arvind jaganathan michigan state university january 21 st 2009

70
Arvind Jaganathan Michigan State University January 21 st 2009 1

Upload: others

Post on 24-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Arvind JaganathanMichigan State University

January 21st 2009

1

Biosynthesis and biomimetic synthesis

O2, NADPHSqualene Monooxygenase

Squalene

Biosynthesis of Steroids

2

Squalene Monooxygenase

O

2,3(S)-Epoxysqualene

Dugas, H.; Bioorganic Chemistry : A Chemical Approach to Enzyme Action, Springer – Verlag, New York, 1988, chap. 5, p. 383

Exploration of Chemical Space by Nature

O

chair-chair-chair-boat

-AmyrineSynthase

HO

H

H

HH

Transient Carbocation

Glacial AcOH

3

HO

H

H

H

-Amyrine

Glacial AcOH1 day

No reaction

Wu, T.K.; Chang, C.H.; Liu, Y.T.; Wang, T.T.; Chem.Rec., 2008, 8, 302

Exploration of Chemical Space by Nature

4

Wu, T.K.; Chang, C.H.; Liu, Y.T.; Wang, T.T.; Chem.Rec., 2008, 8, 302

Nature relies on different enzymes for making different natural products even if the

precursor to all these natural products is the same.

Challenges in mimicking nature

• It is often difficult to control side reactions.

• It is difficult to access molecules which are formed from more energetic transition states.

5Dugas, H.; Bioorganic Chemistry : A Chemical Approach to Enzyme Action, Springer – Verlag, New

York, 1988, chap. 5, p. 383

Biomimetic Synthesis

• Biomimetic Chemistry is novel chemistry inspired by that done in

living systems – Ronald Breslow

• Biomimetic synthesis aims to identify biosynthetic patterns that can • Biomimetic synthesis aims to identify biosynthetic patterns that can

be exploited in the laboratory without the sophisticated catalysis,

pre-organization and compartmentalization used in nature. – Dirk

Trauner

6

Breslow, R.; Chem.Soc.Rev., 1972, 1,553Volgraf, M.; Lumb, L.P.; Brastian, H.C.; Carr, G.; Marco, K.; Chung, W.; Munzel, M.; Mauk, A.G.;

Andersen, R.J.; Trauner, D. Nature Chem. Bio., 2008, 4, 535

Nature’s natural product assembly line : Role of enzymes

• Enzymes play a pivotal role in accelerating reaction rates and pre-organizing molecules in appropriate orientations before bond formation.

• Bond formation may be very facile even in what may be perceived • Bond formation may be very facile even in what may be perceived as energetically unfavorable conformations.

• In almost all cases, the structural complexity of natural products is attributable to enzymes.

• But synthesis of enzymes has biogenetic roots and is quite energy consuming.

7

Are enzymes the solitary source of natural products’ complexity and diversity?

Photoisomerization of 7-Dehydrocholesterol to Vitamin D3

8Dugas, H.; Bioorganic Chemistry : A Chemical Approach to Enzyme Action, Springer – Verlag, New

York, 1988, chap. 5, p. 383

Photoisomerization of 7-Dehydrocholesterol to Vitamin D3

Dugas, H.; Bioorganic Chemistry : A Chemical Approach to Enzyme Action, Springer–Verlag, New York, 1988, chap. 5, p. 383

What is non-enzymatic self-assembly important for any organism?

• It is an additional pathway available for exploration of chemical

space by nature.

• Biosynthesis of an enzyme is a highly energy consuming process;

hence avoiding the use of enzymes will be a very economical way of

accessing natural products.

Enzyme biosynthesis

Crick, F.; Nature, 1970, 227, 561http://en.wikipedia.org/wiki/Central_dogma

Unique structural features of some natural products –Pointers to a non-enzymatic mechanism?

H

H

Ph

HH

H

CO2HH

Endiandric Acid A

8 contiguous stereocentersExists as a racemate in nature

12

Occurrence of motifs easily obtained without enzyme assistance

13

Occurrence of Motifs easily obtained without enzyme assistance

How does one prove that spontaneous assembly of natural products is possible?

• If one is to invoke a non-enzymatic mechanism for the formation ofnatural products, it must be possible to make them usingconventional chemical synthesis.

• If synthetic mimics of reactive biosynthetic precursors can be made,they should spontaneously react without enzyme mediation to givethey should spontaneously react without enzyme mediation to givenatural products.

