a/prof. c. tripon-canseliet upmc - université pierre et marie curie – electronics and...

39
A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne Systems - France IEMN- Electronics , Micro and Nanotechnologies Institute – France Nanyang Technological University/CINTRA – Singapore Ultrafast sensors For the Future

Upload: alejandra-eustis

Post on 14-Dec-2015

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

A/Prof. C. Tripon-CanselietUPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France

In cooperation with THALES Airborne Systems - France IEMN- Electronics , Micro and Nanotechnologies Institute – FranceNanyang Technological University/CINTRA – Singapore

Ultrafast sensors

For the Future

Page 2: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

2

Optics metrology for electronics: specific needs for industrial applications

o Electronics technological bottleneck: high frequency activation and functionality

– Electronics/Electronics: DC to microwave domain– Optics/Optics: Terahertz domain– Optics/Electronics: Microwave to sub-mm range

o Optics for classical electronic clock jitter limitations overcoming– Optical laser sources: highest resolution for electronic systems– Semiconductor technological procees: Integration access

o Optics for ultra short pulse bandwith generation– Femtosecond risetime– Speed of light – Few tens to hundred fs time bandwidth: Highest external control frequency

Demonstration of optics in RF electronic systems: Active research fieldo Ligth/matter interactionso Integration of optics for microwave fucntionalitieso Nanotechnologies for improvment

Introduction

Introduction PC effect RF carrier generation RF magnitude switching RF phase shifting RF amplificationResearch strategy

Page 3: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

3

Identified efficient RF functunalities for industrial applications: State-of-the-Art in microwave photonics

All optical signal processing Beam scanning of antennas arrays (True Time Delays) Very low noise generation (by signal injection) Radio over Fiber (RoF) systems (high data rates > 100 Gbits/s)

Technological support for systems integrationBuilding blocks

Sources (Lasers, LEDs) Receivers (Photodiodes, photo transistors) RF information transport on optical carriers (AM/PM/FM) Information support (Optical waveguides)

Physical limitations scanning: Why not Nanoscale?o Confinement of light/matter interactions with diffraction effectso Nanotechnology platform access

Introduction

Guided space

Micro integration

Free space

Nano integration ?

Introduction PC effect RF carrier generation RF magnitude switching RF phase shifting RF amplificationResearch strategy

Page 4: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

4

One example among others: High frequency sampling George Valley chart

« Three Ten law »: 10 GHz – 10 fs – 10 Bits

Introduction

Jitter

Opening time

Time

Sampling pulses

Openinguncertainty

V

Optical clock need

nsf

t22..2

1

Introduction PC effect RF carrier generation RF magnitude switching RF phase shifting RF amplificationResearch strategy

Page 5: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

5

Ligth/Matter interactions inventory: How we can play with light…. Light emission (Photoluminescence, Electroluminescence) Light Absorption Light scattering

Rayleigh scattering Brillouin scattering Raman scattering

Optical rotation

Case of bulk materials

Introduction

Bulk materials Dielectrics Semiconductors Metals

Reflection

Refraction Electro-optics (1st/2nd orders)Acousto-optics

Electro-absorption

Absorption Photoconductive effectPhotovoltaïc effect

Plasmonics

Diffraction Wave mixing Grating Grating

Critical parametersAnisotropy of mediaPolarisation state of light

Introduction PC effect RF carrier generation RF magnitude switching RF phase shifting RF amplificationResearch strategy

Page 6: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

6

Photoconductive effect description Photoconductivity of semiconconductor materials (GaAs, GaAs BT)

Generation of electron/hole pairs: Material conductivity enhancementLocal photoresistance

Semiconducting materials familyEnergy band gapAbsorption coeffcient( ~104 cm-1)Carriers dynamicsResistivity

Optical commandTime domain shapeSource compactnesswaveguide

Introduction

1.24

optgE eV

InP:Fe

Si

CW o

ptica

lcon

trol

GaAs

CW t

o ul

traf

ast

optic

alco

ntro

l

InGaAs

LTG - GaAs

GaAs:Cr

λ

GaAsSbN (% x)

