 V

    VBE = 0

    VBE = 0

    VBE = 0

    VBE = 0

    TIP30

    TIP30A

    TIP30B

    TIP30C

    -0.2

    -0.2

    -0.2

    -0.2

    mA

    ICEOCollector cut-off

    current

    VCE = -30 V

    VCE = -60 V

    IB = 0

    IB = 0

    TIP30/30A

    TIP30B/30C

    -0.3

    -0.3mA

    IEBOEmitter cut-off

    currentVEB = -5 V IC = 0 -1 mA

    hFEForward current

    transfer ratio

    VCE = -4 V

    VCE = -4 V

    IC = -0.2 A

    IC = -1 A(see Notes 5 and 6)

    40

    15 75

    VCE(sat)Collector-emitter

    saturation voltageIB = -125 mA IC = -1 A (see Notes 5 and 6) -0.7 V

    VBEBase-emitter

    voltageVCE = -4 V IC = -1 A (see Notes 5 and 6) -1.3 V

    hfeSmall signal forward

    current transfer ratioVCE = -10 V IC = -0.2 A f = 1 kHz 20

    |hfe|Small signal forward

    current transfer ratioVCE = -10 V IC = -0.2 A f = 1 MHz 3

    thermal characteristics

    PARAMETER MIN TYP MAX UNIT

    RJC Junction to case thermal resistance 4.17 C/W

    RJA Junction to free air thermal resistance 62.5 C/W

    resistive-load-switching characteristics at 25C case temperature

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    ton Turn-on time IC = -1 A

    VBE(off) = 4.3 V

    IB(on) = -0.1 A

    RL = 30

    IB(off) = 0.1 A

    tp = 20 s, dc 2%

    0.3 s

    toff Turn-off time 1 s

  • 8/7/2019 apostila_aulas_praticas

    42/67

    JULY 1968 - REVISED MARCH 1997

    TIP30, TIP30A,TIP30B, TIP30CPNP SILICON POWER TRANSISTORS

    P R O D U C T I N F O R M A T I O N

    TYPICAL CHARACTERISTICS

    Figure 1. Figure 2.

    Figure 3.

    TYPICAL DC CURRENT GAIN

    vsCOLLECTOR CURRENT

    IC

    - Collector Current - A

    -0001 -001 -01 -10

    hFE

    -DCCurrentGain

    1

    10

    100

    1000TCS632AD

    VCE = -4 V

    TC = 25C

    tp

    = 300 s, duty cycle < 2%

    COLLECTOR-EMITTER SATURATION VOLTAGE

    vsBASE CURRENT

    IB

    - Base Current - mA

    -01 -10 -10 -100 -1000

    VCE(sat)-Collecto

    r-EmitterSaturationVoltage-V

    -001

    -01

    -10

    -10TCS632AE

    IC = -100 mA

    IC

    = -300 mA

    IC

    = -1 A

    BASE-EMITTER VOLTAGEvs

    COLLECTOR CURRENT

    IC - Collector Current - A

    -001 -01 -10

    VBE-Base-Em

    itterVoltage-V

    -05

    -06

    -07

    -08

    -09

    -10TCS632AF

    VCE = -4 V

    TC = 25C

  • 8/7/2019 apostila_aulas_praticas

    43/67

    TIP30, TIP30A,TIP30B, TIP30CPNP SILICON POWER TRANSISTORS

    JULY 1968 - REVISED MARCH 1997

    P R O D U C T I N F O R M A T I O N

    MAXIMUM SAFE OPERATING REGIONS

    Figure 4.

    THERMAL INFORMATION

    Figure 5.

    MAXIMUM FORWARD-BIASSAFE OPERATING AREA

    VCE

    - Collector-Emitter Voltage - V

    -10 -10 -100 -1000

    IC-C

    ollectorCurrent-A

    -001

    -01

    -10

    -10

    -100SAS632AB

    TIP30TIP30ATIP30BTIP30C

    tp

    = 300 s, d = 0.1 = 10%

    tp = 1 ms, d = 0.1 = 10%

    tp

    = 10 ms, d = 0.1 = 10%

    DC Operation

    MAXIMUM POWER DISSIPATIONvs

    CASE TEMPERATURE

    TC

    - Case Temperature - C

    0 25 50 75 100 125 150

    Ptot-MaximumP

    owerDissipation-W

    0

    10

    20

    30

    40TIS631AB

  • 8/7/2019 apostila_aulas_praticas

    44/67

    TL071, TL071A, TL071B, TL072TL072A, TL072B, TL074, TL074A, TL074B

    LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

    SLOS080D SEPTEMBER 1978 REVISED AUGUST 1996

    1POST OFFICE BOX 655303 DALLAS, TEXAS 75265

    D Low Power Consumption

    D Wide Common-Mode and DifferentialVoltage Ranges

    D Low Input Bias and Offset Currents

    DOutput Short-Circuit Protection

    D Low Total Harmonic Distortion0.003% Typ

    D Low NoiseVn = 18 nV/Hz Typ at f = 1 kHz

    DHigh Input Impedance . . . JFET Input Stage

    D Internal Frequency Compensation

    DLatch-Up-Free Operation

    D High Slew Rate . . . 13 V/s TypD Common-Mode Input Voltage Range

    Includes VCC+

    description

    The JFET-input operational amplifiers in the TL07_ series are designed as low-noise versions of the TL08_series amplifiers with low input bias and offset currents and fast slew rate. The low harmonic distortion and lownoise make the TL07_ series ideally suited for high-fidelity and audio preamplifier applications. Each amplifier

    features JFET inputs (for high input impedance) coupled with bipolar output stages integrated on a singlemonolithic chip.