• Biomimetic synthesis aims to identify biosynthetic patterns that canbe exploited in the laboratory without the sophisticated catalysis,pre-organization and compartmentalization used in nature. – DirkTrauner

15Volgraf, M.; Lumb, L.P.; Brastian, H.C.; Carr, G.; Marco, K.; Chung, W.; Munzel, M.; Mauk, A.G.;

Andersen, R.J.; Trauner, D. Nature Chem. Bio., 2008, 4, 535

Few of the possible biosynthetic routes of spontaneous assembly

1. Electrocyclizations.

2. Dimerization.2. Dimerization.

3. Cascade Reactions

16

Electrocyclizations

• The activation barriers for 8π electrocyclization reactions are

generally low (typically ~ 20kCal/mol).

• There is very little literature precedence for catalysis of any sorts in • There is very little literature precedence for catalysis of any sorts in

electrocyclization reactions.

• Asymmetric/enzyme mediated electrocyclizations are extremely

rare.

17Huisgen, R.; Dahmen, A.; Huber, H.; J.Am.Chem.Soc. 1967, 89, 7130

Bishop, L.M.; Barbarow, J.E.; Bergman, R.G.; Trauner, D. Angew. Chem. Int.Ed., 2008, 47, 8100

Thermal 6π and 8π electrocyclizations

18Woodward, R.B.; Hoffmann, R.; J. Am. Chem. Soc., 1965, 87, 395

SNF4435 C and D

• SNF4435 C and D were isolated from the culture broth of Streptomyces spectabilis in 2001.

• They are optically active polyketides that have been isolated as 3:1 mixture.

O

O

O

OMe

O2N

Me

SNF4435 C

O

OO2N

• Spectinabillin had already been isolated from S.spectabilis in 1976.

• It was proposed that Spectinabilincould be the common biosynthetic precursor for both SNF4435 C and SNF4435 D

19Kurosawa, K.; Takahashi, K.; Tsuda, E. J. Antibiotic. 2001, 54, 541

O

OOMeMe

SNF4435 D

O OOMe

O

O2N

Spectinabilin

Proposed Biosynthesis of SNF4435 C and D

O OOMe

O

O2NSpectinabilin (5)

Double bondsisomerization

Moses, J. E.; Baldwin, J. E.; Marquez, R.; Adlington, R. M.;Cowley, A. R. Org. Lett. 2002, 4, 373120

Ar O

Pyr

HO O

OMe

O

O2N

Proposed BiosyntheticPrecursor (6)

isomerization

Ar O

Pyr

H

8 CON

6

Proposed Biosynthesis of SNF4435 C and D

A

B

8 CON

A BA B

O

O2N

O

O

OMe O

O2N

O

O

OMe

7 8

Proposed Biosynthesis of SNF4435 C and D

Moses, J. E.; Baldwin, J. E.; Marquez, R.; Adlington, R. M.;Cowley, A. R. Org. Lett. 2002, 4, 3731

Biomimetic Synthesis of SNF4435C and D

O2NI

Me3SnSnMe3

Pd(MeCN)2Cl2,O2N

SnMe3

0.1eq Pd(PPh3)4,

2.0eqCsF, 0.2eq CuI,

DMF, 40 oC

IO

8

Conrotatory

HMPA, RT62%

Ar O

H

9 10

Beaudry, C. M.; Trauner, D. Org. Lett. 2005, 7, 447523

O OOMe

O

O2N

O

O

OMeO

O2N

O

O

OMe

Ar

Pyr11

6

7 8

Biomimetic Synthesis of SNF4435C and D

24Beaudry, C. M.; Trauner, D. Org. Lett. 2005, 7, 4475

Reason for 3:1 selectivity

O

PyrH

Ar HO

Ar

H

H

Pyr

6 Disrotatoryelectrocyclization

9 10

Jacobsen,M.F.; Moses,J.E.; Adlington,R.M.; Baldwin,J.E. Org. Lett., 2005, 7 , 247325

Pyr :

O

O

OMe

Ar : pNO2-Ph

Ar

O

Pyr

H

O

Ar

H

PyrH

11 12

Reason for 3:1 selectivity

26

Jacobsen,M.F.; Moses,J.E.; Adlington,R.M.; Baldwin,J.E. Org. Lett., 2005, 7 , 2473

Highlights of this biomimetic synthesis

• The ratio of SNF4435 C and SNF4435 D obtained from the chemical

synthesis agrees with the ratio of the natural abundances of these

compounds.