SW CNTGaAs NW

Introduction PC effect RF carrier generation RF magnitude switching RF phase shifting RF amplificationResearch strategy

Page 7: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

7

Nano material-based microwave devices under optical control for next generation of EM sensors

Material and components approach :Physics, design, simulation, modeling

New semiconductors Carbon nanotubes Semiconductor Nanowires Metal/dielectric or Metal/semiconductor interfaces

Devices and functions approach Physics, design, simulation, modeling

Modulation by SPP generation Nano RF magnitude switching Nano RF beam scanning by nano antennas (RF au THz)

Characterization

Characterization

Associated signal processing functions

Research strategy

Introduction PC effect RF carrier generation RF magnitude switching RF phase shifting RF amplification

Page 8: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

8

Microwave photonic characterization platform (UPMC) Frequency and transient measurements (DC – 67 GHz) CW laser sources (0.8 – 1.3 and 1.55 µm) Femtosecond fibered and tunable laser source

(0.8 and 1.55 µm) Probe test environnement setup under specific thermal conditions

Electrical and electromagnetic multiscale and multiphysic Design platform (UPMC)

Photoconductive effect homemade transient modeling in ADS software– Carriers time varying density equivalent electrical modeling– Associated time varying photoresistance

Optical command characteristics power, spot size, wavelengthCarriers dynamics (mobilities and lifetimes)Semiconducting material dark resistivity

– Microwave circuit transient and frequency (after FFT) behaviour in microwave domain Photoconductive effect design tool in 3D electromagnetic software

Research strategy

Introduction PC effect RF carrier generation RF magnitude switching RF phase shifting RF amplification

Page 9: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

9

Actions plan (2008 – 2013)

Research strategy

Nano RF engineering

Architecture Design

Bulk materials

GaAs, GaAs BT (0.8 µm)GaAs Sb (1 µm)

GaAsSbN (1.55 µm)

Thrust 1

Classical RF engineering

Architecture Design

Nano materialsstudy

Nanowires (GaAs)SW and MW Nanotubes (C)

Surface effects (SPP)

Thrust 2

Nano RF engineering

Architecture Design

Nano materialsimplementation

Nanowires (GaAs)SW and MW Nanotubes (C)

Thrust 3

Carriers dynamics (Mobiliies, lifetimes)Dark resisitivityCarriers transport (balisitc regime)Integration with MMIC planar technology(Process or deposition methods eligibility)

Nano electromagnetism under infinite boundaries(Limitations of classical electromagnetics)Feasibilty of transmission of RF signals in nano accessInterconnections

Limitations under finite boundariesArrays functionalities – DensificationNanoscale coupling effects

Introduction PC effect RF carrier generation RF magnitude switching RF phase shifting RF amplification

Page 10: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

10

Photoconductive effect homemade modelling (1/2) Microwave signal processing by optics

Carrier density evolution in time under time-varying optical illumination

Photoconductive effect

Optical signal transient shape (magnitude, frequency modulation)Microwave switch dimensions (integrated technology)

Output parameters

Time domain photoresistance Rg(t)Input parameters

S-parameters (Fourier transform)

Substrate permittivity loss angle height carriers mobility + carriers lifetime + doping

Substrate parameters

Introduction PC effect RF carrier generation RF magnitude switching RF phase shifting RF amplification

Page 11: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

11

Photoconductive effect homemade modelling (2/2) Non linear electical modelling: Real-time control of microwave signals by

optics

fmod= 1 GHz

Car

riers

den

sitie

s (/

cm3 )

fRF = 10 GHz - fmod= 1 GHz Δτ = 50 ps

Demonstration of modulation signal carrier transfert from optics to microwave carrier

Photoconductive effect

Research strategyIntroduction PC effect RF carrier generation RF magnitude switching RF phase shifting RF amplification

Time (ns)

RF output signal

RF input signal

Time (ns)