    The C-suffix devices are characterized for operation from 0C to 70C. The I-suffix devices are characterized

    for operation from 40C to 85

    C. The M-suffix devices are characterized for operation over the full militarytemperature range of 55C to 125C.

    AVAILABLE OPTIONS

    PACKAGE

    TAVIOmax

    AT 25CSMALL

    OUTLINE

    (D)

    CHIP

    CARRIER

    (FK)

    CERAMIC

    DIP

    (J)

    CERAMIC

    DIP

    (JG)

    PLASTIC

    DIP

    (N)

    PLASTIC

    DIP

    (P)

    TSSOP

    PACKAGE

    (PW)

    FLAT

    PACKAGE

    (W)

    10 mV TL071CD TL071CP TL071CPWLE

    6 mV TL071ACD TL071ACP

    3 mV TL071BCD TL071BCP

    10 mV TL072CD TL072CP TL072CPWLEo

    6 mV TL072ACD TL072ACP

    3 mV TL072BCD TL072BCP

    10 mV TL074CD TL074CN TL074CPWLE

    6 mV TL074ACD TL074ACN

    3 mV TL074BCD TL074BCN

    TL071ID TL071IP o

    6 mV TL072ID TL072IP

    TL074ID TL074IN

    6 mV TL071MFK TL071MJG

    o

    6 mV TL072MFK TL072MJG TL072MP

    9 mV TL074MFK TL074MJ TL074MN TL074MW

    The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL071CDR). The PW package is only available left-ended

    taped and reeled (e.g., TL072CPWLE).

    Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of

    Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

    Copyright 1996, Texas Instruments IncorporatedPRODUCTION DATA information is current as of publication date.Products conform to specifications per the terms of Texas Instrumentsstandard warranty. Production processing does not necessarily includetesting of all parameters.

  • 8/7/2019 apostila_aulas_praticas

    45/67

    TL071, TL071A, TL071B, TL072TL072A, TL072B, TL074, TL074A, TL074BLOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

    SLOS080D SEPTEMBER 1978 REVISED AUGUST 1996

    2 POST OFFICE BOX 655303 DALLAS, TEXAS 75265

    NC

    2OUT

    NC

    2IN

    NC

    1IN+

    NC

    VCC+NC

    2IN+

    NC

    VCC+NC

    OUT

    NC

    3 2 1 20 19

    9 10 11 12 13

    4

    5

    6

    7

    8

    18

    17

    16

    15

    14

    NC

    1IN

    NC

    1IN+

    NC

    (TOP VIEW)

    NC

    1OUT

    NC

    NC

    NC

    NC

    NC

    2IN+

    CC

    V

    CC

    +

    V

    1

    2

    3

    4

    5

    6

    7

    14

    13

    12

    11

    10

    9

    8

    1OUT

    1IN

    1IN+

    VCC +2IN+

    2IN

    2OUT

    4OUT

    4IN

    4IN+

    VCC 3IN+

    3IN

    3OUT

    TL074, TL074A, TL074B

    D, J, N, OR PW PACKAGE

    TL074 . . . W PACKAGE

    (TOP VIEW)

    NC No internal connection

    3 2 1 20 19

    9 10 11 12 13

    4

    5

    6

    7

    8

    18

    17

    16

    15

    14

    NC

    IN

    NC

    IN+

    NC

    TL071FK PACKAGE

    (TOP VIEW)

    N

    C

    O

    FFSETN1

    N

    C

    NC

    N

    C

    NC

    NC

    OFFSETN2

    N

    C

    CC

    V

    TL072FK PACKAGE

    3 2 1 20 19

    9 10 11 12 13

    4

    5

    6

    7

    8

    18

    17

    16

    15

    14

    4IN+

    NC

    VCC NC

    3IN+

    TL074FK PACKAGE

    (TOP VIEW)

    1IN

    1OUT

    NC

    3IN

    4IN

    2IN

    NC

    3OUT

    4OUT

    2OUT

    1

    2

    3

    4

    8

    7

    6

    5

    OFFSET N1

    IN

    IN+

    VCC

    NC

    VCC+

    OUT

    OFFSETN2

    TL071, TL071A, TL071B

    D, JG, P, OR PW PACKAGE

    (TOP VIEW)

    1

    2

    3

    4

    8

    7

    6

    5

    1OUT

    1IN

    1IN+

    VCC

    VCC +2OUT

    2IN

    2IN+

    TL072, TL072A, TL072B

    D, JG, P, OR PW PACKAGE

    (TOP VIEW)

    symbols

    +

    +

    IN +

    IN

    OUT

    IN +

    IN

    OUT

    TL072 (each amplifier)TL074 (each amplifier)

    TL071

    OFFSET N1

    OFFSET N2

  • 8/7/2019 apostila_aulas_praticas

    46/67

    TL071, TL071A, TL071B, TL072TL072A, TL072B, TL074, TL074A, TL074B

    LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

    SLOS080D SEPTEMBER 1978 REVISED AUGUST 1996

    3POST OFFICE BOX 655303 DALLAS, TEXAS 75265

    schematic (each amplifier)

    C1

    VCC+

    IN +

    VCC

    1080

    1080

    IN

    TL071 Only

    64 128

    64

    All component values shown are nominal.

    OFFSETNULL(N1)

    OFFSETNULL(N2)

    OUT

    18 pF

    COMPONENT COUNT

    COMPONENT

    TYPETL071 TL072 TL074

    Resistors 11 22 44

    Transistors 14 28 56

    JFET 2 4 6

    Diodes 1 2 4

    Capacitors 1 2 4

    epi-FET 1 2 4

    Includes bias and trim circuitry

  • 8/7/2019 apostila_aulas_praticas

    47/67

    TL071, TL071A, TL071B, TL072TL072A, TL072B, TL074, TL074A, TL074BLOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

    SLOS080D SEPTEMBER 1978 REVISED AUGUST 1996

    4 POST OFFICE BOX 655303 DALLAS, TEXAS 75265

    absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

    Supply voltage, VCC+ (see Note 1) 18 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Supply voltage, VCC(see Note 1) 18 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Differential input voltage, VID (see Note 2) 30 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Input voltage, VI (see Notes 1 and 3) 15 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Duration of output short circuit (see Note 4) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Continuous total power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Operating free-air temperature range, TA: C suffix 0C to 70C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    I suffix 40C to 85C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .M suffix 55C to 125C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    Storage temperature range 65C to 150C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Case temperature for 60 seconds: FK package 260C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: J, JG, or W package 300C. . . . . . . . . . . .Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P, or PW package 260C. . . . . . . . .

    Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and

    functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not

    implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

    NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC.

    2. Differential voltages are at IN+ with respect to IN.3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.

    4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the

    dissipation rating is not exceeded.

    DISSIPATION RATING TABLE

    PACKAGETA 25C

    POWER RATING

    DERATING

    FACTOR

    DERATE

    ABOVE TA

    TA = 70C

    POWER RATING

    TA = 85C

    POWER RATING

    TA = 125C

    POWER RATING

    D (8 pin) 680 mW 5.8 mW/ C 33C 465 mW 378 mW N/A

    D (14 pin) 680 mW 7.6 mW/ C 60C 604 mW 490 mW N/A

    FK 680 mW 11.0 mW/ C 88C 680 mW 680 mW 273 mW

    J 680 mW 11.0 mW/ C 88C 680 mW 680 mW 273 mW

    JG 680 mW 8.4 mW/ C 69C 672 mW 546 mW 210 mW

    N 680 mW 9.2 mW/ C 76C 680 mW 597 mW N/A

    P 680 mW 8.0 mW/ C 65C 640 mW 520 mW N/A

    PW (8 pin) 525 mW 4.2 mW/ C 70C 525 mW N/A N/A

    PW (14 pin) 700 mW 5.6 mW/ C 70C 700 mW N/A N/A

    W 680 mW 8.0 mW/ C 65C 640 mW 520 mW 200 mW

  • 8/7/2019 apostila_aulas_praticas

    48/67

    POSTOFFICEBOX6

    55303

    DALLAS,TEXAS

    75265

    5

    electrical characteristics, VCC = 15 V (unless otherwise noted)

    TL071C TL071AC TL071BC

    TL072C TL072AC TL072BCPARAMETER TEST CONDITIONS TA TL074C TL074AC TL074BC

    MIN TYP MAX MIN TYP MAX MIN TYP

    p25C 3 10 3 6 2

    IO npu o se vo age O = , S =

    Full range 13 7.5

    VIO

    Temperature

    coefficient of input

    offset voltage

    VO = 0, RS = 50 Full range 18 18 18

    25C 5 100 5 100 5IO npu o se curren O =

    Full range 10 2

    p25C 65 200 65 200 65

    IB npu as curren O =Full range 7 7

    12 12 12VICR

    Common-mode

    p25C 11 to 11 to 11 to

    n u vo age range15 15 15

    Maximum peak RL = 10 k 25C 12 13.5 12 13.5 12 13.5

    VOM

    output voltage RL 10 k 12 12 12

    swing RL 2 ku range 10 10 10

    Large-signal 25C 25 200 50 200 50 200

    VD eren a vo age

    amplificationO = , L

    Full range 15 25 25

    B1Unity-gain

    bandwidth25C 3 3 3

    ri Input resistance 25C 1012 1012 1012

    Common-mode VIC = VICRmin,

    rejection ratio VO = 0, RS = 50

    Supply-voltageVCC = 9 V to 15 V,

    SVR

    (VCC/VIO)VO = 0, RS = 50

    Supply current CC (each amplifier) O= , o oa . . . . .

    VO1/VO2Crosstalk

    attenuationAVD = 100 25C 120 120 120

    All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range is TA = 0C to 70C for TL07_C,TL07_AC, TL07_BC and is TA = 40C to 85C for TL07_I. Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in F

    that maintain the junction temperature as close to the ambient temperature as possible.

  • 8/7/2019 apostila_aulas_praticas

    49/67

  • 8/7/2019 apostila_aulas_praticas

    50/67

    TL071, TL071A, TL071B, TL072TL072A, TL072B, TL074, TL074A, TL074B

    LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

    SLOS080D SEPTEMBER 1978 REVISED AUGUST 1996

    7POST OFFICE BOX 655303 DALLAS, TEXAS 75265

    operating characteristics, VCC =15 V, TA= 25C

    TL07xM ALL OTHERS

    MIN TYP MAX MIN TYP MAX

    SR Slew rate at unity gainVI = 10 V,

    CL = 100 pF,

    RL = 2 k,

    See Figure 15 13 8 13 V/ s

    Rise time overshoot VI = 20 mV, RL = 2 k, 0.1 0.1 sr factor CL = 100 pF, See Figure 1 20% 20%

