atmospheric formation of ultrafine particles...220 fixed size sections ranging in size from 0.8 nm...

76
1 Atmospheric Formation of Ultrafine Particles Charles Stanier, Assistant Professor University of Iowa Department of Chemical and Biochemical Engineering [email protected]

Upload: others

Post on 10-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Atmospheric Formation of Ultrafine Particles

    Charles Stanier, Assistant ProfessorUniversity of IowaDepartment of Chemical and

    Biochemical [email protected]

  • 2

    Outline

    What is atmospheric new particle formationSome examples

    Physical measurementsChemical measurementsModeling

    What fraction of particles are from new particle formation vs. combustion?

  • 3

    What is Nucleation?

    Molecules

    Neutral or ion clusters

    Ternary or Ion-Induced Nucleation

    Detectable Aerosol Particles0.01-10 cm-3s-1 regional eventsup to 105 cm-3s-1 in plumes

    Initial Growth

    Further Growth (1-20 nm/hr)

    CCNAmmoniumSulfateOrganics~ 1 nm 3 nm

    LossBy

    CondensationTo Pre-existingSurface Area

  • 4

    Nucleation Overview

    SO2(g) + OH· + H2O →HO2· + H2SO4·nH2O

    SO2

    NH3

  • 5

    Nucleation Observations

    Kulmala, McMurry, et al. (2004) J. Aerosol Sci. 35 pp. 143-176

  • 6

    Particle Size

    nmµm

    10.001

    100.01

    1000.1

    1,0001 10 100

    Ultrafine

    Fine Particles (< 2.5 µm)

    Con

    cent

    ratio

    n Number Distribution

    Mass Distribution

  • 7

    Diurnal Pattern

    0

    20,000

    40,000

    60,000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

    Hour

    3-50

    0 nm

    Par

    ticle

    Cou

    nt (c

    m-3

    )

    Non-nucleation w orkdays Non-nucleation w eekends

    Regional nucleation days

    (b)

    0

    20,000

    40,000

    60,000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

    Hour

    3-50

    0 nm

    Par

    ticle

    Cou

    nt (c

    m-3

    )

    Non-nucleation w orkdays Non-nucleation w eekends

    Regional nucleation days

    (b)

    Non-nucleation w orkdays Non-nucleation w eekends

    Regional nucleation days

    (b)

  • 8

    0 25 50 75 100

    Number vs. Mass Distribution

    Pittsburgh, PA2001-2002

    Aerosol Mass (µg/m3)

    Num

    ber

    (#/c

    m3 )

    10x104

    20x104

    Negative correlationRelated to nucleation activityOccurring over wide area

  • 9

    New Particle Formation vs. Visibility

    USX Tower

    USX Tower

  • 10

    Other Aerosol Impacts: Visibility & Climate

    EPA (2001) National Air Quality: Status and Trends

    Yosemite, CA

    CloudFormation

    CloudParticles

    ScatteredRadiation

    ScatteredRadiation

    Earth

    Sun

    CloudFormation

    CloudParticles

    ScatteredRadiation

    ScatteredRadiation

    Earth

    Sun

  • 11

    Physical Measurements

  • 12

    Dry-Ambient Aerosol Size Spectrometer

    Reconfigured commercial instrumentsRH control systemInlet particle losses characterizationCustom control, data acquisition, and data reduction software

  • 13

    Nucleation Frequency by Month

    0%

    50%

    100%

    Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

    > 1-hr Duration < 1-hr Duration None

    2001 2002

    Frac

    tion

    of

    Day

    s W

    ith

    Nu

    clea

    tion

    Significant fraction of days (30%+)Most prevalent in spring, fall

    Pittsburgh 2001-2002

  • 14

    Example: No NucleationP

    arti

    cle

    Size

    (n

    m)

    10

    100

    500

    00:00Time of Day

    06:00 12:00 18:00 24:00

    105

    104

    103

    102

    Res

    pon

    sedN

    /dlo

    gDp

    (cm

    -3)

