aztpacrg41cddkgw8wf8tnkroakjrlyfixzm%2bspwcse%3d

Upload: priyanka-cholleti

Post on 14-Jan-2016

216 views

Category:

Documents


3 download

TRANSCRIPT

  • 1Lecture 4-Equivalent M & KMEEM 3700 1 of 18

    MEEM 3700MEEM 3700Mechanical VibrationsMechanical Vibrations

    Mohan D. Rao Chuck Van Karsen

    Mechanical Engineering-Engineering MechanicsMichigan Technological University

    Copyright 2003

    Lecture 4-Equivalent M & KMEEM 3700 2 of 18

    Spring Force is Linear and Proportional to Displacement.

    F = KX

    KFF

    XX

    fx

    F

    Sections 1.7 & 1.8 in the text

  • 2Lecture 4-Equivalent M & KMEEM 3700 3 of 18

    LF

    AEK= L

    A= Area of Cross-SectionE= Modulus of ElasticityL= Length

    Stiffness Elements: Bar in Tension/Compression

    Lecture 4-Equivalent M & KMEEM 3700 4 of 18

    E = modulus of elasticity. I = area moment of inertia relative to bending axis. Kb = spring rate of beam.

    F

    L F = 3EI _____

    L3

    Kb = 3EI_____L3

    3F= for a cantilever beam

    3EIL

    Similarly obtain Kb for other boundary conditionsfrom deflection equations

  • 3Lecture 4-Equivalent M & KMEEM 3700 5 of 18

    max

    FL

    max

    LF

    F = Kmax F = Kmax

    Kb = 48EI______

    L3Kb =

    192EI_______L3

    Fixed-Fixed Simply Supported

    3

    maxFL

    = 48EI

    3

    maxFL

    = 192EI

    Lecture 4-Equivalent M & KMEEM 3700 6 of 18

    LM

    M

    ( )t L R tM = K - = K t= K

    4t

    GJK = J= d / 32 L

    for a round shaft of diameter d

    (J = Polar area moment)

    tK

    R

    L

    M=Moment

    Nmunits=rad

  • 4Lecture 4-Equivalent M & KMEEM 3700 7 of 18

    Keq = K1 + K2

    K1 K2

    F

    Equivalent System

    Keq

    F

    How to combine Stiffness Elements?

    Lecture 4-Equivalent M & KMEEM 3700 8 of 18

    Equivalent System

    Keq

    F XXF

    K1

    K2

    X1K1

    F

    F

    X2K2

    F

    F

    ( )

    1 2

    1 1 2 2

    1 2

    1 2

    1 2

    1 2

    1 1 1

    eq

    eq eq

    eq

    eq

    X X XF K X K X K X

    K X K XX

    K K

    K K K

    K KKK K

    = += = =

    = +

    = +

    = +

  • 5Lecture 4-Equivalent M & KMEEM 3700 9 of 18

    FL

    K X

    Keq = K +3EI_____L3

    Keq

    F

    Equivalent System

    X

    Lecture 4-Equivalent M & KMEEM 3700 10 of 18

    F2

    K1

    K3

    K2

    F1

    Case 1Case 11 eqF =K X

    2 3eq 1

    2 3

    K KK =K +K +K

    Case 2Case 22 eqF =K X

    2 1eq 3

    2 1

    K KK =K +K +K

  • 6Lecture 4-Equivalent M & KMEEM 3700 11 of 18

    U = Potential Energy

    21U = Kx2

    2t

    1or U = K 2

    for a torsional spring

    Spring Force

    x

    Kx

    dx

    2

    0

    x

    1x x2

    x

    U K dx

    U K dx K

    == =

    Lecture 4-Equivalent M & KMEEM 3700 12 of 18

    Y

    X

    2eqK = Kcos

    d

    X

    x cosd =Equivalent potential energy

    ( )2 21 1x cos x2 2 eq

    U k k= =

    eqK

    in the x-direction

  • 7Lecture 4-Equivalent M & KMEEM 3700 13 of 18

    mg

    bF mg gAx= +

    x

    Static equilibrium

    Archimedes principle: The buoyant force acting on a floating body is equal to the weight of the liquid displaced by the body.

    Spring Force (F)= Weight of the fluid displaced = mass*g =density*volume*g. Volume displaced= cross-sectional area*displacement x.

    Hence, F= gAx= Keq x, x is measured from the static equilibrium.

    Keq

    F

    Keq=gA

    Lecture 4-Equivalent M & KMEEM 3700 14 of 18

    M

    Mass

    X

    Rigid Body Behavior

    Gain / Lose Kinetic Energy

    RotatingInertia

    J

    J = mass moment of inertia ( )2kgm

  • 8Lecture 4-Equivalent M & KMEEM 3700 15 of 18

    Kinetic Energy of translation

    MX 21K.E. = mx

    2&

    Kinetic Energy of rotation

    M,J 21K.E. = J2

    &

    Lecture 4-Equivalent M & KMEEM 3700 16 of 18

    Kinetic Energy of rolling motion

    rX

    2 21 1K.E. = mx + J2 2

    &&

    22

    2

    2 2eq eq

    1 1 xNOTE: x = r therefore K.E. = mx + J2 2 r

    1K.E. m x where m = m+ J/r2

    =

    &&

    &

    translation rotation

  • 9Lecture 4-Equivalent M & KMEEM 3700 17 of 18

    d

    CG

    M , J

    20

    1K.E. = J 2

    &

    20 cgJ =J +Md

    Parallel Axis Theorem (PAT)CG M , J

    d

    CG0

    0

    J0 is the mass Moment of Inertia of the body about the pivot 0. Jcg is the same about the center of mass

    Lecture 4-Equivalent M & KMEEM 3700 18 of 18

    Linear TorsionalViscous Damper

    Ct

    Linear Viscous Damper

    C

    Force (or Torque)

    Velocity(Translation or Angular)

    C or Ct

    Viscous damping

    Linear

    tM = C &

    F Cx= &