assessment of dft methods for solids · 3 mssc2009 - september, 10th 2009 - raffaella demichelis -...

31
ASSESSMENT OF DFT METHODS ASSESSMENT OF DFT METHODS FOR SOLIDS FOR SOLIDS Università di Torino Dipartimento di Chimica IFM MSSC2009 - Ab Initio Modeling in Solid State Chemistry Raffaella Demichelis MSSC2009 - September, 10 th 2009

Upload: others

Post on 28-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

1

ASSESSMENT OF DFT METHODSASSESSMENT OF DFT METHODSFOR SOLIDSFOR SOLIDS

Università di TorinoDipartimento di Chimica IFM

MSSC2009 - Ab Initio Modeling in Solid State Chemistry

Raffaella Demichelis

MSSC2009 - September, 10th 2009

Page 2: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

2

Table of Contents

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT: a quick overview

PBE’s type functionals

Hybrid GGA functionals

DFT & CRYSTAL

CRYSTAL input for DFT calculation

DFT functionals available in CRYSTAL

Integration grid and numerical accuracy control

Performance of DFT functionals for describing periodic systems quasi-1D systems: SWCNTs and Chrysotile

Aluminosilicates

Relative stability of polymorphs

Page 3: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

3

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT energy

The Jacob’s Ladder(Perdew, Schmidt; AIP Conf. Proc. 2001, 577, 1-20)

LDAGGA

meta-GGA Exact exchange, compatible correlation

DFT: a quick overview

Hohenberg, Kohn; Phys. Rev. 1964, 136, 864Kohn, Sham, Phys. Rev. 1965, 140, 1133

DFT HEAVEN

E=E[ρ(r)]=Enuclear+Ekinetic+Enucl-electron+Ecoulomb+EXC

Exact exchange, exact partial correlation

HARTREE WORLD

Page 4: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

4

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT: a quick overview

PBE’s type exchange functionals

EX= !"#X ," [!" ]$

"% F(s" [!" ,&!" ])dr

Spin density

Reduced spin density

Exchange energy density

Different forms of F(sσ) were proposed:

PBE (1996) WC* (2006)revPBE (1998) PBEsol* (2008)RPBE (1999) SOGGA* (2008) [1/2 PBE+ 1/2 RPBE]mPBE (2002) *CRYSTAL09

(B. Civalleri - 2008)

Page 5: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

5

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT: a quick overview

HF/DFT hybrid functionals

EXC=a*[EX(HF)-EX(DFT)] + EXC(DFT) (e.g. PBE0)

a=fraction of exact exchange

EX=(1-a)*[EX(LDA)+b*EX(XXX)]+a*EX(HF) EC=(1-c)*EC(VWN)+c*EC(YYY)

(XXX, YYY: non-local exchange and correlation)

(e.g. B3LYP: XXX=B, YYY=LYP B3PW: XXX=B, YYY=PW91)

Page 6: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

6

Use of hybrid functionals in solid state simulation

*a matter of discussion in the scientific community•claimed lacks in accuracy•use of empirical parameters•bad description of narrow-gap and conducting systems•…

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT: a quick overview

HF/DFT hybrid functionals

*largely diffuse (e.g. B3LYP, B3PW, PBE0) and often provedto provide the best results for structural, electronic, thermodynamical and dynamical properties of non-conducting systems (in particular H-containing systems)

F. Corà, M. Alfredsson, G. Mallia, D.S. Middlemiss, W.C. Mackrodt, R. Dovesi, R. Orlando, Volume 113, 171-232.Springer-Verlag, Heidelberg (2004).

Page 7: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

7

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT: a quick overview

HF/DFT hybrid functionalsThe example of Brucite, Mg(OH)2

Differences between calculated and experimental results:a,c: lattice parameters, Å ΔV%: volumes, relative difference (calc-exp)/exp*100OH: bond length of OH group, Å v: anharmonic stretching of the OH oscillator, cm-1

Hybrids

Page 8: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

8

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT: a quick overview

HF/DFT hybrid functionals

SVWNPBEB3LYPPBE0HFExp. -3.65

J/K

KMnF3 exchange coupling constant

(J in Kelvin)Calculated by A. Meyer,

CRYSTAL06, 2009

pyrope grossular andradite spessartine uvaroviteSVWN PBEB3LYPPBE0HFExp. 3.06 2.96 3.53 3.24 3.42

Calculated vs experimental dielectric constants ofgarnets. No experimental data for almandine

Open-shellClosed-shell

A. Meyer, M. Ferrero, L. Valenzano, C. M. Zicovich-Wilson, R. Orlando, R. DovesiIn preparation

Page 9: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

9

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT & CRYSTAL

CRYSTAL input for DFT calculation

title1 - GEOMETRY block2 - BASIS SET block3 - HAMILTONIAN and SCF block

Structure ofCRYSTAL input

DFToptionsEND

Options:1 - Choice of the exchange-correlation functionals2 - Integration grid and numerical accuracy control3 - Atomic parameters(and add SPIN for open-shell systems)

DFT input block

In block 3:

For points 2-3 default values are suppliedPoint 1 must be set

Page 10: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

10

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT & CRYSTAL

DFT functionals available in CRYSTAL

EXCHANGE CORRELATION

LDA LDA (=S) PWLSDVWNPZ

VBH VBH

GGA BECKE LYPPWGGA (=PW91) PWGGA (=PW91)PBE PBEPBESOL* PBESOL*WCGGA* (=WC) P86SOGGA* WL

(References in the CRYSTAL users’ manual)*CRYSTAL09

Page 11: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

11

CRYSTAL input for DFT calculation

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT & CRYSTAL

DFTEXCHANGE……..CORRELAT……..