    Nu

    mbe

    r (#

    /cm

    3)

    12x104

    6x104

    Pittsburgh, August 10, 2001

  • 15

    Example: Weak Nucleation

    105

    104

    103

    102

    Res

    pon

    sedN

    /dlo

    gDp

    (cm

    -3)

    Par

    ticl

    e Si

    ze (

    nm

    )

    10

    100

    500

    Nu

    mbe

    r (#

    /cm

    3)

    12x104

    6x104

    00:00Time of Day

    06:00 12:00 18:00 24:00

    Pittsburgh, July 2, 2001

  • 16

    Sunlight and New Particle Formation

    SUNRISE

    Cloudy Morning

    00:00Time of Day

    06:00 12:00 18:00 24:00

    Cloud Free Morning

    Par

    ticl

    e Si

    ze (

    nm

    )

    10

    100

    500

    10

    100

    500Pittsburgh

    Nov 10, 2001

    PittsburghNov 11, 2001

  • 17

    Nucleation’s Spatial Coverage

    Method: simultaneous sampling

    WindPittsburgh Philadelphia

    RuralSampler

    Main (Urban)Sampler

    PhiladelphiaSampler

    38 km 400 km

  • 18

    Spatial Coverage ResultP

    arti

    cle

    Size

    (n

    m)

    10

    100

    200

    10

    100200

    38 km apartFebruary 25, 2002

    Pittsburgh

    38 km Upwind Rural Location

    400 km apartJuly 2, 2001

    Pittsburgh

    Philadelphia

  • 19

    Diurnal Pattern

    0

    20,000

    40,000

    60,000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

    Hour

    3-50

    0 nm

    Par

    ticle

    Cou

    nt (c

    m-3

    )

    Non-nucleation w orkdays Non-nucleation w eekends

    Regional nucleation days

    (b)

    0

    20,000

    40,000

    60,000

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

    Hour

    3-50

    0 nm

    Par

    ticle

    Cou

    nt (c

    m-3

    )

    Non-nucleation w orkdays Non-nucleation w eekends

    Regional nucleation days

    (b)

    Non-nucleation w orkdays Non-nucleation w eekends

    Regional nucleation days

    (b)

  • 20

    Chemical Measurements

  • 21

    Aerosol Mass Spectrometer

    Zhang, Q.; Jimenez, J.L.; Caragaratna, M.; Worsnop, D.

  • 22

    Aerosol Mass Spectrometer

    Particle Inlet (1 atm)

    Jayne et al., Aerosol Science and Technology 33:1-2(49-70), 2000.Jimenez et al., Journal of Geophysical Research, in press, 2002.

    QuadrupoleMass Spectrometer

    Thermal Vaporization

    &Electron Impact

    Ionization

    Aerodynamic Lens

    (2 Torr)

    Chopper

    Turbo Pump

    Turbo Pump

    Turbo Pump

    Time of Flight Region

    Particle BeamGeneration

    Aerodynamic Sizing Particle Composition

  • 23

    September 12, 2002 Nucleation EventP

    arti

    cle

    Size

    (n

    m)

    10

    100

    500

    00:00 06:00 12:00 18:00 24:00

  • 24

    September 12, 2002 Nucleation EventP

    arti

    cle

    Size

    (n

    m)

    10

    100

    500

    00:00 06:00 12:00 18:00 24:00

    50%

    0%

    100%

    Mas

    s Fr

    acti

    on1

    0-6

    0 n

    m

    Nitrate

    Ammonium

    SulfateOrganics

    Mass Fraction (10-60 nm Particles) Aerosol Mass Spectrometer*

    *Zhang & Jimenez (Univ. Colorado-Boulder)

  • 25

    Chemistry of Growth: Particle Mass Spectra at 20-33 nm

    Detection of Nucleationby Particle Sizer

    Zhang, et. al. Insights into the Chemistry of Nucleation Bursts and New Particle Growth Events in Pittsburgh based on Aerosol Mass Spectrometry. Environ. Sci. Technol., in press.

