b cell epitopes and b cell epitope predictions

20
CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU B cell epitopes and B cell epitope predictions Morten Nielsen, CBS, BioCentrum, DTU (mostly copied from Vsevolod Katritch’s, Siga presentation 2002)

Upload: reese

Post on 20-Jan-2016

60 views

Category:

Documents


0 download

DESCRIPTION

B cell epitopes and B cell epitope predictions. Morten Nielsen, CBS, BioCentrum, DTU ( mostly copied from Vsevolod Katritch’s, Siga presentation 2002 ). Algorithms for epitope prediction and selection. Antibody Fab fragment. B-cell epitopes Most epitope are structural epitopes - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

B cell epitopes andB cell epitope predictions

Morten Nielsen, CBS, BioCentrum,

DTU(mostly copied from Vsevolod

Katritch’s, Siga presentation 2002)

Page 2: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Algorithms for epitope prediction and selection

B-cell epitopes Most epitope are

structural epitopes sequence based

methods are limited requires structure-

based approach

Antibody Fabfragment

Page 3: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

B-cell epitope classification

linear epitopes

“Discontinuous epitope (with linear determinant)

Discontinuous epitope

B-cell epitope – structural feature of a molecule or pathogen, accessible and recognizable by B-cells

Page 4: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Sequence-based methods• Protein hydrophobicity –

hydrophilicity algorithms

Fauchere, Janin, Kyte and Doolittle, ManavalanSweet and Eisenberg, Goldman, Engelman and

Steitz (GES), von Heijne

• Protein flexibility prediction algorithm

Karplus and Schulz

• Protein secondary structure prediction algorithms

GOR II method (Garnier and Robson), Chou and Fasman

• Protein “antigenicity” prediction :

Hopp and Woods, Parker, Protrusion Index (Thornton), Welling

TSQDLSVFPLASCCKDNIASTSVTLGCLVTGYLPMSTTVTWDTGSLNKNVTTFPTTFHETYGLHSIVSQVTASGKWAKQRFTCSVAHAESTAINKTFSACALNFIPPTVKLFHSSCNPVGDTHTTIQLLCLISGYVPGDMEVIWLVDGQKATNIFPYTAPGTKEGNVTSTHSELNITQGEWVSQKTYTCQVTYQGFTFKDEARKCSESDPRGVTSYLSPPSPL

Same as protein surface accessibility

Predict “linear” epitopes only

Page 5: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Linear Epitopes (flexible loops)

Cononly ~5% of epitopes

can be classified as “linear”

weakly immunogenic in most cases

most epitope peptides does not provide antigen-neutralizing immunity

in many cases represent hypervariable regions (HIV, HCV etc.)

Pro easily predicted

computationally

easily identified experimentally

immunodominant epitopes in many cases

do not need 3D structural information

easy to produce and check binding activity experimentally

Page 6: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Prediction of linear epitopes

Page 7: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Q: What can antibodies recognize in a protein?

A: Everything accessible to a 10 Å probe on a protein surfaceNovotny J. A static accessibility model of protein antigenicity.Int Rev Immunol 1987 Jul;2(4):379-89

probe

Antibody Fabfragment

Protrusion index

Page 8: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Rational B-cell epitope design

• Protein target choice• Structural analysis of antigen

X-ray structure or homology model Precise domain structure Physical annotation (flexibility,

electrostatics, hydrophobicity) Functional annotation (sequence

variations, active sites, binding sites, glycosylation sites, etc.)

Known 3D structure

Model

Page 9: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Rational B-cell epitope design

Surface accessibility Protrusion index Conserved sequence Glycosylation status

• Protein target choice• Structural annotation• Epitope prediction and ranking

Page 10: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Rational B-cell epitope design

• Protein target choice• Structural annotation• Epitope prediction and ranking• Optimal Epitope presentation

Fold minimization, or Design of structural mimics Choice of carrier (conjugates,

DNA plasmids, virus like particles, )

Multiple chain protein engineering

Page 11: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

HIV gp120-CD4 epitopeBinding of CD4 receptor

Conformational changes in gp120

Opens chemokine-receptor binding site

New highly concerved epitope

Kwong et al.(1998) Nature 393, 648-658

Page 12: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

HIV gp120-CD4 epitope

Elicit broadly cross-reactive neutralizing antibodies in rhesus macaques.

