background rejection with the dmtpc dark matter search using charge signals jeremy lopez, mit for...

22
Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Upload: marianna-patterson

Post on 14-Jan-2016

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Background Rejection with the DMTPC Dark Matter Search Using Charge

Signals

Jeremy Lopez, MITFor the DMTPC CollaborationDPF Meeting, 12 Aug. 2011

Page 2: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 2

Outline

1. Directional Detection of Dark Matter2. The DMTPC Experiment3. Charge Readout and Background

Rejection4. Conclusions and Outlook

8/12/11

Page 3: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 3

The Directional Signal of WIMP-Induced Recoils

8/12/11

Sky map of nuclear recoils& backgrounds

Motion around galactic center

Sidereal modulation of recoil directions

Page 4: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 4

The DMTPC CollaborationDark Matter Time Projection

Chamber• Boston University

– S. Ahlen, M. Chernikoff, A. Inglis, H. Tomita

• Brandeis University– A. Dushkin, L. Kirsch, H. Ouyang,

G. Sciolla, H. Wellenstein

• Bryn Mawr College– J.B.R. Battat

• MIT– T. Caldwell, C. Deaconu, D.

Dujmic, W. Fedus, P. Fisher, S. Henderson, A. Kaboth, G. Kohse, J. Lopez, E. Nardoni, T. Sahin, A. Strandberg, R. Vanderspek, I. Wolfe, R. Yamamoto, H. Yegoryan

• RHUL– R. Eggleston, J. Monroe

8/12/11

WIPP,Carlsbad, NM1600 mwe

Underground Lab, Aug. 2010

• Low-pressure gas TPC• CCD readout of light from electron

avalanches for sub-mm spatial resolution on readout plane

Page 5: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 58/12/11

Used in this talk

DMTPC Detectors10L, WIPP10L, field cage

CCD

Lens

R&D Vessel

4shooter

+several others

Page 6: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 6

Schematic

8/12/11

CF4: χF elastic scattering-SD cross section

Channels:

Charge readout: •1 s exposure/event•4 ns samples•Save triggered pulses•Mesh: Current signal•Anode/Veto: Integrated charge

CCD: •1 s + readout (0.3 s)) exposure / event•No shutter used•Tracks during readout appear shifted in position: must reject

Mesh (GND)

Veto Ring (+HV) Central Anode (+HV)

Page 7: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 7

Example Event

8/12/11

CCD

Central Anode

Mesh

Veto Ring

125 keVi

Nuclear recoil candidate in R&D vessel during a surface run at MIT.

Note: In this talk, keVi = electron-equivalent ionization yield.

Region of amplification planeNear field cage rings.Small signalNo ionization near edge of field cage.

Pulses smoothed with Gaussian convolution

Page 8: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 8

Potential Backgrounds

• Electronic Recoils– Invisible to CCD: Low pressure Low ΔE /

Volume, pixel noise > signal.– Measured in charge signals.– Use charge pulse shape discrimination.

• CCD Artifacts– Use redundant measurements, track shape

parameters.

• Radon Progeny Recoils• Cosmogenic Nuclear Recoils8/12/11

Page 9: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 9

Rejection of Electronic Recoils

1. How blind is the CCD to these?

2. How well can we discriminate between charge signals from nuclei and electrons?

Place 137Cs source inside detector:– Generate ~25 e- recoils (E>30 keVi)

per 1 s exposure.– Get light pileup in CCD, no pileup in

charge.In this run:Monte Carlo studies: CCD efficiency 90% or

better for E>40 keVi (for nuclear recoils).

From trigger level for charge: expect near 100% charge readout efficiency for E>30 keVi.

8/12/11

Page 10: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 10

CCD Rejection of Electronic Recoils

Cuts Used• No tracks on edge of image.• Peak pixel value must be

small compared to total light, large enough to be like a nuclear recoil.

• Range is short.• Multiple tracks don’t appear in

same position throughout a run.

• Much more restrictive cuts are used in WIMP searches.

Calculation of CCD Rejection of e- Tracks• Can measure # of e- events with

charge signals.• Compare to total # of excess

(compared to source-free run) tracks found.