  • 26

    Modeling

  • 27

    Chemistry of Nucleation: Simulation1

    SO2(g) + OH· + H2O →HO2· + H2SO4·nH2O

    SO2

    Inputs Processes Modeled OutputPreexisting Aerosol Distribution

    SO2 ConcentrationNH3 ConcentrationUV Light IntensityTemperature & RH

    NH3

    SO2 Oxidation to H2SO4H2SO4-H2O-NH3 Nucleation

    H2SO4 CondensationParticle Coagulation

    Predicted Aerosol Distribution

    1Model adapted from Capaldo, Kasibhatla, Pandis. J. Geophys. Res., 1999.

  • 28

    Modeling H2SO4 Nucleation

    Photochemical box model

    Modeled gas-phase species:SO2, H2SO4, OH, NH3SO2 measured, OH and NH3 calculated from measurements

    220 fixed size sections ranging in size from 0.8 nm to 10 µm

    T, RH, SO2 and UV radiation from measurements

    Initial distribution available from dry size distributions

    Maximum OH concentration assumed for each month, scaled based onUV

    5 x 106 molecules/cm3 in summer11 x 106 molecules/cm3 in winter2

    1Ren et al. (2003)2Heard et al. (2001)

  • 29

    Comparison on July 27, 2001

    Model predicted presence or lack of nucleation on all 19 daysTiming of onset of nucleation within one hour of observations for all 13 eventsSize and shape of growth curve consistent with observationsHigh number concentrations predicted

  • 30

    Comparison on January 28, 2002

    25 out of 29 days predicted correctlyTiming of onset of nucleation not as good (6 of 12 within one hour)Growth generally underpredictedwith two exceptionsHigh number concentrations predicted

  • 31

    Sensitivities

    NPF is thought to be sensitive to:PM2.5 ↓ NPF ↑Ammonia ↑ NPF ↑ (but not sure how strong this effect)SO2 ↓ NPF ↓ (if NH3 in excess … that covers

    most locations)SO2 ↓ NPF ↑ (if NH3 limited, e.g. northeast U.S.

    in summer)Reactive VOCs ↓NPF ? – but growth of particles will be

    limited – so they will not last aslong in the atmosphere

    0102030405060708090100

    -100-80 -60 -40 -20 0 20 40 60 80 1000

    2

    4

    6

    8

    10

    12

    14

    16

    18

    Day

    s w

    ith n

    ucle

    atio

    n

    Change in SO2 Concentration (%)

    July

    % o

    f mod

    eled

    day

    s

  • 32

    What fraction of ultrafines are from NPF?

    To a large extent, we do not knowWill vary by locationNPF most important at midday and afternoons

    Traffic

    Smog

    and

    Reg

    iona

    l Haz

    e NPF LessImportant

    NPF MoreImportant

    Threshold chemistrystill Unclear (SO2 + ???)and will vary from place to pla

  • 33

    Traffic

    Smog

    and

    Reg

    iona

    l Haz

    e NPF LessImportant

    NPF MoreImportant

    Heavy TrafficUrban

    AfternoonDownwindSuburbs

    Rura

    l U.S

    .

  • 34

    0

    10000

    20000

    30000

    40000

    50000

    0:00 6:00 12:00 18:00 0:00

    #/cc

    C C a t c e Cou t (b ue) s S S a t c e Cou t ( ed)Pa

    rtic

    le S

    ize

    (nm

    )

    Res

    pons

    edN

    /dlo

    gDp

    (cm

    -3)