• This indicates that the 8π-6π electrocyclization cascade may be

completely substrate controlled even in nature and that enzymes

may play an insignificant role – if any – in the biosynthesis of these

compounds from Spectinabillin.

27Beaudry, C. M.; Trauner, D. Org. Lett. 2005, 7, 4475

Few of the Possible Biosynthetic Routes of Spontaneous Assembly

1. Electrocyclizations.

2. Dimerizations.2. Dimerizations.

3. Cascade Reactions

28

Dimerizations : The Biomimetic Synthesis of (-)-Stephacidin B

• Stephacidin B is an optically active, fungal alkaloid isolated from the

fermentation broth of Aspergillius ochraceus in 2001.

• Avrainvillamide had already been isolated from the same fungal species

in 2000.

Qian-Cutrone, J.; Krampitz, K.D.; Shu, Y.Z.; Chang, L.-P.; Lowe, S. E. Stephacidin Antitumor Antibiotics. U.S. Patent 6,291,461, 2001

29

Proposed Mechanism of Dimerization

30

Nussbaum, F.; Angew.Chem.Int.Ed., 2003, 42, 3068

Two Consecutive Michael Additions

31

Nussbaum, F.; Angew.Chem.Int.Ed., 2003, 42, 3068

Proposed biosynthesis of Stephacidin B

32

Nussbaum, F.; Angew.Chem.Int.Ed., 2003, 42, 3068

Dimerization of Avrainvillamide to Stephacidin B

Condition Yield of Stephacidin B ReferencesCondition Yield of Stephacidin B References

Et3N (50eq), MeCN200C, 1-3.5h

>95% conversion by NMR a, b, c

PTLC(SiO2, EtOAc)

15-20%(70-80% recovered 17)

b

DMSO then dried in vacuo

2:1 mixture of 18 and 17 b

a) Herzon, S.B., Myers, A.G. J. Am. Chem. Soc. 2005, 127, 5342b) Baran, P.S., Hafensteiner, B.D., Ambhaikar, N.B., Guerrero, C.A., Gallagher, J.D. J. Am. Chem.

Soc. 2006, 128, 8678.c) Artman III, G.D., Grubbs, A.W., Williams, R.M. J. Am. Chem.Soc. 2007, 129, 6336. 33

Retrodimerization of Stephacidin B

Condition Products

Herzon, S.B., Myers, A.G. J. Am. Chem. Soc. 2005, 127, 534234

Condition Products

Concentration of a MeCN-H2O solution38 °C

2:1 mixture of 17:18

3 Å molecular sieves1:1 DMSO d6:CD3CN

1h, 33°C1:2 mixture of 17:18

SiO2, PTLCPartial retrodimerization

No Yield Reported

Take Home Messages

• The dimerization of the fairly complex nitrone – Avrainvillamide –

seems to occur with great ease under a variety of conditions – basic,

acidic or neutral.

• Retrodimerization of Stephacidin B is also quite facile suggesting • Retrodimerization of Stephacidin B is also quite facile suggesting

that the ready interconversion of the monomer and dimer may be

feasible.

• This suggests that biosynthesis of Stephacidin B may result due to

the inherent reactivity of Avrainvillamide to dimerize.

35

Electrocyclization-Dimerization cascade :Synthesis of Torreyanic Acid

• Torreyanic Acid is a complex polycyclic molecule isolated by Leeand coworkers from various species of the fungus Pestalotiopsis.

• It was proposed that a spontaneous dimerization of a tricyclicprecursor can account for the formation of this heptacycliccompound

J. C. Lee, X. Yang, M. Schwartz, G. A. Strobel, J. Clardy, Chem. Biol. 1995, 2, 72136

Why was a dimerization proposed in the Biosynthesis of Torreyanic Acid?

HO2C

O

OO

O

OO

O

HO2C

O

H

H

Torreyanic Acid

OO

O

O

O

HO2C

OO

O

HO2C

A

B

C D A

B C

D

E

E

37

O

O

O

O

O

HO2C

O

O

O

O

O

O

O

O

HO2C

HO2C

O

O

O

HO2C

A

B

CD

E

A B

ED

C

Li, C.; Johnson, R.P.; Porco, J.A.; J. Am. Chem. Soc. 2003, 125, 5095.

Why was a dimerization proposed in the Biosynthesis of Torreyanic Acid?

Li, C.; Johnson, R.P.; Porco, J.A.; J. Am. Chem. Soc. 2003, 125, 5095.