This conjugate is too large(~400 aa) and still contains a number of irrelevant loops

Fouts et al. (2000) Journal

ofVirology, 74, 11427-11436 Fouts et al. (2002) Proc Natl Acad

Sci U S A. 99, 11842-7.

First efforts to design single-chain analogue

Page 13: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

HIV gp120-CD4 epitope

reduce to minimal stable fold (iterative)

optimize linker length

find alternative scaffold to present epitope (miniprotein mimic)

Martin & Vita, Current Prot. An Pept. Science, 1: 403-430.Vita et al.(1999) PNAS 96:13091-6

Further optimization of the epitope:

Page 14: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Homology modelingAlignment

BLAB._ 0 : EKLKDNLYVYTTYNTFNGTKY-AANAVYLVTDKGVVVIDCPWGEDKFKSFTDEIYKKHGKKVIMNIATHS1A8T.A 13 : TQLSDKVYTYVSLAEIEGWGMVPSNGMIVINNHQAALLDTPINDAQTEMLVNWVTDSLHAKVTTFIPNHW

BLAB._ 69 : HDDRAGGLEYFGKIGAKTYSTKMTDSILAKENKPRAQYTFDNNKSFKVGKSEFQVYYPGKGHTADNVVVW1A8T.A 83 : HGDCIGGLGYLQRKGVQSYANQMTIDLAKEKGLPVPEHGFTDSLTVSLDGMPLQCYYLGGGHATDNIVVW

BLAB._ 139 : FPKEKVLVGGCIIKSADSKDLGYIGEAYVNDWTQSVHNIQQKFSGAQYVVAGHDDWKDQRSIQHTLDLIN1A8T.A 153 : LPTENILFGGCMLKDNQTTSIGNISDADVTAWPKTLDKVKAKFPSARYVVPGHGNYGGTELIEHTKQIVN

BLAB._ 209 : EYQQKQK1A8T.A 223 : QYIESTS

  Sequence identity 27%

Page 15: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Homology Modeling

Blue: TemplateRed: Model

Page 16: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Homology Modeling

Protein sequence

Known 3D structure

Known 3D template(s)

Model by homology

• Threading (seq-str. align.)• Side chain prediction• Loop building• Local reliability prediction

Model

Page 17: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Protein Model Health Evaluation

Known 3D structureMaiorov, Abagyan, Proteins 1998Cardozo, Abagyan, 2000

Model

High energy strain Lower energy strain Local alignment strength Local Energy strain

Page 18: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Annotation of protein surface

• Contour-buildup algorithm (J.Str.Biol, 116, 138, 1996). Requires 3D structure• Surface prediction using propensity scales (linear effects)• Surface prediction using Neural networks (higher order effects)

Page 19: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Multichain protein design

Rational optimization of epitope-VLP chimeric proteins:

Design a library of possible linkers (<10 aa)

Perform global energy optimization in VLP (virus-like particle) context

Rank according to estimated energy strain

B-cellepitope

T-cellepitope

Page 20: B cell epitopes and B cell epitope predictions

CEN

TER

FO

R B

IOLO

GIC

AL S

EQ

UEN

CE A

NA

LY

SIS

TEC

HN

ICA

L U

NIV

ER

SIT

Y O

F D

EN

MA

RK

DTU

Conclusions

• Rational vaccines can be designed to induce strong and epitope-specific B-cell response

• Selection of protective B-cell epitope involves structural, functional and immunogenic analysis of the pathogenic proteins

• Structural modeling tools are critical in design of epitope mimics and optimal epitope presentation