    Bondville Illinois, 2005

    Traffic

    Smog

    and

    Reg

    iona

    l Haz

    e NPF LessImportant

    NPF MoreImportant

  • 35

    Mexico City Mar 17, 2006

    Traffic

    Smog

    and

    Reg

    iona

    l Haz

    e NPF LessImportant

    NPF MoreImportant

  • 36

    Pittsburgh PA

    NOV 1

    NOV 2

    NOV 3

  • 37

    Pittsburgh PA

    NOV 1

    NOV 2

    NOV 3

    Traffic

    Smog

    and

    Reg

    iona

    l Haz

    e NPF LessImportant

    NPF MoreImportant

  • 38

    DOWNY DEC 2000 RIVERSIDE MAY 2001

  • 39

    DOWNY DEC 2000 RIVERSIDE MAY 2001

    Traffic

    Smog

    and

    Reg

    iona

    l Haz

    e NPF LessImportant

    NPF MoreImportant

  • 40

    Future Work

    In the process of summarizing comparisons between Pittsburgh, Rochester, New York City, Atlanta, LA, and St. Louis.Unify measurements, detailed modeling, and a “screening” model that attributes ultrafines to traffic vs. new particle formationSort out some details of chemistry and meteorologyMonitor how implementation of further sulfur reductions from power plants, and advanced diesel influence new particle formation

  • 41

    Acknowledgements

    Students:Alicia Kalafut – Ultrafine Particle SamplingKazeem Olanrewaju – Ultrafine Particle Modeling

    University of Iowa Callaborators:Greg Carmichael, Jerry Schnoor, Bill Eichinger

    Carnegie Mellon Collaborators:Spyros Pandis, Tim Gaydos, Andrey Khlystov,

    Outside Collaborators:Allen Williams

    Illinois Soil and Water SurveyPeter McMurry

    University of MinnesotaJimenez Group, University of Colorado-Boulder

    Jose-Luis Jimenez & Qi Zhang

  • 42

    Additional Material

    Modeling FrameworkFuture WorkMeasurement TechniqueTraffic and ModelingBondvilleMexicoBackground on PM

  • 43

    Modeling framework

  • 44

    Modeling H2SO4 Nucleation

    Photochemical box modelModeled gas-phase species:

    SO2, H2SO4, OH, NH3SO2 measured, OH and NH3 calculated from measurements

    220 fixed size sectoins ranging in size from 0.8 nm to 10 µm

    ( ) ( )( ) ( )

    4242

    42

    42

    42

    ,

    ,,,,,, 3*

    2

    SOHdepSOHSOH

    cond

    SOHnucgasSOH

    CRRHCR

    RHTNHCRnPTOHSORt

    C

    −+

    +=∂

    ( )( ) ( ) ( )idepSOHNcondjcoag

    SOHnuci

    NRRHCRRHNR

    RHTNHCRt

    N

    i −++

    =∂∂

    ,,

    ,,,

    42

    42 3

  • 45

    Sulfuric Acid Nucleation Formation

    SO2 + OH· + M → HOSO2· + MHOSO2· + O2 → HO2· + SO3(g)

    SO3(g) + H2O + M → H2SO4(g) + MH2SO4(g) + nH2O(g) → H2SO4·nH2O(aq)

    ________________________________________________________________________________________

    SO2(g) + OH· + O2 + (n+1)H2O → HO2· + H2SO4·nH2O(aq)

  • 46

    Chemistry and deposition

    Sulfuric acid is produced from the reaction of SO2 and OH1

    Deposition:

    vdep for aerosol dependent on particle size2, 1.0 cm/s used for H2SO4 3

    ]][[ 22 OHSOkR SOgas =

    1kSO2 from DeMore et al. (1994)

    Hcv

    R iidrydep,=

    3Brook et al. (1999)2Hummelshoj et al. (1992)

  • 47

    Condensation

    Condensation rate:

    Change in number concentration:

    Flux between fixed sections:

    )()(2 0ppAKnFDDNJ pi −= π

    42421 SOHiiSOHiiNcond CNFCNFR i −= −

    ( ) ( )[ ]33142

    6ip

    ip

    pimtSOH

    iDDRT

    DKMF

    −=

    +ρπ

  • 48

    Coagulation

    Coagulation rate:

    Generalized coagulation coefficient*

    Linear interpolation to preserve mass, number:

    2,21

    1,

    1, ≥−= ∑∑

    =−

    =− kNKNNNKfR

    jjjkkjkj

    k

    jjkjkcoag

    ( )( )βπ 212112 2 DDDDK pp ++=

    kk

    pkk VV

    VVf

    −=

    +

    +

    1

    1

    kk

    kpk VV

    VVf

    −=

    ++

    11

    *β calculated using method of Fuchs, (1964)

  • 49

    Ternary nucleation correlation

    Parameterization from Napari et al. (2002)Calculates nucleation rate using parameters of T, RH, NH3, H2SO4

    Approximation for initial nuclei size dependent on nucleation rate and T1 nm under typical July conditions0.8 nm under typical January conditions

    Approximation for composition of initial nuclei, also dependent on nucleation rate and T

    Approximately 4 molecules of sulfuric acid, 4 of ammonium in July2 molecules of sulfuric acid, 2 of ammonium in January

  • 50

    Nucleation rates

    Presence of gas-phase ammonia necessary for nucleation in July

    10 ppt generally enough

    Both ammonia and sulfuric acid play important role in January

    Cloud cover, weaker UV radiation limit production of sulfuric acid

    1 2 3 40.1

    1

    10

    100

    Sulfuric acid concentration (ppt)

    Am

    mon

    ia (p

    pt)

    0.01 0.1 10.1

    1

    10

    100

    Sulfuric acid concentration (ppt)

    Am

    mon

    ia (p

    pt)

    July

    January

    10-5 10-3 10

    -1

    101 103

    105 106

    10-5 10-3

    10-1

    101 103

    105 106

  • 51

    Sensitivity to SO2 Emissions

    0102030405060708090100

    -100-80 -60 -40 -20 0 20 40 60 80 1000

    2

    4

    6

    8

    10

    12

    14

    16

    18

    Day

    s w

    ith n

    ucle

    atio

    n

    Change in SO2 Concentration (%)

    July

    % o

    f mod

    eled

    day

    s

    0102030405060708090100

    -100-80 -60 -40 -20 0 20 40 60 80 10002468

    10121416182022242628

    Day

    s w

    ith n

    ucle

    atio

    nChange in SO2 Concentration (%)

    January

    % o

    f mod

    eled

    day

    s

  • 52

    Sensitivity to NH3 Emissions

    0102030405060708090100

    -100-80 -60 -40 -20 0 20 40 60 80 1000

    2

    4

    6

    8

    10

    12

    14

    16

    18

    Day

    s w

    ith n

    ucle

    atio

    n

    Change in NH3 Concentration (%)

    July

    % o

    f mod

    eled

    day

    s

    0102030405060708090100

    -100-80 -60 -40 -20 0 20 40 60 80 10002468

    10121416182022242628

    Day

    s w

    ith n

    ucle

    atio

    n

    Change in NH3 Concentration (%)

    January

    % o

    f mod

    eled

    day

    s

  • 53

    Future Work

  • 54

    Observational Analysis

    Determine spatial extent of nucleation from “Supersite” 2001 observations and compare to SO2and NH3 maps.

  • 55

    Observation-Model Hybrid

    Prepare model-based predictions of seasonal nucleation frequency, timing, and growth rateCompare to previous (or new) measurements

