applications of nano‐biotechnology in wastewater treatment.pdf

9
 Applications  of  Nanobiotechnology  in wastewater  treatment  Water is one of  the most important resources for sustaining human life. Exclusivity of  water is considered central  to evolution of  life on earth. Reliable and sustainable supply of  water is one of  the most basic humanitarian goals and yet remains a challenge to meet globally. Major civilizations developed around riverine systems due to availability of  ample supply of  water and fertile land. Providing clean and affordable water to meet human needs is a grand challenge of  the 21st century.  Worldwide,  water supply struggles to keep up with the fast  growing demand, which is aggravated by population growth, global climate change, and water quality deterioration.  The need for technological  innovation to enable integrated water management cannot be overstated.  Nanotechnology holds great potential in advancing water and wastewater treatment  to improve treatment efficiency as well as to augment water supply through safe use of  unconventional  water sources. Developments  in nanotechnology have started providing reliable solutions for water and wastewater  treatment.  The range of  candidate nanomaterials, properties and mechanisms that enable the applications,  advantages and limitations as compared to existing processes,  and barriers and research needs for commercialization will be discussed here. Application of  biotechnology  knowledge for development  of  antimicrobial  nanomaterials,  reduction of  pollutants in water using nanomaterials and nanomaterials  for removal  of  contaminants  are some of  the fields which have application of  biotechnology.  Current and Potential application for water and waste water treatment   Nanomaterials  are typically dened as materials  smaller than 100 nm in at least one dimension.  At this scale, materials often possess  novel sizedependent properties different  from their large counterparts which might already be explored for the water treatment purposes. These properties may relate to the high specic surface area, such as fast dissolution,  high reactivity, and strong sorption,  or to their discontinuous  properties,  such as super paramagnetism, 

Upload: swaroopexlnc

Post on 06-Oct-2015

18 views

Category:

Documents


0 download

TRANSCRIPT

  • ApplicationsofNanobiotechnologyinwastewatertreatment

    Water is one of the most important resources for sustaining human life.Exclusivityofwaterisconsideredcentraltoevolutionoflifeonearth.Reliableandsustainablesupplyofwater isoneofthemostbasichumanitariangoalsandyetremains a challenge to meet globally. Major civilizations developed aroundriverine systems due to availability of ample supply of water and fertile land.Providingcleanandaffordablewatertomeethumanneeds isagrandchallengeofthe21stcentury.Worldwide,watersupplystrugglestokeepupwiththe fastgrowing demand, which is aggravated by population growth, global climatechange,andwaterqualitydeterioration.Theneedfortechnologicalinnovationtoenable integrated water management cannot be overstated. Nanotechnologyholdsgreatpotential inadvancingwaterandwastewater treatment to improvetreatment efficiency as well as to augment water supply through safe use ofunconventional water sources. Developments in nanotechnology have startedproviding reliable solutions forwater andwastewater treatment. The range ofcandidate nanomaterials, properties and mechanisms that enable theapplications,advantagesand limitationsascompared toexistingprocesses,andbarriers and research needs for commercialization will be discussed here.Application of biotechnology knowledge for development of antimicrobialnanomaterials, reduction of pollutants in water using nanomaterials andnanomaterials for removal of contaminants are some of the fieldswhich haveapplicationofbiotechnology.

    CurrentandPotentialapplicationforwaterandwastewatertreatment

    Nanomaterialsaretypicallydefinedasmaterialssmallerthan100nm inat leastone dimension. At this scale, materials often possess novel sizedependentproperties different from their large counterparts which might already beexplored forthewatertreatmentpurposes.Thesepropertiesmayrelateto thehigh specific surface area, such as fast dissolution, high reactivity, and strongsorption, or to their discontinuous properties, such as super paramagnetism,

  • localized surface plasmon resonance, and quantum confinement effect. Mostapplicationsarestillinthestageoflaboratoryresearch.