Page 12: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

12

Photoconductive effect in microwave circuit: classical behaviour in microwave domain Integration in a microwave circuit with line discontinuity

Magnitude switching / Phase shifting (high pass filter behaviour)

Microwave functionalities demonstration Modulation transfer Ultrafast sampling

Digital coding with high data rate and Bits resolution access

Ultrafast clock trigerring thanks to very low jitter optical source Generation

Integration in MMIC ascillator on standard GaAs substrate

Side view of microwave photoconductive switch

ON / OFFi21ON / OFF ON / OFF

21

S ONR e

S OFF

Associated RF efficiency

Photoconductive effect

Research strategyIntroduction PC effect RF carrier generation RF magnitude switching RF phase shifting RF amplification

Page 13: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

13

Photoconductive effect for 5 GHz carrier generation Integration in MMIC ascillator on standard GaAs substrate

Measured transient Optically generated microwave carrier at a

frequency of 5GHz

MMIC top view (UMS PH25 foundry process)

Oscillator tuned spectrums obtained by triangular modulation of incident optical power

(fmod 50 KHz, λ = 800 nm,)(1) 0–80 mW, (2) 0–130 mW and (3) 0–180 mW

S. Faci, C. Tripon-Canseliet, A. Benlarbi-Delaï, G. Alquié, S. Formont, , J. Chazelas“Optical generation of microwave signal for FMCW radar applications”, Microwave and optical Technology Letters, Vol 51, Issue3, pp.690-693, March 2009

S. Faci, C. Tripon-Canseliet, G. Alquié, S. Formont, , J. Chazelas“Ook modulator using photoconductive feedback oscillator”Microwave and optical Technology Letters, Vol 52, Issue 9, pp.2010-2016, Sept 2010

Microwave carrier generation by optics

Research strategyIntroduction RF carrier generation RF magnitude switching RF phase shifting RF amplificationPC effect

Page 14: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

14

Photoconductive effect for 5 GHz carrier generation Ultrafast pulse illumination: Real-time control of microwave carrier

generation by optics

S. Faci, C. Tripon-Canseliet, A. Benlarbi-Delaï, G. Alquié, S. Formont, , J. Chazelas“Optical generation of microwave signal for FMCW radar applications”, Microwave and optical Technology Letters, Vol 51, Issue3, pp.690-693, March 2009

S. Faci, C. Tripon-Canseliet, G. Alquié, S. Formont, , J. Chazelas“Ook modulator using photoconductive feedback oscillator”Microwave and optical Technology Letters, Vol 52, Issue 9, pp.2010-2016, Sept 2010

MMIC top view (UMS PH25 foundry process)

Experimental results @ 5 GHz

Optional tunability by DC bias

RF signal setting time (50 ps)

RF signal time window

Optional tunability by optics

RF signal frequency

RF signal time window period

RF transient output (1ns/div)

RF transient output (200 ps/div)

Microwave carrier generation by optics

Research strategyIntroduction RF carrier generation RF magnitude switching RF phase shifting RF amplificationPC effect

Page 15: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

15

Photoconductive effect for ULB signal generation and emission Integration in a microwave circuit: Microwave functionalities demonstration

UWB signal generation by ultrafast optical control with optically-controlled signal waveform shaping

Experimental setup for optically-controlled UWB emitting system

Simulated and measured reflection coefficient of the UWB antenna Guldner, N.; Tripon-Canseliet, Faci, S., C.; Alquie, G.