But the key dimerization step can give 8 different stereoisomers

Li, C.; Johnson, R.P.; Porco, J.A.; J. Am. Chem. Soc. 2003, 125, 5095.

The more energetic transition states

OO

OO

HO2C

21

OO

OO

HO2C

Anti

Syn

OO

OO

HO2C

20

OO

OO

HO2C

Anti

Anti

Li, C.; Johnson, R.P.; Porco, J.A.; J. Am. Chem. Soc. 2003, 125, 5095.

OO

OO

HO2C

22

OO

OO

HO2C

Anti

Syn

OO

OO

HO2C

23

OO

OO

HO2C

Syn

Syn

Model studies of the dimerization

Li, C.; Johnson, R.P.; Porco, J.A.; J. Am. Chem. Soc. 2003, 125, 5095.

Model studies of the dimerization

• The n-pentyl chains are always anti to each other• The dienophile approaches diene from the face opposite to the

epoxide• Chiral epoxide was expected to give a single stereoisomer

Li, C.; Johnson, R.P.; Porco, J.A.; J. Am. Chem. Soc. 2003, 125, 5095.

Figuring out the most favorable transition state

Li, C.; Johnson, R.P.; Porco, J.A.; J. Am. Chem. Soc. 2003, 125, 5095.

O

O

O

O

O

O

O

O

HO2C

HO2CSyn

Syn

23

Biomimetic Synthesis of Torreyanic Acid

O

O

O

O

HO2C

Proposed Biosynthetic Precursor

OH

O

O

O

tBuO2C

Biosynthetic Precursor Mimic

OH

O

O Dess Martin OxidationO

O

C H

O

Li, C.; Johnson, R.P.; Porco, J.A.; J. Am. Chem. Soc. 2003, 125, 5095.44

OtBuO2C

Biosynthetic Precursor Mimic (29)

DCM, 23 oCO

C5H11

tBuO2C

O

O

O

C5H11

O

tBuO2C

O

O

O

C5H11

O

tBuO2C

30

31 32

Biomimetic Synthesis of Torreyanic Acid

O

O

O

O

O

O

O

O

tBuO2C

tBuO2C [4+2]

Dimerization

Torreyanic Acid di-tButyl Ester (33)

80% YieldO

O

O

O

O

O

O

O

tBuO2C

tBuO2CAnti

Syn

45Li, C.; Johnson, R.P.; Porco, J.A.; J. Am. Chem. Soc. 2003, 125, 5095.

48% HF, MeCN

1h, 70%

Torreyanic Acid

O

O

O

O

O

O

O

O

HO2C

HO2C

HO2C

O

OO

O

OO

O

HO2C

O

H

H

Torreyanic Acid

Take Home Messages

• Only 1 out of the 8 possible stereoisomers was predicted and

obtained using chemical synthesis. This product also happens to be

the only isolated stereoisomer of Torreyanic acid.

• This example highlights that enzymatic participation may be minimal

in the biosynthesis of Torreyanic Acid from the proposed biosynthetic

precursor.

46Li, C.; Johnson, R.P.; Porco, J.A.; J. Am. Chem. Soc. 2003, 125, 5095.

Few of the possible biosynthetic routes of spontaneous assembly

1. Electrocyclizations.

2. Dimerizations.2. Dimerizations.

3. Cascade Reactions.

47

Cascade reactionsThe biomimetic synthesis of bisorbicillinoids

O

Me

HO

HO

O

Me

OH

OH

O

Trichodimerol

HO

O

OHO

O

HO

Bisorbicillinol

O

OH

O

• Bisorbicillinoids are dodecapolyketides

isolated from a variety of fungal species.

• It is postulated that they are dimeric

sorbicillin-derived natural products

Abe,N., Murata, T., Hirota, A., Biosci. Biotechnol. Biochem.,1998, 62, 2120Nicolaou, K.C.; Snyder, S.A.; Classics in Total Synthesis II,Wiley-VCH, Weinheim, 2003, chap. 11,

p. 35148

Bisorbibutenolide

O

OH

O

OHO

O

O

OH

Cascade Reactions :The Biomimetic Synthesis of Bisorbicillinoids

O

HO

HO

O

OH

OH

O

Trichodimerol

HO

O

OHO

O

HO

Bisorbicillinol

O

OH

O

Abe,N., Murata, T., Hirota, A., Biosci. Biotechnol. Biochem.,1998, 62, 2120Nicolaou, K.C.; Snyder, S.A.; Classics in Total Synthesis II,Wiley-VCH, Weinheim, 2003, chap. 11,

p. 351

OH

OH

O

Bisorbibutenolide

O

OH

O

O

HO

O

O

OH

Sorbicillin

Abe’s Biosynthetic Hypothesis

OH

OH

O

EnatioselectiveOxidation

Sorbicillin

OH

O

OR

HO

O

R

OH

OR

HO

[O]