    Equivalent input noise f = 1 kHz 18 18 nV/Hzn voltage S

    =f = 10 Hz to 10 kHz 4 4 V

    InEquivalent input noise

    currentRS = 20 , f = 1 kHz 0.01 0.01 pA/Hz

    THDTotal harmonic

    distortion

    VIrms = 6 V,

    RL 2 k,

    f = 1 kHz

    AVD = 1,

    RS 1 k , 0.003% 0.003%

    PARAMETER MEASUREMENT INFORMATION

    Figure 1. Unity-Gain Amplifier

    VI+

    CL = 100 pF RL = 2 k

    VO

    Figure 2. Gain-of-10 Inverting Amplifier

    VI

    +

    10 k

    1 k

    RL CL = 100 pF

    VO

    N1

    100 k

    +

    TL071

    N2

    1.5 k

    VCC

    OUT

    IN

    IN +

    Figure 3. Input Offset Voltage Null Circuit

  • 8/7/2019 apostila_aulas_praticas

    51/67

  • 8/7/2019 apostila_aulas_praticas

    52/67

    TL071, TL071A, TL071B, TL072TL072A, TL072B, TL074, TL074A, TL074B

    LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

    SLOS080D SEPTEMBER 1978 REVISED AUGUST 1996

    9POST OFFICE BOX 655303 DALLAS, TEXAS 75265

    TYPICAL CHARACTERISTICS

    Figure 4

    IIB

    Inpu

    tBias

    Curren

    tn

    A

    TA Free-Air Temperature C

    INPUT BIAS CURRENT

    vs

    FREE-AIR TEMPERATURE

    IBI

    10

    1

    0.1

    0.01

    100

    75 50 25 0 25 50 75 100 125

    VCC = 15 V

    Figure 5

    VCC = 5 V

    VCC = 15 V RL = 10 kTA = 25C

    See Figure 2

    15

    12.5

    10

    7.5

    5

    2.5

    0

    VOM

    Max

    imum

    Pea

    kOu

    tpu

    tVo

    ltage

    V

    f Frequency Hz

    100 1 k 10 k 100 k 1 M 10 M

    MAXIMUM PEAK OUTPUT VOLTAGE

    vs

    FREQUENCY

    VOM

    VCC = 10 V

    Figure 6

    10 M1 M100 k10 k1 k100

    f Frequency Hz

    VOM

    Max

    imum

    Pea

    kOu

    tpu

    tVo

    ltage

    V

    0

    2.5

    5

    7.5

    10

    12.5

    15

    See Figure 2

    TA

    = 25C

    RL = 2 k

    VCC = 10 V

    VCC = 5 V

    MAXIMUM PEAK OUTPUT VOLTAGE

    vs

    FREQUENCY

    VOM

    VCC = 15 V

    Figure 7

    0

    2.5

    5

    7.5

    10

    12.5

    15

    10 k 40 k 100 k 400 k 1 M 4 M 10 M

    f Frequency Hz

    MAXIMUM PEAK OUTPUT VOLTAGE

    vs

    FREQUENCY

    VOM

    Max

    imum

    Pea

    kOu

    tpu

    tVo

    ltage

    V

    VOM

    VCC = 15 V

    RL = 2 k

    See Figure 2

    TA = 55C

    TA = 25C

    TA = 125C

    Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

  • 8/7/2019 apostila_aulas_praticas

    53/67

    TL071, TL071A, TL071B, TL072TL072A, TL072B, TL074, TL074A, TL074BLOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

    SLOS080D SEPTEMBER 1978 REVISED AUGUST 1996

    10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265

    TYPICAL CHARACTERISTICS

    Figure 8

    750

    VO

    M

    Max

    imum

    Pea

    kOu

    tpu

    tVo

    ltage

    V

    TA Free-Air Temperature C

    125

    15

    50 25 0 25 50 75 100

    2.5

    5

    7.5

    10

    12.5

    RL = 10 k

    VCC = 15 VSee Figure 2

    MAXIMUM PEAK OUTPUT VOLTAGE

    vs

    FREE-AIR TEMPERATURE

    VO

    M

    RL = 2 k

    Figure 9

    0.10

    RL Load Resistance k

    10

    15

    2.5

    5

    7.5

    10

    12.5

    VCC = 15 VTA = 25C

    See Figure 2

    0.2 0.4 0.7 1 2 4 7

    MAXIMUM PEAK OUTPUT VOLTAGE

    vs

    LOAD RESISTANCE

    VO

    M

    Max

    imum

    Pea

    kOu

    tpu

    tVo

    ltage

    V

    VO

    M

    Figure 10

    00

    V

    OM

    Max

    imum

    Pea

    kOu

    tpu

    tVo

    ltageV

    |VCC| Supply Voltage V

    16

    15

    2 4 6 8 10 12 14

    2.5

    5

    7.5

    10

    12.5

    RL = 10 kTA = 25C

    MAXIMUM PEAK OUTPUT VOLTAGE

    vs

    SUPPLY VOLTAGE

    V

    OM

    Figure 11

    751

    Vo

    ltage

    Amp

    lifica

    tion

    V/mV

    TA Free-Air Temperature C

    125

    1000

    50 25 0 25 50 75 100

    2

    4

    10

    20

    40

    100

    200

    400

    VCC = 15 V

    VO = 10 V

    RL = 2 k

    LARGE-SIGNAL

    DIFFERENTIAL VOLTAGE AMPLIFICATION

    vs

    FREE-AIR TEMPERATURE

    AVD

    Large-S

    igna

    lDifferen

    tia

    l

    AVD

    Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

  • 8/7/2019 apostila_aulas_praticas

    54/67

    TL071, TL071A, TL071B, TL072TL072A, TL072B, TL074, TL074A, TL074B

    LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

    SLOS080D SEPTEMBER 1978 REVISED AUGUST 1996

    11POST OFFICE BOX 655303 DALLAS, TEXAS 75265

    TYPICAL CHARACTERISTICS

    0

    45

    180

    135

    90

    1

    1

    f Frequency Hz

    10 M

    106

    10 100 1 k 10 k 100 k 1 M

    101

    102

    103

    104

    105

    DifferentialVoltageAmplification

    VCC = 5 V to 15 V

    RL = 2 k

    TA = 25C

    Phase Shift

    LARGE-SIGNAL

    DIFFERENTIAL VOLTAGE AMPLIFICATION

    AND PHASE SHIFT

    vs

    FREQUENCY

    Vo

    ltage

    Amp

    lifica

    tion

    AVD

    Large-S

    igna

    lDifferen

    tia

    l

    AVD

    Phase

    Shift

    Figure 12

    1.02

    1.01

    1

    0.99

    0.98

    1.03

    0.97

    750.7

    Norma

    lize

    dUn

    ity-Ga

    inBan

    dw

    idth

    TA Free-Air Temperature C

    125

    1.3

    50 25 0 25 50 75 100

    0.8

    0.9

    1

    1.1

    1.2 Unity-Gain Bandwidth

    VCC = 15 V

    RL = 2 k

    f = B1 for Phase Shift

    NORMALIZED UNITY-GAIN BANDWIDTH

    AND PHASE SHIFT

    vs

    FREE-AIR TEMPERATURE

    Norma

    lize

    dPhase

    Shift

    Phase Shift

    Figure 13

    Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

  • 8/7/2019 apostila_aulas_praticas

    55/67

    TL071, TL071A, TL071B, TL072TL072A, TL072B, TL074, TL074A, TL074BLOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