“Optically-controlled UWB emission system” IEEE Microwave Conference, 2009 (EuMC), 2009, Page(s): 1916 - 1919

Transfer function of the system

Transient response of the emission antenna

Experimental UWB photogenerated signal

Microwave carrier generation by optics

Research strategyIntroduction RF carrier generation RF magnitude switching RF phase shifting RF amplificationPC effect

Page 16: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

16

ON/OFF ratio enhancement under CW illumination: Confinement intensification

Membrane material RF circuit mismatching (at OFF state)

Technology

On/Off ratio magnitude [dB]

@ 10 GHz @ 20 GHZ @ 40 GHz

Standard 1.45 0.45 0.04

Membrane 4.24 3.18 2.94

C. Tripon-Canseliet, S. Faci, K. Blary, G. Alquié, S. Formont, J. Chazelas

SPIE International Conference on Application of photonic Technology, Quebec, Canada, June 2006

Interaction volume: 20x20x2 µm3

Technology

On/Off ratio magnitude [dB]

@ 10 GHz @ 20 GHZ @ 40 GHz

RF confined 14.4 10.5 6.5

RF Confined 35.1 19.0 17.3

Interaction volume: 1x1x0.5 µm3

Carriers density increase Capacitive behaviour lowering Optimization of RF access design

DGA contract n° 07.34.014 (2007-2010)Partners: IEMN and THALES Airborne Systems

Microwave magnitude switching by optics

Research strategyIntroduction RF magnitude switching RF phase shifting RF amplificationPC effect RF carrier generation

Page 17: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

17

ON/OFF ratio enhancement under CW illumination: Confinement intensification

Nanotechnology-based MPCS @ 0.8 µm

Dielectric nano waveguide implementation

Active area dimensions R ON/OFF@ 20 GHz [dB]

R ON/OFF@ 40 GHz [dB]

1 x 1 x 0.5 µm3 (P1)(P2)

0.22.41

0.010.54

0.5 x 1 x 0.5 µm3 (P1)(P2)

0.175.13

0.281.55

0.3 x 1 x 0.5 µm3(P1)(P2)

1.598.65

0.233.13

Microwave magnitude switching by optics

Metal

GaAs standard

SiO2

Si3N4

Si, SiGe, GaAs nanowires implementation

IlluminationR = 40 µm, de = 2 µm

Nano-Wire

Air gap

GaAs substrate

Line

Line

Optical incident power[mW]

Resistivity[Ω.cm]

Conductivity[S.m-1]

0 1,13E+04 8,84E-034.3 5,84E+01 1,71E+007.7 7,60E+00 1,32E+0110 7,26E+00 1,38E+01

Experimental values of a SI GaAs photoconductivity under 0.8µm optical illumination

2009 MERLION program (French Embassy @ Singapore)– Nw-based electronicsPartnership: IEMN- UPMC- NTU

0.5 µm

Research strategyIntroduction RF magnitude switching RF phase shifting RF amplificationPC effect RF carrier generation

Page 18: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

18

Nanotechnology-based MPCS @ 1.55µm: Quaternary semiconducting material buk material

Study of photoconductivity of quaternary semiconductors (GaAsSbN) Design and tests of optically-controlled microwave switches

Experimental magnitude ON/OFF ratio @ 1.55 µm in frequency

2008 MERLION program (French Embassy) grantGaAsSbN process for optoelectronicsPartnership: IEMN-UPMC- NTU

K.H. Tan, C. Tripon-Canseliet, S. Faci, A.Pagies, M. Zegaoui, W. K.Loke, S. Wicaksono, S. F. Yoon , V. Magnin, D. Decoster, and J. Chazelas, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO. 15, AUGUST 1, 2010

K. H. Tan, S. F. Yoon, C. Tripon-Canseliet, W. K. Loke, S. Wicaksono, S. Faci, N. Saadsaoud, J. F. Lampin, D. Decoster, and J. Chazelas, APPLIED PHYSICS LETTERS 93, 063509 2008

Carrier lifetime measurement @ 1.2 -1.55 µmMPCS substrate structure

2010ANR/ A star joined program grant novel dilute nitride III-V Compound sEmiconductoR for 1550nm

Ultra-Fast PhotoconductIve SwitchE (CERISE)Partnership: IEMN-UPMC – THALES - NTU

Microwave magnitude switching by optics

Research strategyIntroduction RF magnitude switching RF phase shifting RF amplificationPC effect RF carrier generation