    1) AdsoptionAdsorption iscommonlyused to removeorganicand inorganiccontaminants inwaterandwastewatertreatment.Nanosorbentsprovidesignificantimprovementoverconventionaladsorberntswiththeirextremelyhighspecificsurfaceareaandassociatedsorptionsites,short intraparticlediffusiondistance,andtunableporesizeandsurfacechemistry.a) Carbonbasednanoadsorbents OrganicremovalCNT isbetterthanactivatedcarbon forremovalofvarious

    organicwastes chemicals. Its high adsorption capacity ismainly due to thelarge specific surfaceareaand thediversecontaminantCNT interactions. Inaqueousphase,CNTformaggregatesduetohydrophobicityoftheirgraphiticsurfaces. These aggregates contain interstitial spaces and grooves forwithhighabsorptionenergy fororganicmolecules.CNTshavemore capacity forabsorptionororganicbulkymoleculesbecauseof largepores inbundlesandmoreaccessiblesorptionsites.Theyabsorbpolarorganiccompoundsduetodiverse contaminantCNT interactions like hydrophobic effect, pipiinteractions (for polycyclic aromatic hydrocarbons, Polar aromaticcompounds), hydrogen bonding(for compounds with COOH, NH2, OHfunctional groups), covalent bonding and electrostatic interactions (forpositivelychargedorganiccontaminantslikeantibiotics).

    HeavymetalremovalOxidizedCNTshavehighadsorptioncapacityformetalionswith fast kinetics. The surface functional groupsofCNTs absorbmetalions through electrostatic interactions and chemical bonding. Thus, surfaceoxidationcansignificantlyenhancetheabsorptioncapacityofCNTs.Theymaynotbeagoodalternativeforactivatedcarbonaswidespectrumadsorbents,but since their surface chemistry can be tuned to target specificcontaminants, they may have unique applications in polishing steps toremove recalcitrant compounds or in preconcentration of trace organiccontaminants for analytical purposes. Recently it was found that sand

  • granRho

    Regredregefor

    b) MetIronandsurf

    DunpolyUniv(shomoswascon

    nules coatodamineBgenerationucing theeneration.severalhutalbasednnoxide,titd radionucfacefollow

    nwellgrouymericnanversity, anownabovest of recstewater.taminants

    ted with gwithefficiand reuse

    solutionForexamndredtimnanoadsoaniumoxidlides. It inwedbyrate

    pinHongknoparticlesnd has bee).ThenacalcitrantThe sat

    scanbese

    graphite oiencycompeAdsorptpH andple,CNTnesforefficrbentsdeandaluncludes faselimitingin

    kong(http:s,which iseen succenoparticleorganicturatedeparatedb

    oxide wasparabletotionofmeadsorptioanosorbencientremo

    minaareest adsorptintraparticle

    ://www.dusdevelopeessfully apesusedintand inornanoparticbyusingth

    efficientactivated

    etal ionscaon capacitntscanbeovalofZn2

    effectiveaionofmeediffusion

    unwellgrouedby Thepplied forthisprocesrganic concles conthevibratin

    in removcarbon.anbeeasiy remainsregenerat+ions.

    dsorbentstal ionsonalongmic

    up.com)adHongKonwastewa

    sscaneffentaminanttaining tngmembra

    ving Hg2+

    ly reverses stable atedandreu

    formetaln the extecroporew

    doptsatypngPolytecter treatmectivelyads presenthe adsoanesepara

    and

    dbyafterused

    ionsernalwalls.

    peofchnicmentsorbt inrbedation

  • systadsUsinWatreguwatdevnanposremdrinandwatremwhoacidrem

    Ovethatrem

    tem,andtorptionca

    ngmagnetterpollutiulationsoterwithexvelop varionomaterialssessing u

    mediationnkingwated environmter.Arecemoval of hocoatedird (HA). Thmovaleffici

    erallschemttheasprmovalofhe

    theneasilypacityfor

    ticnanopaon by toxn the discxtremelyloous efficiens are in vnique funof indust

    er.Themaimentally frntexampleeavymetaronoxideme coatingencyofth

    mehasbeereparedFeeavymetal

    yregeneratthetarget

    articlesforicheavymcharge ofhowlevelsont technovarious stnctionalitietrial wasteingoalforriendly maeisanoveal ions fromagneticngreatly enenanopar

    enshowna3O4/Humicsfromvar

    tedformuedcompo

    heavymemetals occheavymetofheavymlogies fortages of res that arewater, gmostofthaterials foellowcostmwater,nanoparticnhancedmrticles.