  • 56

    Vertical Profile Sampling

  • 57

    Vertical Mixing Models

  • 58

    Perturbed Real Air Samples

  • 59

    Measurement technique

  • 60R

    H

    APSAPS

    Dry sheath airfor Nafion dryers

    Vent excessdry air1 LPM

    RH

    RH

    LL -- DM

    AD

    MA

    NN-- D

    MA

    DM

    A

    RH

    HEPA MFHEPA

    HEPA

    RH

    HEPAMFHEPA

    HEPA

    AmbientAir In

    Dry AirExhaust

    CPCCPC

    CPCCPC

    AmbientAir In

    AerosolInlets

    MF

    Clean, Dry &Regulated Air

    3-Way Plug Valvew/ Solenoid Actuator∆P Flowmeter

    Ball Valve, Air Actuated

    Mass Flow Meter

    Bipolar Charger

    Nafion DryerRotameter

    DryDry--Ambient Aerosol Size SpectrometerAmbient Aerosol Size Spectrometer

    Add RH controlled inlets (aerosol water measurement)Control & data acquisition hardware and software Data processing software to make 6 instruments behave like 1Extensive calibrationSynthesis with other instruments and web-based data visualization

  • 61

    Scanning Mobility Particle Sizer

    Condensation Particle

    Counter (CPC)

    Sheath Flow

    AerosolIn Charger

    -

    -

  • 62

    Scanning Mobility Particle Sizer

    Condensation Particle

    Counter (CPC)

    Sheath Flow

    AerosolIn Charger

    -

    -

  • 63

    Scanning Mobility Particle Sizer

    Condensation Particle

    Counter (CPC)

    Sheath Flow

    AerosolIn Charger

    -

    -

  • 64

    Scanning Mobility Particle Sizer

    Condensation Particle

    Counter (CPC)

    Sheath Flow

    AerosolIn Charger

    -

    -

  • 65

    Traffic and modeling

  • 66

    Traffic Emission Sampling

    1.E+03

    1.E+04

    1.E+05

    1.E+06

    1.E+07

    0.001 0.01 0.1 1

    Mobility Diameter (µm)

    dN/d

    log(

    Dp)

    , Dilu

    tion

    Cor

    rect

    ed (

    cm-3

    )

    0.E+00

    1.E+06

    2.E+06

    3.E+06

    4.E+06

    0.001 0.01 0.1 1

    Log Scale Linear Scale

    90thPercentile

    10thPercentile

    Note: 10th and 90th percentiles on 30-min average size distributions

  • 67

    Total # Emission Factors for Vehicles

    0

    1E+16

    2E+16

    3E+16

    > 95% CarsLow Speed

    > 95% CarsHigh Speed

    < 90% CarsHigh Speed

    # / k

    g fu

    el

  • 68

    “Spin-Off” of Modeling Techniques

  • 69

    Calculation of gas-phase ammonia

    Estimated from comparison of measured total NH3with PM2.5 SO4, NO3

    When sufficient ammonia is available to neutralize these species, excess ammonia assumed to be in gas-phaseOtherwise, lower limit for parameterization used

    Compared to equilibrium calculations using GFEMN for total NH3, NO3, and SO4

  • 70

    Bondville

  • 71

    0

    10000

    20000

    30000

    40000

    50000

    0:00 6:00 12:00 18:00 0:00

    #/cc

    -1

    1

    3

    0:00 6:00 12:00 18:00 0:00

    SO2 Concentration (ppb)

    September 18, 2005CPC Particle Count (blue) vs. SMPS Particle Count (red)

    Part

    icle

    Siz

    e (n

    m)

    Res

    pons

    edN

    /dlo

    gDp

    (cm

    -3)

  • 72

    Nucleation Box Model with May 2003 SWS Data

    Constant NH3 of 1.5 µg m-3 (2200 ppt)Constant SO2 of 4 µg m-3 (1.54 ppb)Actual median RH and T from May datasetBright sun used for UV / OH calculation

  • 73

    0 3 6 9 12 15 18 21 24

    10

    100

    500

    May Base Case

    2.5

    3

    3.5

    4

    4.5

    Part

    icle

    Siz

    e (n

    m)

    Res

    pons

    edN

    /dlo

    gDp

    (cm

    -3)

  • 74

    Mexico

  • 75

    PM Background Info

  • 76

    Typical Chemical Makeup

    InorganicSaltsSO42-NO3-NH4+Na+Cl-

    OrganicCompounds

    Black Carbon

    Metals