Page 19: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

19

Nanotechnology-based MPCS @ 1.55µm: CNT-based technology Modeling and characterization of RF behaviour of MW or metallic SW CNTs Study of photoconductivity of semiconducting SW CNTs under polarized Design and test of CNT-based RF nano emitters Design and tests of optically-controlled microwave phase shifters

2010 DGA/DSTA joined program grantNano antennasPartnership: IEMN-UPMC – THALES - NTU

Microwave phase shifting by optics

A. Maiti, Caron Nanotubes: Band gap engineering with strain, Nature Materials 2 (2003) 440

C Cgap

CNT

t aE

d

J. Guo, M. A. Alam, Y. Yoon, Appl. Phys. Lett. 88, 133111 (2006).

SEM photograph of vertical MW CNT processed by PECVD @ NTU

CNT

Examples of RF reflective (a) and filtering (b) structures for CNT RF properties extraction

Research strategyIntroduction RF phase shifting RF amplificationPC effect RF carrier generation RF magnitude switching

Page 20: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

Research work focus (since 2007): Nanotechnology-based emitting system @ 1.55µm

Study of photoconductice of SW CNT-based FET with transparent electrodes (ITO) Design and tests of optically-controlled microwave amplifier with reported matching

circuit in hybrid technology

20

Microwave amplification by optics

2010 ANR program grantMicrowave Optically-Controlled Cnt-based emitting ArchitecturePartnership: IEMN-UPMC – THALES - NTU

Nano RF amplifier

S SDG G

aligned SW N Ts

Pd layer

H igh-k

SiO 2

H igh-resistiv ity S i substrate

Laser excitation

Active quadripole

Research strategyIntroduction RF amplificationPC effect RF carrier generation RF magnitude switching RF phase shifting

Page 21: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

21

Eligibility by experimental demonstration of nano material efficiency in dynamic regime

o Nano wires/tubesl arrayso Nano ribbons/cristals/shells

Extension of existing modeling and design tools to mutliscale components and devices

Prospect new technological process/deposition methodsto open access to low cost components fabrication

Optimization of existing nano materials integration for microwave photonic purposes

o Electronic accesso Light interaction effects (plasmonics)

Prospects

M. S. Islam, N. P. Kobayashi, S-Y. Huang

2008 2nd IEEE International Nanoelectronics Conference (INEC 2008), p.1009-1014

Research strategyIntroduction RF amplificationPC effect RF carrier generation RF magnitude switching RF phase shifting

Page 22: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

Collaboratorso G. Alquié (L2E)o D. Decoster (IEMN) - Professoro J. Chazelas (THALES) – Technical Directoro K.L. Pey (NTU previously - now @SUTD) - Professoro Yoon S.F. - Tay B. K (NTU/EEE school) - Professorso D. Baillargeat (CINTRA) - Professor

PhD students and Post Docs o S. Faci – K. Louertani - N. Guldner – B. Guillot (L2E)o N. Saassaoud / M. Zegaoui / A. Pagies/ (IEMN)o A. Olivier (CINTRA/IEMN)o Teo E. – Tan D.

22

Thank you for your attention

Acknowledgments

[email protected]

Mimicking the Human being

Nanotechnologies

Page 23: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

23

Trust 1 : Study of metallic/semiconducting interfacesDGA contract n°08.108.38 - Partners: IEMN – Thales Research and Technology

Solution for confinement of light for RF modulation of optical carriers

Design, fabrication and characterization of a fully-integrated device

θr

nd + ΔnR

ΔR

Δn(V) = nd cos(mt)

θ

n

d ki

kr

ktEt

Ei Er

kx

θi

θt

z

x

n1

n2

Prism

Metal

Dielectric

Prism

Metal

Dielectric

Incident beam

Attenuated beam

Incident beam

Surface plasmon

Kretschmann configuration Otto configuration

Research actions plan

Page 24: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

24

Nanotechnologies: performances attendues Propriétés électriques

Résistivité/conductivité, résistance de contact avec différents métaux

Propriétés électroniques Transport / Dynamique des électrons (mobilités, vitesse de transit, temps de vie)