    aboveinsicAcidhaswiouswater

    ultipleuseunds.

    etalremovcurs globatals and ri

    metalsmakheavy meresearch are potentgroundwathisresearcor removalmagneticdevelopedles(Fe3O4material st

    implifiedmwideapplirs(Jingfu

    swithout

    vallly. Strictisingdemakeitgreatlyetal removand develtially appler, surfacchistodevl of heavysorbentmd by scienmagnetitability and

    manner.Iticabilityinetal,2008

    affectingt

    environmeands for cyimportanval.Numeopment, eicable toce waterveloplowy metals fmaterialforntists in Chte)withhud heavym

    isexpectedthe8).

    their

    entalcleannttoerouseachtheand

    costfromrthehina,umicmetal

    d

  • AntimicrobialNanomaterialsThe antibacterial nanoparticles are classified into three general categories:naturally occurring antibacterial substances, metals and metal oxides, andnovelengineerednanomaterials.Thesenanoparticlesinteractwithmicrobialcellsthroughavarietyofmechanisms.Thevarioustypesofantimicrobialnanomaterials are reviewed in this paper. The nanoparticles can eitherdirectly interact with the microbial cells, e.g. interrupting transmembraneelectrontransfer,disruptingorpenetratingthecellenvelope,oroxidizingcellcomponents,orproducesecondaryproducts(e.g.reactiveoxygenspecies(ROS)ordissolvedheavymetalions)thatcausedamage.AntimicrobialNanomaterialsandDisinfectionMechanismsVarious antimicrobial nanomaterials and their disinfecting mechanisms arereviewedfromliteratureasfollowing.1)ChitosanandPeptidesSynthesizednanoparticlesofnaturallyoccurringchitosanandpeptideshavemany potential applications in low cost water disinfection systems. Theantibacterialmechanismofnaturalpeptides isosmoticcollapse through theformation of nanoscale channels in bacterial cell membranes. Theantimicrobial properties of chitosan nanoparticles have been explained byvarious mechanisms. One theory proposes increase in membranepermeability and eventual rupture and leakage of intracellular componentswhenthepositivelychargedchitosanparticlesreactwithnegativelychargedcellmembranes as the chief antimicrobialmechanism.AnothermechanismproposeschitosanpenetratescellmembranewallsandbindswithDNAandthus inhibits RNA synthesis in cells. Potential applications of nanoscalechitosanandpeptidesincludesurfacecoatingsofwaterstoragetanksorasanantimicrobialagentinmembranes,sponges.2) Silver Nanoparticles Nanoparticles of silver release large quantities ofsilver ions (Ag+)when they interactwithbacterialcells.These ionsareveryreactiveand form reactiveoxygenspecies (ROS)within thecellsby reactingwith thiol groups in the enzymes. ROS formation renders the respiratory

  • enzymes inactive leading to cell death. The structural integrity andpermeability of the cell membrane is compromised by Ag + ions whichaccumulate inside themembrane by forming pits causing large increase inmembranepermeability.Ag+ionsalsopreventDNAreplicationbydamagingDNAandRNA.SilverionsalsoshowphotocatalyticactivityinpresenceofUVradiation and this isuseful indisinfectionofmicrobes.Many currentwaterpurification and disinfection systems use membranes impregnated withnanoscalesilverparticles.3)Ti02NanoparticlesTi02showsexcellentphotocatalyticactivityinpresenceofUVradiation.TheantibacterialactivityofTi02ismainlydueto ROS production, especially hydroxyl free radicals and peroxide formedunder UV irradiation by means of oxidative and reductive sequence ofchemicalreactionstakingplacewithinacell.OneoftheimportantfeaturesofdisinfectionusingTi02nanoparticlesistheirabilitytoshowphotocatalyticactivityeven inpresenceofvisiblesunlight.ThiscanbeenhancedbydopingTi02withvariousmetals.Ti02iswidelyusedinmanydisinfectionapplicationsnowadays.Ti02 issuitable forapplications inwatertreatmentbecause it isstable inwater,nontoxicby ingestionand lowcost.Ti02canbeappliedasathinfilmcoatedonareactorsurfaceoramembranefilterorasasuspensioninaslurryUVreactor.4)ZnONanoparticlesSimilartoTi02,nanosizedZnOalsoshowshighUVabsorption efficiency and photocatalytic activity. One of the mainmechanismsofphotocatalyticdegradationbyZnOisattributedtogenerationofhydrogenperoxidewithinthecells.Conclusion Clean water is essential and critical for all human activitiesranging from simple household chores to the very complex industrial andagricultural processes. Current water distribution and supply concepts areinefficientowingthevariousdrawbacksofthesesystemswhichincludelargedemandonresources,lowefficiencyinwaterpurificationandtreatment,highcost of operating the plant, chances of contamination during transport toremote locations etc.Currentwaterpurification andwastewater treatmentmethodscancontroltheorganicandinorganicwastesfromwater.But,these