    SLOS080D SEPTEMBER 1978 REVISED AUGUST 1996

    12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265

    TYPICAL CHARACTERISTICS

    Figure 14

    7583

    CMR

    R

    Common-Mo

    de

    Re

    jec

    tion

    Ra

    tio

    dB

    TA Free-Air Temperature C

    125

    89

    50 25 0 25 50 75 100

    84

    85

    86

    87

    88

    VCC = 15 VRL = 10 k

    COMMON-MODE REJECTION RATIO

    vs

    FREE-AIR TEMPERATURE

    Figure 15

    00

    |VCC| Supply Voltage V

    16

    2

    2 4 6 8 10 12 14

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8TA = 25CNo SignalNo Load

    SUPPLY CURRENT PER AMPLIFIER

    vs

    SUPPLY VOLTAGE

    ICC

    Supp

    lyCurren

    tPer

    Amp

    lifierm

    A

    CC

    I

    Figure 16

    750

    TA Free-Air Temperature C

    125

    2

    50 25 0 25 50 75 100

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    VCC = 15 V

    No Signal

    No Load

    SUPPLY CURRENT PER AMPLIFIER

    vs

    FREE-AIR TEMPERATURE

    ICC

    Supp

    lyCurren

    tPer

    Amp

    lifier

    mA

    CC

    I

    Figure 17

    750

    TA Free-Air Temperature C

    125

    250

    50 25 0 25 50 75 100

    25

    50

    75

    100

    125

    150

    175

    200

    225VCC = 15 V

    No SignalNo Load

    TL074

    TL071

    TOTAL POWER DISSIPATION

    vs

    FREE-AIR TEMPERATURE

    TL072

    PD

    To

    talPower

    Diss

    ipa

    tionmW

    PD

    Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

  • 8/7/2019 apostila_aulas_praticas

    56/67

    TL071, TL071A, TL071B, TL072TL072A, TL072B, TL074, TL074A, TL074B

    LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

    SLOS080D SEPTEMBER 1978 REVISED AUGUST 1996

    13POST OFFICE BOX 655303 DALLAS, TEXAS 75265

    TYPICAL CHARACTERISTICS

    Figure 18

    750.85

    TA Free-Air Temperature C

    125

    1.15

    50 25 0 25 50 75 100

    0.90

    0.95

    1

    1.05

    1.10

    NORMALIZED SLEW RATE

    vs

    FREE-AIR TEMPERATURE

    VCC = 15 V

    RL = 2 k

    CL = 100 pFs

    Norma

    lize

    dSlew

    Ra

    te

    V/

    Figure 19

    100

    Vn

    Equ

    iva

    len

    tInpu

    tNo

    ise

    Vo

    ltagen

    V/Hz

    f Frequency Hz

    100 k

    50

    10

    20

    30

    40

    VCC = 15 VAVD = 10

    RS = 20

    TA = 25C

    40 100 400 1 k 4 k 10 k 40 k

    EQUIVALENT INPUT NOISE VOLTAGE

    vs

    FREQUENCY

    nV/

    Hz

    Vn

    Figure 20

    0.001

    THD

    To

    talHarmon

    icDistort

    ion%

    1

    40 k10 k4 k1 k400 100 k

    f Frequency Hz

    100

    0.004

    0.01

    0.04

    0.1

    0.4

    TOTAL HARMONIC DISTORTION

    vs

    FREQUENCY

    VCC = 15 V

    AVD = 1

    VI(RMS) = 6 V

    TA = 25C

    Figure 21

    6

    t Time s

    3.5

    6

    0 0.5 1 1.5 2 2.5 3

    4

    2

    0

    2

    4

    Output

    Input

    VCC = 15 V

    RL = 2 k

    TA = 25C

    VOLTAGE-FOLLOWER

    LARGE-SIGNAL PULSE RESPONSE

    CL = 100 pF

    VO

    VI

    Inpu

    tan

    dOu

    tpu

    tVo

    ltages

    V

    an

    d

  • 8/7/2019 apostila_aulas_praticas

    57/67

    TL071, TL071A, TL071B, TL072TL072A, TL072B, TL074, TL074A, TL074BLOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

    SLOS080D SEPTEMBER 1978 REVISED AUGUST 1996

    14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265

    TYPICAL CHARACTERISTICS

    10%

    4

    VO

    Ou

    tpu

    tVo

    ltagem

    V

    t Elapsed Time s

    0.7

    28

    0 0.1 0.2 0.3 0.4 0.5 0.6

    0

    4

    8

    12

    16

    20

    24

    VCC = 15 V

    RL = 2 k

    TA = 25Ctr

    Overshoot

    90%

    OUTPUT VOLTAGE

    vs

    ELAPSED TIME

    VO

    Figure 22

  • 8/7/2019 apostila_aulas_praticas

    58/67

    DeviceOperating

    Temperature Range Package

    M C 1 4 9 6 , B

    SEMICONDUCTOR

    TECHNICAL DATA

    BALANCED

    MODULATORS/DEMODULATORS

    ORDERING INFORMATION

    MC1496D

    MC1496PTA = 0C to +70C

    SO14

    Plastic DIP

    PIN CONNECTIONS

    Order this document by MC1496/D

    D SUFFIXPLASTIC PACKAGE

    CASE 751A(SO14)

    P SUFFIXPLASTIC PACKAGE

    CASE 646

    Signal Input 1

    2

    3

    4

    5

    6

    7

    10

    11

    14

    13

    12

    9

    N/C

    Output

    Bias

    Signal Input

    Gain Adjust

    Gain Adjust

    Input Carrier8

    VEE

    N/C

    Output

    N/C

    Carrier Input

    N/C

    14

    1

    14

    1

    MC1496BP Plastic DIPTA = 40C to +125C

    1MOTOROLA ANALOG IC DEVICE DATA

    B a l a n c e d M o d u l a t o r s /

    D e m o d u l a t o r s

    These devices were designed for use where the output voltage is a

    product of an input voltage (signal) and a switching function (carrier). Typical

    applications include suppressed carrier and amplitude modulation,

    synchronous detection, FM detection, phase detection, and chopper

    applications. See Motorola Application Note AN531 for additional design

    information.