• e- rejection of 3x10-5 (40-250 keVi)

8/12/11

Page 11: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 11

Nuclear vs Electronic Recoils

8/12/11

Δz small

Nuclear rec.

e- rec.

Δz large

Fast rise

e- avalanche Ion drift

1 μs drift time

Slow rise

Ion and e- signals merge

Page 12: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 12

Measurement of Track Δz• Compare measured E, 2D

range to SRIM estimated 3D range to get Δz.

• Look at mesh pulse rise time.• Low (120 V/cm) drift field

much diffusion.

8/12/11

10 cm drift

Diffusion/detector response

Δz

Only see end of tracks

Page 13: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 13

Pulse Shape Analysis

8/12/11

Rise Time Peak Height / Energy

Accepted

Rejected

Accepted

Rejected

Cuts Rejection Total Rejection

Veto (fiducialization) 0.054 0.054

Pulse shape 0.0061 3x10-4

Page 14: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 14

Charge-Light Energy Matching

8/12/11

241Am source, positioned so only last O(100 keV) is measured.Compare all passing CCD tracks to all passing charge signals.Incorrect matches appear away from main band.

Incorrect matches:Tracks during readout,Overlapping tracks (from collimated source), multiple passing charge signals etc.

Solid Line: Best fit.Dashed Lines: Define acceptance region (3.5σ from best fit).

2934 CCD Tracks3222 Charge Signals

All Charge/Light Combinations Plotted.

Page 15: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 15

Final Results from e- Discrimination Study

Results are conservative: CCD rejection will improve in source-free running (no pileup)

Lines: SRIM 3D range predictionPoints: Data 2D range measurementConsistent with nuclear recoils

8/12/11

For 40-250 keVi•Charge (pulse shape+veto): 3x10-4 rejection•CCD: 3x10-5 rejection•Combined: 90% C.L. <6x10-6 rejection •Combined result is statistics-limited

Consistent with nuclear recoils

Surface Run

14 hr

10 hr

Page 16: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 16

CCD Backgrounds

• Tracks in CCD Si (μ,α,β)• Hot pixels, noise fluctuations• Shifted tracks• Residual bulk imagesNo corresponding charge signal!

8/12/11

Bright Spot(RBI)Spark

1 s after spark

Track in CCD Chip252Cf source

Page 17: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 17

CCD Artifact Rejection

Background Cuts on CCD Only

CCD Track Finding + Cuts Only on Charge

Combined

RBI 1320 9 0

Hot pixel/CCD Si track/Noise

1287 9 0

Section of Background Alpha

15 0 0

Track 14 5 5

8/12/11

10 hr run at surface, no sourcesLook for coincidence between charge signals and various classes of CCD tracks and artifactsCan reduce CCD artifacts by 10-2 before applying CCD cuts!

Page 18: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 18

Conclusions and Outlook

• Can reduce electronic backgrounds by at least (40 keVi<E<250 keVi):– 3x10-5 with CCD analysis– 3x10-4 with charge analysis– 6x10-6 combined (90% C.L., statistics limited)

• Get additional 10-2 reduction of CCD artifacts with charge analysis.

• Can now eliminate shifted tracks occurring during CCD readout.

• Charge readout implemented on detectors for underground operation.

8/12/11

Page 19: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 19

Thank You!

8/12/11

Page 20: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 20

Charge Efficiency

8/12/11

Page 21: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 21

Future Sensitivity

8/12/11

From J. Battat

Page 22: Background Rejection with the DMTPC Dark Matter Search Using Charge Signals Jeremy Lopez, MIT For the DMTPC Collaboration DPF Meeting, 12 Aug. 2011

Jeremy Lopez, MIT DPF2011 22

WIPP• Nuclear waste repository near

Carlsbad, NM, USA.• 650 m depth (1600 mwe)• Built into salt (NaCl) deposits.• <<1 cosmogenic n / year• Low radon backgrounds.• Summer 2010: set up lab

underground• Fall 2010: shipped 10L detector• Winter 2010/11: 10L

commissioning• Spring/Summer 2011: AmBe

and WIMP data taking• Future: Move 4shooter to WIPP,

plan for m3 detector

8/12/11

Our Connex

View from our connex (EXO, NMSU bio group)