  • methods are energy intensive and uneconomical because of nonreusablemembranesandfilters,inabilitytocompletelypurifywater,inabilitytomakereuseoftheretentate,etc. Variouskey issuesandchallengesstillremain insuccessfulincorporation,scalingupandcommercializationofnanotechnologyapplications in inhibiting thebacterialpathogens, removalofheavymetals,xenobiotics leading to water purification and wastewater treatment. Theability to synthesize cost effective nanomaterials and their availability atindustrial scale will determine the progress rate at which nanotechnologyapplications are accepted on industrial level. This chapter gives an overallglimpse of the applications of nanobiotechnology in controlling the waterqualityinwastewater.

  • References

    JNarr,TViraraghavan,YJinFreseniusEnvironmentalBulletin,(2007).Applicationsofnanotechnologyinwater/wastewatertreatment:areview

    Pan,B.,Xing,B.S.,(2008).Adsorptionmechanismsoforganicchemicalsoncarbonnanotubes.EnvironmentalScienceandTechnology42(24),90059013

    Pan,B.,Lin,D.H.,Mashayekhi,H.,Xing,B.S.(2008).AdsorptionandhysteresisofbisphenolAand17alphaethinylestradioloncarbonnanomaterials.EnvironmentalScienceandTechnology42(15),54805485.

    Chen,W.,Duan,L.,Zhu,D.Q.,(2007).Adsorptionofpolarandnonpolarorganicchemicalstocarbonnanotubes.EnvironmentalScienceandTechnology41(24),82958300.

    Yang,K.,Wu,W.H.,Jing,Q.F.,Zhu,L.Z.(2008).Aqueousadsorptionofaniline,phenol,andtheirsubstitutesbymultiwalledcarbonmanotubes.EnvironmentalScienceandTechnology42(21),79317936.

    Ji,L.L.,Chen,W.,Duan,L.,Zhu,D.Q.(2009).Mechanismsforstrongadsorptionoftetracyclinetocarbonnanotubes:acomparativestudyusingactivatedcarbonandgraphiteasadsorbents.EnvironmentalScienceandTechnology43(7),23222327.

    Rao,G.P.,Lu,C.,Su,F.,(2007).Sorptionofdivalentmetalionsfromaqueoussolutionbycarbonnanotubes:areview.SeparationandPurificationTechnology58(1),224231..

    Gao,W.,Majumder,M.,Alemany,L.B.,Narayanan,T.N.,Ibarra,M.A.,Pradhan,B.K.,Ajayan,P.M.,(2011).Engineeredgraphiteoxidematerialsforapplicationinwaterpurification.ACSAppliedMaterials&Interfaces3(6),18211826

    JingfuLiu,ZongshanZhaoandGuibinJiang(2008)CoatingFe3O4MagneticNanoparticleswithHumicAcidforHighEfficientRemovalofHeavyMetalsinWater.Environ.Sci.Technol.,2008,42(18),pp69496954.

  • Lu,C.,Chiu,H.,Bai,H.(2007).Comparisonsofadsorbentcostfortheremovalofzinc(II)fromaqueoussolutionbycarbonnanotubesandactivatedcarbon.JournalofNanoscienceandNanotechnology7(45),16471652.