Propriétés optiques Structure de bande / Sensibilité en longueur d’onde (Bande spectrale d’absorption)

Propriétés thermiques Propriétés mécaniques Techniques de fabrication

Nano objets: vers des propriétés surprenantes

Propriétés des CNTs compoarées aux matériaux semiconducteurs connus

P. Avouris, M. Radosavljevic, S. J. Wind, CNT electronics and optoelectronics, NanoScience and Technology, Applied Physics of Carbon Nanotubes, Fundamentals of Theory, ISBN 978-3-540-23110-3

Résisitivté de nanofils d’InN – Résistivité avec et sans résistance de contact (Méthode à 4 pointes en noir)

F. Werner, F. Limbach, M. Carsten, C. Denker, J.Malindretos, A. Rizzi,Nano Lett., Vol. 9, No. 4, 2009

Page 25: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

25

Nanofils: Méthodes de fabrication pour composants électroniques et optoélectroniques

Structures homogènes Jonctions PN Transistors

FETMOSFET

Nano engineering Approche « Bottom-up »: croissance catalysée Approche « Top-down »: gravure verticale

Mise en réseau de nanobjets

Nano objets: Propriétés optoélectroniques

Y. Li, F. Qian, J. Xiang, and C. M. LieberMaterialsToday, Oct. 2006, 9, 10

Page 26: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

26

Exemple de nanofils d’InP Caractérisation optique: Electroluminescence

Nano objets: Propriétés optoélectroniques

X. Duan, Y. Huang*², Y.Cui, J.Wang*& C.M. Lieber, Nature, 409, Jan 2001, p.66-68

5 µmp-n junction

Diam: 65 et 68 nm

5 µm

Diam: 39 et 49 nm

Page 27: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

27

Exemple de nanofils de Si Caractérisation optique : photoluminescence

Nano objets: Propriétés optoélectroniques

M.-H. Kim , T.-E. Park, U.-K. Kim, H.-J. Choi, G.-Y. Sung, J.- H. Shin, K. Suh2007 4th IEEE International Conference on group IV Photonics, Page(s): 1 - 3

Th Stelzner, M Pietsch, G Andra, F Falk, E Ose and S Christiansen

Nanotechnology 19 (2008) 295203

Page 28: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

28

Nanofils hétérostructurés (GaAs/GaP) Caractérisation statique I(V) et optique (électroluminescence)

Nano objets: Propriétés optoélectroniques

Gudiksen, M., et al.,

Nature (2002) 415, 617

Wu, Y., et al.,

Nature (2004) 430, 61

Page 29: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

29

Nanofils hétérostructurés (GaN/InGaN/GaN/AlGaN/GaN) Caractérisation statique I(V) et optique (électroluminescence)

Nano objets: Propriétés optoélectroniques

Qian, F., et al., Nano Lett. (2005) 5, 2287

Page 30: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

30

Nanotubes de Carbone Propriétés optoélectroniques

Jonctions PN: Electroluminescence

Nano objets: Propriétés optoélectroniques

Chen, J., et al., Science (2005) 310, 1171

Page 31: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

31

Nanotubes de Carbone Représentation par un enroulement d’une feuille de graphène (arrangement 2D

d’atomes de Carbone) Nature métallique ou semiconductrice déterminée par

Diamètre Type d’enroulement (mono/multi paroi) Chiralité

Propriétés électroniques Mobilités Résistivité

Nano objets: Propriétés optoélectroniques

Fig.2: Pictorial representation of (A) graphene sheet and (B) rolled carbon nanotube lattice structures (the

latter shows a (16,0) tube). Fig. 3: CNT energy gap and intrinsic doping ni

as a function of tube radius

C Cgap

CNT

t aE

d

(1)