    Excellent Carrier Suppression 65 dB typ @ 0.5 MHzExcellent Carrier Suppression50 dB typ @ 10 MHz

    Adjustable Gain and Signal Handling Balanced Inputs and Outputs High Common Mode Rejection 85 dB typical

    This device contains 8 active transistors.

    Figure 1. Suppressed

    Carrier Output

    Waveform

    Figure 2. Suppressed

    Carrier Spectrum

    Figure 3. Amplitude

    Modulation Output

    Waveform

    Figure 4. AmplitudeModulation Spectrum

    IC = 500 kHz, IS = 1.0 kHz

    IC = 500 kHzIS = 1.0 kHz

    60

    40

    20

    0

    LogScaleId

    499 kHz 500 kHz 501 kHz

    IC = 500 kHzIS = 1.0 kHz

    IC = 500 kHzIS = 1.0 kHz

    499 kHz 500 kHz 501 kHz

    LinearScale

    10

    8.0

    6.0

    4.0

    2.0

    0

    Motorola, Inc. 1996 Rev 4

  • 8/7/2019 apostila_aulas_praticas

    59/67

    MC1496, B

    2 MOTOROLA ANALOG IC DEVICE DATA

    MAXIMUM RATINGS (TA = 25C, unless otherwise noted.)

    Rating Symbol Value Unit

    Applied Voltage

    (V6 V8, V10 V1, V12 V8, V12 V10, V8 V4,

    V8 V1, V10 V4, V6 V10, V2 V5, V3 V5)

    V 30 Vdc

    Differential Input Signal V8 V10

    V4 V1

    +5.0

    (5+I5Re)

    Vdc

    Maximum Bias Current I5 10 mA

    Thermal Resistance, JunctiontoAirPlastic Dual InLine Package

    RJA 100 C/W

    Operating Temperature Range TA 0 to +70 C

    Storage Temperature Range Tstg 65 to +150 C

    NOTE: ESD data available upon request.

    ELECTRICAL CHARACTERISTICS(VCC = 12 Vdc, VEE = 8.0 Vdc, I5 = 1.0 mAdc, RL = 3.9 k, Re = 1.0 k, TA = Tlow to Thigh,all input and output characteristics are singleended, unless otherwise noted.)

    Characteristic Fig. Note Symbol Min Typ Max Unit

    Carrier Feedthrough

    VC = 60 mVrms sine wave and

    offset adjusted to zero

    VC = 300 mVpp square wave:

    offset adjusted to zerooffset not adjusted

    fC = 1.0 kHz

    fC = 10 MHz

    fC = 1.0 kHzfC = 1.0 kHz

    5 1 VCFT

    40

    140

    0.0420

    0.4200

    Vrms

    mVrms

    Carrier Suppression

    fS = 10 kHz, 300 mVrms

    fC = 500 kHz, 60 mVrms sine wave

    fC = 10 MHz, 60 mVrms sine wave

    5 2 VCS

    40

    65

    50

    dB

    k

    Transadmittance Bandwidth (Magnitude) (RL = 50 )

    Carrier Input Port, VC = 60 mVrms sine wave

    fS = 1.0 kHz, 300 mVrms sine wave

    Signal Input Port, VS = 300 mVrms sine wave

    |VC| = 0.5 Vdc

    8 8 BW3dB

    300

    80

    MHz

    Signal Gain (VS = 100 mVrms, f = 1.0 kHz; | VC|= 0.5 Vdc) 10 3 AVS 2.5 3.5 V/V

    SingleEnded Input Impedance, Signal Port, f = 5.0 MHz

    Parallel Input Resistance

    Parallel Input Capacitance

    6

    ripcip

    200

    2.0

    k

    pF

    SingleEnded Output Impedance, f = 10 MHz

    Parallel Output Resistance

    Parallel Output Capacitance

    6

    ropcoo

    40

    5.0

    k

    pF

    Input Bias Current 7 A

    IbS

    +

    I1 ) I42

    ; IbC

    +

    I8 ) I102

    IbSIbC

    12

    12

    30

    30

    Input Offset Current

    IioS = I1I4; IioC = I8I10

    7

    IioSIioC

    0.7

    0.7

    7.0

    7.0

    A

    Average Temperature Coefficient of Input Offset Current

    (TA = 55C to +125C)7 TCIio 2.0 nA/ C

    Output Offset Current (I6I9) 7 Ioo

    14 80 A

    Average Temperature Coefficient of Output Offset Current

    (TA = 55C to +125C)7 TCIoo 90 nA/ C

    CommonMode Input Swing, Signal Port, fS = 1.0 kHz 9 4 CMV 5.0 Vpp

    CommonMode Gain, Signal Port, fS = 1.0 kHz, |VC|= 0.5 Vdc 9 ACM 85 dB

    CommonMode Quiescent Output Voltage (Pin 6 or Pin 9) 10 Vout 8.0 Vpp

    Differential Output Voltage Swing Capability 10 Vout 8.0 Vpp

    Power Supply Current I6 +I12

    Power Supply Current I14

    7 6 ICCIEE

    2.0

    3.0

    4.0

    5.0

    mAdc

    DC Power Dissipation 7 5 PD 33 mW

  • 8/7/2019 apostila_aulas_praticas

    60/67

    MC1496, B

    3MOTOROLA ANALOG IC DEVICE DATA

    GENERAL OPERATING INFORMATION

    Carrier Feedthrough

    Carrier feedthrough is defined as the output voltage at

    carrier frequency with only the carrier applied (signal

    voltage = 0).

    Carrier null is achieved by balancing the currents in the

    differential amplifier by means of a bias trim potentiometer

    (R1 of Figure 5).