35 35'

HO

R

O

O

HOR

O

OH

OH

O

Trichodimerol

HO

O

OHO

O

HO

R

Bisorbicillinol

O

OH

Abe,N., Murata, T., Hirota, A., Biosci. Biotechnol. Biochem.,1998, 62, 2120

Bisorbicillinol : A product of [4+2] dimerization

Abe,N., Murata, T., Hirota, A., Biosci. Biotechnol. Biochem.,1998, 62, 2120

HOR

O

O

OH

OOH

HO

O

R 1

6

5

11

12

23

4

Bisorbicillinol : A product of [4+2] dimerization

O

OH

HO

O

R

O

HO

OH

R

O

11

12

12

3

4

5

6

R =

35 35'

Abe,N., Murata, T., Hirota, A., Biosci. Biotechnol. Biochem.,1998, 62, 2120

Biomimetic Synthesis of Bisorbicillinol

Nicolaou, K.C.; Simonsen, K.B.; Vassilikogiannakis, G.; Baran, P.S.; Vidali, E.; Pitsinos, N.; Couladouros, E.A.; Angew.Chem. Int. Ed. 1999, 38, 3555 53

HO

O

OH

R

O

HO

O

R

O

OH2 12

5

11

4

3

1

6

Diene Dienophile

Biomimetic Synthesis of Bisorbicillinol

Nicolaou, K.C.; Simonsen, K.B.; Vassilikogiannakis, G.; Baran, P.S.; Vidali, E.; Pitsinos, N.; Couladouros, E.A.; Angew.Chem. Int. Ed. 1999, 38, 3555

HO

O

OH

R

O

HO

O

R

Bisorbicillinol22%

O

OH

1

6

23

45 11

12

R =

In all structures:

Trichodimerol : A product of consecutive Michael Addition – Ketalization reactions

HO

O

O

HO

O

OH

OH

O

Trichodimerol

O

HO

HO

OOH

OO1

2

3

45

Ketalization

OH

36

Nicolaou, K.C.; Simonsen, K.B.; Vassilikogiannakis, G.; Baran, P.S.; Vidali, E.; Pitsinos, N.; Couladouros, E.A.; Angew.Chem. Int. Ed. 1999, 38, 3555

Biosynthetic Hypothesis for Trichodimerol

O

HO

HO

OOH

OO

1

2

3

45

Michael

OH

36

Nicolaou, K.C.; Simonsen, K.B.; Vassilikogiannakis, G.; Baran, P.S.; Vidali, E.; Pitsinos, N.; Couladouros, E.A.; Angew.Chem. Int. Ed. 1999, 38, 3555

O

HO

HO

O

O

O

OHHO

Addition

54

32

1

37

Biosynthetic Hypothesis for Trichodimerol

Nicolaou, K.C.; Simonsen, K.B.; Vassilikogiannakis, G.; Baran, P.S.; Vidali, E.; Pitsinos, N.; Couladouros, E.A.; Angew.Chem. Int. Ed. 1999, 38, 3555

O

OO

HO

OHO

HOHO

5

1

2

3

46

7

89

1011

12

O

OO

HO

51

2

3

46

O

HOHO

7

89

1011

12

H

MichaelAddition

35

Biosynthetic Hypothesis for Trichodimerol

OHO

OO

O

OH

HO

O

O

HO

OH

O

35'

35 35'

Nicolaou, K.C.; Simonsen, K.B.; Vassilikogiannakis, G.; Baran, P.S.; Vidali, E.; Pitsinos, N.; Couladouros, E.A.; Angew.Chem. Int. Ed. 1999, 38, 3555

Biomimetic Synthesis of Trichodimerol

Nicolaou, K.C.; Simonsen, K.B.; Vassilikogiannakis, G.; Baran, P.S.; Vidali, E.; Pitsinos, N.; Couladouros, E.A.; Angew.Chem. Int. Ed. 1999, 38, 3555