Page 32: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

32

Nanotubes de Carbone Propriétés optoélectroniques

Photoconductivité: Dépendance en polarisation

Nano objets: Propriétés optoélectroniques

X. Qiu, M. Freitag, V. Perebeinos, P. AvourisNano Lett. 5, 749 (2005).

J. Guo, M. A. Alam, Y. Yoon, Appl. Phys. Lett. 88, 133111 (2006).

Page 33: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

33

Nano objets : Synthèse Composants électroniques: Diodes, Transistors

Applications industrielles: circuits logiques (Mémoires) Composants optoélectroniques: LEDs, (Photodiodes PIN)

Applications industrielles: Ecrans

Nano objets: Propriétés optoélectroniques

Composants pour applications RF Utilisation des propriétés optiques

Nano dispositifs intégrés à contrôle optique

Page 34: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

34

Commande optique CW: Commutation d’amplitude Recherche du confinement de l’interaction

Augmentation de la densité de porteurs Diminution du comportement capacitif RF du dispositif

Premiers travaux effectués au L2E (2006) Structure membrane Augmentation de l’impédance des lignes d’accès: Réduction de la zone d’interaction

Dispositifs intégrés RF à contrôle optique

Technology

On/Off ratio magnitude [dB]

@ 10 GHz @ 20 GHZ @ 40 GHz

Standard 1.45 0.45 0.04

Membrane 4.24 3.18 2.94

C. Tripon-Canseliet, S. Faci, K. Blary, G. Alquié, S. Formont,

J. Chazelas

SPIE International Conference on Application of photonic Technology,

Quebec, Canada, Juin 2006

Page 35: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

35

Commande optique CW: Commutation d’amplitudeRecherche du confinement de l’interaction lumière/matière pour la commutation d’amplitude par l’optique

Réduction de la zone d’éclairement

Dispositifs intégrés RF à contrôle optique

Optical wavelength: 800 nm - Incident optical power: 5.3 mW

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10

Frequency [GHz]

ON

OF

F r

ati

o [

dB

]

Classical fiber - 4.7 mW

Lensed fiber - 5.3 mW

Page 36: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

36

Exemple de nanofils d’InP Caractérisations statiques I(V)

Application à des jonctions croisées

Nano objets: Propriétés optoélectroniques

X. Duan, Y. Huang, Y.Cui, J.Wang& C.M. Lieber, Nature, 409, Jan 2001, p.66-68

10 mm

10 nm

Diam: 47 nm

1 mm

Ni/In/Au contacts

Diam: 45 nm

1 mm

Ni/In/Au contact electrodes

2 mm

Diam: 29 nmDiam: 40 nm

n-n

p-p

n-p

Page 37: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

37

Exemple de nanofils de Si Caractérisation statique de transistors à effet de champ

Nano objets: Propriétés optoélectroniques

H. Lu et Al, Nano Letters(2008), 8, 925

100 nm channel length

500 nm

[email protected]

Vds@-10 mV

J. Martinez, R.V. Martinez, R. Garcia, IEEE-NANO 2009. 9th IEEE Conference on Nanotechnologies, Page(s): 442 - 443

Page 38: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

38

Exemple de nanofils de Si (méthode top-down améliorée) Caractérisation statique I(V)

Nano objets: Propriétés optoélectroniques

Jing Zhuge; Yu Tian; Runsheng Wang; Ru Huang; Yiqun Wang; Baoqin Chen; Jia Liu; Xing Zhang; Yangyuan Wang;

IEEE Transactions on Nanotechnology, 9 , Issue 1, 2010, Page(s): 114 - 122

Page 39: A/Prof. C. Tripon-Canseliet UPMC - Université Pierre et Marie Curie – Electronics and Electromagnetism Lab (L2E) - France In cooperation with THALES Airborne

Ultrafast sensors for the Future

C. T

ripon

-Can

selie

t

39

Hybridation et mise en réseau de Nanofils (méthode Bottom-up) Caractérisation statique I(V)

Nano objets: Propriétés optoélectroniques

M. S. Islam, N. P. Kobayashi, S-Y. Huang

2008 2nd IEEE International Nanoelectronics Conference (INEC 2008), p.1009-1014