If not set, EX(HF) used

If not set, no EC

Percentage of EX(HF), if notset: pure DFT

Non-local weightingparameters for EC

HYBRID…NONLOCAL… …

1 - Choice of the functional

Page 12: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

12

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT & CRYSTAL

GLOBAL KEYWORDS EXCHANGE CORRELAT HYBRID NONLOCAL

SOGGAXC* SOGGA PBE - -

PBE1PBE* PBE PBE 25 -(PBE0)

B3PW BECKE PWGGA 20 0.9 0.81

B3LYP BECKE LYP 20 0.9 0.81

(References in the CRYSTAL users’ manual)

CRYSTAL input for DFT calculation

1 - Choice of the functional

*CRYSTAL09

Page 13: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

13

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT & CRYSTAL

Integration grid and numerical accuracy control

EXC and its gradient are evaluated by numerical integration over the cell volume: an integration grid is required

- Grid based on atomic partition method (Becke), Vcell partitioned into atomic volumes: VA centered on atom A

- Radial and angular components (Gauss-Legendre radial quadrature, Lebedev 2-dimensional angular point distribution;

points associated to a weight, w)Uniform (or unpruned) grid

Page 14: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

14

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT & CRYSTAL

Integration grid and numerical accuracy control

For reducing the grid size and maintaining its effectiveness:

pruned grid (not radially uniform):

the number of angular points is maximum in the valence regionand gradually decreases in both directions

Page 15: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

Mg

O

O

O

O

Radial points: Gauss’ formula(nr=number of radial points)

Angular points: Lebedev distribution(L=Lebedev accuracy parameter)

001 plane of a unit cell of MgO

Grid of Mg

Grid of O

The example of MgO(R. Orlando - 2006)

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT & CRYSTAL

Integration grid and numerical accuracy control

Page 16: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

Integration grid and numerical accuracy control

unpruned grid pruned grid

nr=55 L=13

nr=75 L=13

nr=75 L=16

-275.43121602 (31878)

-275.43123518 (42956)

-275.43127155 (96038)

-275.43123079 (11552)

-275.43123451 (20542)

-275.43127167 (41530)(R. Orlando - 2006)

DFT & CRYSTAL

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

Page 17: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

size of grid

telapsed (s)

20542

7.27

41530

14.13

11552

4.41

55, 13 75, 13 75, 16

41530

1437

14.13

1.56

20542

882

7.27

0.86

11552

513

4.41

0.42MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT & CRYSTAL

Integration grid and numerical accuracy control: use of symmetry

(R. Orlando- 2006)

Page 18: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

18

CRYSTAL input for DFT calculation

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT & CRYSTAL

RADIAL… … …ANGULAR… … …

2 - Integration grid and numerical accuracy control

Number of intervals, integration interval limits,number of radial points in the ith interval, nr

Number of intervals, integration interval limits,accuracy level (L) of each integral

Page 19: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

19

CRYSTAL input for DFT calculation

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT & CRYSTAL

RADIAL14.055ANGULAR100.4 0.6 0.8 0.9 1.1 2.3 2.4 2.6 2.8 9999.01 2 5 8 11 13 11 8 5 1

Angular points generated(38 50 110 194 302 434 302 194 110 38)

Default grid: (55,434)p -- 434 angular points in the valence region

2 - Integration grid and numerical accuracy control

L

nr

Page 20: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

20

CRYSTAL input for DFT calculation

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT & CRYSTAL

GLOBAL KEYWORDS:LGRID --> nr=75, L=13; (75,434)pXLGRID --> nr=75, L=16; (75,974)p

XXLGRID --> nr=99, L=18; (99,1454)p(see CRYSTAL users’ manual for details)

Numerically integrated density (NID)Diaspore, 4AlOOH in the unit cell, 120 electrons

Grid NID ΔDEFAULT 119.998710 1.3E-03 XLGRID 120.000054 -5.4E-05XXLGRID 119.999986 1.4E-05(nr=99,L=22) 119.999999 1.0E-06

2 - Integration grid and numerical accuracy control

Page 21: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

21

CRYSTAL input for DFT calculation

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT & CRYSTAL

2 - Integration grid and numerical accuracy control

default LGRID XLGRID 75,16 unpr 75,18 unpr

18 (IR+Raman+silent)Average of Abs diff.Maximum differenceMinimum differenceGrid pointsµ-electron (TOT: 100 e)µ-hartreeÅÅ