Biomimetic synthesis of Trichodimerol

O

O

O

HO

H

Micheal Addition R =

In all structures

OH

O

O

HO

1

2

34

5

6 11

12

Nicolaou, K.C.; Simonsen, K.B.; Vassilikogiannakis, G.; Baran, P.S.; Vidali, E.; Pitsinos, N.; Couladouros, E.A.; Angew.Chem. Int. Ed. 1999, 38, 3555

Micheal Addition R =

O

O

OR

HO

OH

OH

OR

HO

O

O

OR

HO

OH

OH

OR

HO

H

H

1

2

34

5

6

11

12

1 2

34

5

6

11 12

38 38

7

7

8

8

9

9

10

10

Biomimetic synthesis of Trichodimerol

Nicolaou, K.C.; Simonsen, K.B.; Vassilikogiannakis, G.; Baran, P.S.; Vidali, E.; Pitsinos, N.; Couladouros, E.A.; Angew.Chem. Int. Ed. 1999, 38, 3555

Biomimetic synthesis of Trichodimerol

Nicolaou, K.C.; Simonsen, K.B.; Vassilikogiannakis, G.; Baran, P.S.; Vidali, E.; Pitsinos, N.; Couladouros, E.A.; Angew.Chem. Int. Ed. 1999, 38, 3555

Take home messages

• Diels-Alder dimerization and Michael addition – Ketalization

cascades must be competing processes as both natural products

are isolated in nature.

• Further rearrangement of these two natural products result in • Further rearrangement of these two natural products result in

formation of other related natural products.

• Enzymatic participation may be limited to the activation of Sorbicillin

63Nicolaou, K.C.; Simonsen, K.B.; Vassilikogiannakis, G.; Baran, P.S.; Vidali, E.; Pitsinos, N.;

Couladouros, E.A.; Angew.Chem. Int. Ed. 1999, 38, 3555

Biomimetic Synthesis can also raise questions about biosynthetic hypotheses.

Biomimetic synthesis of 9,10-deoxytridachione

• 9,10-deoxytridachione wasisolated from the molluskTridachiella diomedea in 1981.

• It seems to be derived from a 6π

electrocyclization of a polyeneprecursor.

Ireland, C.; Faulkner, J.; Tetrahedron, 1981, 37, 233

Biomimetic synthesis of 9,10-deoxytridachione

Moses, J.E.; Adlington, R.M.; Rodriguez, R.I, ; Eade, S.J.; Baldwin, J.E. Chem. Commun., 2005,

1687

Rationalization for the formation of Occelapyrone A

O

OMeO

E E Z

E

O

O

OMe

E Z

Z E

4244

8 -6electrocyclization

cascade

OO

MeO

O

Me

HMe

O

OMe

Occelapyrone A (43)

44

Moses, J.E.; Adlington, R.M.; Rodriguez, R.I, ; Eade, S.J.; Baldwin, J.E. Chem. Commun., 2005,

1687–1689

Rational biomimetic synthesis of Occelapyrones A and B

67Miller, A. K.; Trauner, D. Angew. Chem., Int. Ed. 2005, 44, 4602.

Biomimetic Synthesis of Occelapyrones A and B

• Occelapyrones have been isolated as single enantiomers in nature.

• Biomimetic Synthesis raises several questions:

– Can enzyme mediation be ruled out completely?

– Is the achiral polyene the real biosynthetic precursor?

– Is there an alternate biosynthetic pathway that does not involve

electrocyclization?

68Miller, A. K.; Trauner, D. Angew. Chem., Int. Ed. 2005, 44, 4602.

Conclusions

• While the role of enzymes in biosynthesis cannot be understated, alternate modes of assembly of complex natural products may exist in nature.

• Spontaneous assembly can – to some extent – account for the highly effective exploration of chemical space by nature.

• Biomimetic synthesis can go a long way in bolstering the hypotheses of spontaneous self-assembly.

• However, the conclusions drawn by biomimetic syntheses are at times ambiguous.

69

Acknowledgements

Dr. Babak Borhan

Aman Kulshrestha, Atefeh Garzan, Calvin Grant,

Camille Watson, Carmin Burrell, Chrysoula

Vasileiou, Dan Whitehead, Sing Lee, Kumar

Ashtekar, Mercy Anyika, Roozbeh Yousefi,

Sarah Marshall, Tanya Berbasova, Toyin

Olumulade, Wenjing Wang, Xiaofei Jia,

Xiaouyong Li and Neha

70