    Carrier SuppressionCarrier suppression is defined as the ratio of each

    sideband output to carrier output for the carrier and signal

    voltage levels specified.

    Carrier suppression is very dependent on carrier input

    level, as shown in Figure 22. A low value of the carrier does

    not fully switch the upper switching devices, and results in

    lower signal gain, hence lower carrier suppression. A higher

    than optimum carrier level results in unnecessary device and

    circuit carrier feedthrough, which again degenerates the

    suppression figure. The MC1496 has been characterized

    with a 60 mVrms sinewave carrier input signal. This level

    provides optimum carrier suppression at carrier frequencies

    in the vicinity of 500 kHz, and is generally recommended for

    balanced modulator applications.Carrier feedthrough is independent of signal level, VS.

    Thus carrier suppression can be maximized by operating

    with large signal levels. However, a linear operating mode

    must be maintained in the signalinput transistor pair or

    harmonics of the modulating signal will be generated and

    appear in the device output as spurious sidebands of the

    suppressed carrier. This requirement places an upper limit on

    inputsignal amplitude (see Figure 20). Note also that an

    optimum carrier level is recommended in Figure 22 for good

    carrier suppression and minimum spurious sideband

    generation.

    At higher frequencies circuit layout is very important in

    order to minimize carrier feedthrough. Shielding may be

    necessary in order to prevent capacitive coupling betweenthe carrier input leads and the output leads.

    Signal Gain and Maximum Input Level

    Signal gain (singleended) at low frequencies is defined

    as the voltage gain,

    AVS

    +

    VoV

    S+

    RL

    Re) 2rewhere re +

    26 mVI5(mA)

    A constant dc potential is applied to the carrier input terminals

    to fully switch two of the upper transistors on and two

    transistors off (VC = 0.5 Vdc). This in effect forms a cascode

    differential amplifier.

    Linear operation requires that the signal input be below a

    critical value determined by RE and the bias current I5.

    VS p I5 RE (Volts peak)

    Note that in the test circuit of Figure 10, VS corresponds to a

    maximum value of 1.0 V peak.

    Common Mode Swing

    The commonmode swing is the voltage which may be

    applied to both bases of the signal differential amplifier,

    without saturating the current sources or without saturating

    the differential amplifier itself by swinging it into the upper

    switching devices. This swing is variable depending on the

    particular circuit and biasing conditions chosen.

    Power Dissipation

    Power dissipation, PD, within the integrated circuit package

    should be calculated as the summation of the voltagecurrent

    products at each port, i.e. assuming V12 = V6, I5 = I6 = I12

    and ignoring base current, PD = 2 I5 (V6 V14) + I5)

    V5 V14 where subscripts refer to pin numbers.

    Design Equations

    The following is a partial list of design equations needed to

    operate the circuit with other supply voltages and input

    conditions.

    A. Operating Current

    The internal bias currents are set by the conditions at Pin 5.

    Assume:

    I5 = I6 = I12,

    IB t t IC for all transistors

    then :

    R5+

    V*

    * f

    I5*

    500W

    where: R5 is the resistor between

    where: Pin 5 and ground

    where: = 0.75 at TA = +25CThe MC1496 has been characterized for the condition

    I5 = 1.0 mA and is the generally recommended value.

    B. CommonMode Quiescent Output Voltage

    V6 = V12 = V+ I5 RL

    Biasing

    The MC1496 requires three dc bias voltage levels which

    must be set externally. Guidelines for setting up these three

    levels include maintaining at least 2.0 V collectorbase bias

    on all transistors while not exceeding the voltages given in

    the absolute maximum rating table;

    30 Vdcw

    [(V6, V12) (V8, V10)]w

    2 Vdc

    30 Vdcw

    [(V8, V10) (V1, V4)]w

    2.7 Vdc30 Vdcw

    [(V1, V4) (V5)]w

    2.7 Vdc

    The foregoing conditions are based on the following

    approximations:

    V6 = V12, V8 = V10, V1 = V4

    Bias currents flowing into Pins 1, 4, 8 and 10 are transistor

    base currents and can normally be neglected if external bias

    dividers are designed to carry 1.0 mA or more.

    Transadmittance Bandwidth

    Carrier transadmittance bandwidth is the 3.0 dB bandwidth

    of the device forward transadmittance as defined by:

    g 21C +io (each sideband)

    vs

    (signal) Vo + 0Signal transadmittance bandwidth is the 3.0 dB bandwidth

    of the device forward transadmittance as defined by:

    g 21S +io (signal)

    vs (signal) Vc + 0.5 Vdc, Vo + 0

  • 8/7/2019 apostila_aulas_praticas

    61/67

    MC1496, B

    4 MOTOROLA ANALOG IC DEVICE DATA

    Coupling and Bypass Capacitors

    Capacitors C1 and C2 (Figure 5) should be selected for a

    reactance of less than 5.0 at the carrier frequency.

    Output Signal

    The output signal is taken from Pins 6 and 12 either

    balanced or singleended. Figure 11 shows the output levels

    of each of the two output sidebands resulting from variations

    in both the carrier and modulating signal inputs with a

    singleended output connection.

    Negative Supply

    VEE should be dc only. The insertion of an RF choke in

    series with VEE can enhance the stability of the internal

    current sources.

    Signal Port Stability

    Under certain values of driving source impedance,

    oscillation may occur. In this event, an RC suppression

    network should be connected directly to each input using

    short leads. This will reduce the Q of the sourcetuned

    circuits that cause the oscillation.

    Signal Input(Pins 1 and 4)

    510

    10 pF

    An alternate method for lowfrequency applications is to

    insert a 1.0 k resistor in series with the input (Pins 1, 4). In

    this case input current drift may cause serious degradation of

    carrier suppression.

    TEST CIRCUITS

    NOTE: Shielding of input and output leads may be neededto properly perform these tests.