Calcite: effect of the grid on geometry and vibrational modes

M. Prencipe, F. Pascale, C. M. Zicovich-Wilson, V. R. Saunders, R. Orlando, R. Dovesi; Phys. Chem. Miner.,2004, 31, 559-564

0 Reference00

0

Page 22: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

22

CRYSTAL input for DFT calculation

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT & CRYSTAL

2 - Integration grid and numerical accuracy control

55,434 77’870 0.9621 382275,434 106’210 0.9623 3843 (LGRID) 49’894 0.0002 -0.899,434 140’038 0.9622 384255,974 174’066 0.9619 382475,974 237’164 0.9619 3846 (XLGRID) 100’554 0.0001 -1.499,974 311’570 0.9619 384499,1454 463’462 0.9619 3844

nr,L N. points O-H ν(OH)h Pruned Np O-H ν(OH)h

(uniform)

OH vibrational data of brucite:Effect of pruned and unpruned grid size

S. Tosoni, F. Pascale, P. Ugliengo, R. Orlando, V. R. Saunders, R. Dovesi; Mol. Phys., 2005, 103, 2549-2558

Page 23: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

23

CRYSTAL input for DFT calculation

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT & CRYSTAL

2 - Integration grid and numerical accuracy control

Details on the grid size and its performance:

M. Prencipe, F. Pascale, C. M. Zicovich-Wilson, V. R. Saunders, R. Orlando,R. Dovesi; Phys. Chem. Miner., 2004, 31, 559-564

F. Pascale, C. M. Zicovich-Wilson, R. Orlando, C. Roetti, P. Ugliengo, R.Dovesi; J. Phys. Chem. B, 2005, 109, 6146-6152

S. Tosoni, F. Pascale, P. Ugliengo, R. Orlando, V. R. Saunders, R. Dovesi;Mol. Phys., 2005, 103, 2549-2558

Page 24: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

24

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

DFT & CRYSTAL

CRYSTAL input for DFT calculation

2 - Integration grid and numerical accuracy control- unpruned grid can be set- thresholds on grid weigths and electronic density can be increased ordecreased with respect to default- different methods for the point weights- keywords for memory menagement

3 - Atomic parameters - set atomic radius and formal charge different fromthe computed one

(see CRYSTAL users’ manual for details)

Page 25: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

25

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

Performance of DFT functionals for describing periodic systems

TEST SYSTEMS:

+ SW-carbon nanotubes+ SW-chrysotile

+ aluminium hydroxides semi-ionic, H-containing, HBs, layered and non-layered

+ brucite semi-ionic, H-containing, no HBs, layered+ orthosilicates semi-ionic, H-free+ garnets “ “+ olivine “ “+ Si and Al oxides “ “(+ diamond, silicon pure-covalent, “) work in progress(+ MgO pure-ionic, “) work in progress

quasi-1D

3D

POSTER N. 4R. Demichelis, B. Civalleri,Y. Noel and R. Dovesi

TEST FUNCTIONALS: SWVN, SPWLSD (LDA)PBE, PW91, PBEsol,WC-PBE,SOGGA-PBE (GGA)B1WC, WC1LYP, B3PW, B3LYP, PBE0 (hybrids)

Page 26: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

26

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

Performance of DFT functionals for describing periodic systems

SWCNTs: all the tested DFT functionals (LDA, GGA, hybrids)provide reasonable results for structure, energetics andvibrational frequencies. The choice of Hamiltonian iscrucial for the description of the band gap.

Chrysotile: comparison PBE0 vs B3LYP. Both provide good structures and relative stability. PBE0 structural data arehowever more accurate.

Quasi-1D systems

P. D'Arco, Y. Noel, R. Demichelis, R. Dovesi (2009) J. Chem. Phys., accepted

R. Demichelis, Y. Noel, P. D'Arco, R. Dovesi (2009) in preparation.

Page 27: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

27

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

Performance of DFT functionals for describing periodic systems

Aluminosilicates

Page 28: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

28

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

Performance of DFT functionals for describing periodic systems

Aluminosilicates

ΔV%

1- R. Demichelis, B. Civalleri, MFerrabone and R. Dovesi;Int. J. Quantum Chem. (2009)DOI: 10.1002/qua.22301

2- R. Demichelis, B. Civalleri, P.DʼArco, R. Dovesi; (2009) inpreparation

Page 29: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

29

Page 30: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

30

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

Performance of DFT functionals for describing periodic systems

The relative stability of the polymorphs

Page 31: ASSESSMENT OF DFT METHODS FOR SOLIDS · 3 MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids DFT energy The Jacob’s Ladder (Perdew, Schmidt;

31

MSSC2009 - September, 10th 2009 - Raffaella Demichelis - Assessment of DFT methods for solids

Performance of DFT functionals for describing periodic systems

In general:

+

++

1- R. Demichelis, B. Civalleri, P. DʼArco, R. Dovesi; (2009) in preparation

+

2- L. Valenzano, M. Ferrabone, B. Civalleri, R. Dovesi; (2009) in preparation

The relative stability of the polymorphs