    Figure 5. Carrier Rejection and Suppression Figure 6. InputOutput Impedance

    Figure 7. Bias and Offset Currents Figure 8. Transconductance Bandwidth

    0.01F2.0 k

    8.0 Vdc

    I6

    I9

    1.0 k

    I7I8

    6.8 k

    Zout+ Vo

    +

    +VoI9

    3

    RL3.9 k

    VCC12 Vdc

    8

    C10.1 F

    MC1496

    1.0 k2

    Re

    1.0 k

    C20.1 F

    51

    10 k

    ModulatingSignal Input

    CarrierInput

    VC

    Carrier Null

    515110 k

    50 k

    R1

    VS Vo

    RL3.9 k

    I6

    I4

    6

    14 5

    12

    2

    Re = 1.0 k

    3

    Zin

    0.5 V 810

    I1

    41

    Vo10

    1 6

    4

    14 5

    12

    6.8 k

    VI10

    I5

    8.0 VdcVEE

    1.0 k

    MC1496

    MC1496MC1496 6

    14 5

    12

    I10

    6.8 k

    8.0 VdcVEE

    VCC12 Vdc

    2

    Re = 1.0 k

    3

    1.0 k

    ModulatingSignal Input

    CarrierInput

    VCVS

    0.1 F

    0.1 F

    1.0 k

    51

    1.0 k

    14 5

    6

    12

    1.0 k2 3

    Re

    VCC12 Vdc

    2.0 k

    + Vo

    Vo

    6.8 k

    10 k

    Carrier Null

    5110 k

    50 k

    V

    8.0 VdcVEE

    50 50810

    41

    810

    41

    51

  • 8/7/2019 apostila_aulas_praticas

    62/67

  • 8/7/2019 apostila_aulas_praticas

    63/67

    MC1496, B

    6 MOTOROLA ANALOG IC DEVICE DATA

    30

    f, FREQUENCY (MHz)

    20

    10

    0

    10

    20

    0.1 1.0 10 1000.01

    RL = 3.9 kRe = 500

    RL = 3.9 kRe = 2.0 k

    |VC| = 0.5 VdcRL = 500 Re = 1.0 k

    RL = 3.9 k (StandardRe = 1.0 k Test Circuit)

    A

    ,SINGLE-ENDEDVOLTAGEGAIN(dB)

    VS

    1001.0

    Side Band

    0.3

    0.4

    01000

    fC, CARRIER FREQUENCY (MHz)

    0.6

    0.9

    1.0

    10

    0.8

    0.7

    0.1

    0.2

    0.5

    0.1

    21,TRANSADMITTANCE

    (mmho)

    800

    fC 3fS

    800600400200

    VS, INPUT SIGNAL AMPLITUDE (mVrms)

    fC 2fS

    0

    60

    5040

    30

    20

    10

    70

    SUPPRESSIONBELOW

    EACHFUNDAMENTAL

    CARRIERSIDEBAND(dB)

    fC

    2fC

    505.00.05 0.1 0.5 1.0 10

    3fC

    0

    60

    50

    40

    30

    20

    10

    70

    fC, CARRIER FREQUENCY (MHz)

    SUP

    PRESSIONBELOWE

    ACHFUNDAMENTAL

    CARRIERSIDEBAND(dB)

    TA, AMBIENT TEMPERATURE(C)

    MC1496

    (70C)

    75 50

    60

    755025025

    50

    40

    30

    20

    10

    100 125 150 17570

    CS

    V

    ,CARRIERSUPPRESIO

    N(dB)

    AV +

    RL

    R

    e

    ) 2r

    e

    TYPICAL CHARACTERISTICS (continued)

    Typical characteristics were obtained with circuit shown in Figure 5, fC = 500 kHz (sine wave),

    VC = 60 mVrms, fS = 1.0 kHz, VS = 300 mVrms, TA = 25C, unless otherwise noted.

    0.1

    5010

    10

    1.0

    0.011.0 5.00.05 0.1 0.5

    fC, CARRIER FREQUENCY (MHz)

    V

    ,CARRIEROU

    TPUTVOLTAGE(mVrms)

    CFT

    Signal Port

    0

    Figure 15. Sideband and Signal Port

    Transadmittances versus Frequency

    Figure 16. Carrier Suppression

    versus Temperature

    Figure 17. SignalPort Frequency ResponseFigure 18. Carrier Suppression

    versus Frequency

    Figure 19. Carrier Feedthrough

    versus Frequency

    Figure 20. Sideband Harmonic Suppression

    versus Input Signal Level

    g 21 +

    IoutV

    in Vout + 0 |VC| + 0.5 Vdc

    g 21 +Iout (Each Sideband)

    Vin

    (Signal) Vout + 0Sideband Transadmittance

    Signal Port Transadmittance

  • 8/7/2019 apostila_aulas_praticas

    64/67

    MC1496, B

    7MOTOROLA ANALOG IC DEVICE DATA

    500100 4003000 200VC, CARRIER INPUT LEVEL (mVrms)

    fC = 10 MHz

    0

    60

    50

    40

    30

    20

    10

    70

    CS

    V

    ,CARRIERSUPPRESSION(dB)

    2fC fS

    2fC 2fS

    3fC fS

    fC, CARRIER FREQUENCY (MHz)50101.0 5.00.05 0.1 0.5

    0

    60

    50

    40

    30

    20

    10

    70SUPPRESSIONBELO

    WE

    ACHFUNDAMENTAL

    CARRIERS

    IDEBAND(dB)

    Figure 21. Suppression of Carrier Harmonic

    Sidebands versus Carrier Frequency

    Figure 22. Carrier Suppression versus

    Carrier Input Level

    fC = 500 kHz

    OPERATIONS INFORMATION

    The MC1496, a monolithic balanced modulator circuit, is

    shown in Figure 23.

    This circuit consists of an upper quad differential amplifier

    driven by a standard differential amplifier with dual currentsources. The output collectors are crosscoupled so that

    fullwave balanced multiplication of the two input voltages

    occurs. That is, the output signal is a constant times the

    product of the two input signals.

    Mathematical analysis of linear ac signal multiplication

    indicates that the output spectrum will