basics of density functional theory (dft) - apsi · basics of density functional theory (dft) ari...

147
Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN [email protected] epartement de Chimie ´ Ecole Normale Sup´ erieure, Paris ´ Ecole de Sidi-BelAbb` es de Nanomateriaux // Octobre 8-12, 2016 apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbb` es 1 / 94

Upload: lynhan

Post on 02-Mar-2019

254 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Basics of Density Functional Theory (DFT)

Ari Paavo SEITSONEN

[email protected]

Departement de ChimieEcole Normale Superieure, Paris

Ecole de Sidi-BelAbbes de Nanomateriaux // Octobre 8-12, 2016

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 1 / 94

Page 2: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 2 / 94

Page 3: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 3 / 94

Page 4: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Summary

1 Density functional theoryMotivationKohn-Sham methodExchange-correlation functional

2 Bloch theorem / supercells

3 Localised basis sets

4 Plane wave basis set

5 Pseudo potentials

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 4 / 94

Page 5: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Motivation: Why use DFT?

Explicit inclusion of electronic structureI Predictable accuracy (unlike fitted/empirical approaches)I Knowledge of the electron structure can be used for the analysis; many

observables can be obtained directly

Preferable scaling compared to many quantum chemistry methods

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 5 / 94

Page 6: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

History of DFT — I

There were already methods in the early 20th centuryI Thomas-Fermi-methodI Hartree-Fock-method

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 6 / 94

Page 7: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

History of DFT — II

Walter Kohn

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 7 / 94

Page 8: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

History of DFT — III: Foundations

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 8 / 94

Page 9: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Hohenberg-Kohn theorems: Theorem I

Given a potential, one obtains the wave functions via Schrodingerequation:

V (r)⇒ ψi (r)

The density is the probability distribution of the wave functions:

n (r) =∑i

|ψi (r)|2

ThusV (r)⇒ ψi (r)⇒ n (r)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 9 / 94

Page 10: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Hohenberg-Kohn theorems: Theorem I

Given a potential, one obtains the wave functions via Schrodingerequation:

V (r)⇒ ψi (r)

The density is the probability distribution of the wave functions:

n (r) =∑i

|ψi (r)|2

ThusV (r)⇒ ψi (r)⇒ n (r)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 9 / 94

Page 11: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Hohenberg-Kohn theorems: Theorem I

Given a potential, one obtains the wave functions via Schrodingerequation:

V (r)⇒ ψi (r)

The density is the probability distribution of the wave functions:

n (r) =∑i

|ψi (r)|2

ThusV (r)⇒ ψi (r)⇒ n (r)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 9 / 94

Page 12: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Hohenberg-Kohn theorems: Theorem I

Theorem

The potential, and hence also the total energy, is a unique functional ofthe electron density n(r)

ThusV (r)⇒ ψi (r)⇒ n (r)⇒ V (r)

The electron density can be used to determine all properties of a system

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 10 / 94

Page 13: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Hohenberg-Kohn theorems: Theorem I

Theorem

The potential, and hence also the total energy, is a unique functional ofthe electron density n(r)

ThusV (r)⇒ ψi (r)⇒ n (r)⇒ V (r)

The electron density can be used to determine all properties of a system

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 10 / 94

Page 14: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Hohenberg-Kohn theorems: Theorem I

Theorem

The potential, and hence also the total energy, is a unique functional ofthe electron density n(r)

ThusV (r)⇒ ψi (r)⇒ n (r)⇒ V (r)

The electron density can be used to determine all properties of a system

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 10 / 94

Page 15: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Hohenberg-Kohn theorems: Theorem II

Theorem

The total energy is variational: In the ground state the total energy isminimised

ThusE [n] ≥ E [nGS]

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 11 / 94

Page 16: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Hohenberg-Kohn theorems: Theorem II

Theorem

The total energy is variational: In the ground state the total energy isminimised

ThusE [n] ≥ E [nGS]

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 11 / 94

Page 17: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

History of DFT — IV: Foundations

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 12 / 94

Page 18: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

History of DFT — V: The reward

. . . in 1998:

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 13 / 94

Page 19: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn-Sham method: Total energy

Let us write the total energy as:

Etot[n] = Ekin[n]+Eext[n]+EH[n]+Exc[n]

Ekin[n] = QM kinetic energy of electrons

Eext[n] = energy due to external potential (usually ions)

EH[n] = classical Hartree repulsion (e− − e−)

Exc[n] = exchange-correlation energy

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 14 / 94

Page 20: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn-Sham method: Noninteracting electrons

To solve the many-body Schrodinger equation as such is an unformidabletask

Let us write the many-body wave function as a determinant ofsingle-particle equations

Then kinetic energy of electrons becomes

Ekin,s =∑i

−1

2fi⟨ψi (r) | ∇2 | ψi (r)

⟩fi = occupation of orbital i (with spin-degeneracy included)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 15 / 94

Page 21: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn-Sham method: Noninteracting electrons

To solve the many-body Schrodinger equation as such is an unformidabletask

Let us write the many-body wave function as a determinant ofsingle-particle equations

Then kinetic energy of electrons becomes

Ekin,s =∑i

−1

2fi⟨ψi (r) | ∇2 | ψi (r)

⟩fi = occupation of orbital i (with spin-degeneracy included)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 15 / 94

Page 22: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn-Sham method: External energy

Energy due to external potential; usually Vext =∑

I −ZI|r−RI |

Eext =

∫rn (r)Vext (r) dr

n (r) =∑i

fi |ψi (r)|2

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 16 / 94

Page 23: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn-Sham method: Hartree energy

Classical electron-electron repulsion

EH =1

2

∫r

∫r′

n (r) n (r′)

|r − r′|dr′ dr

=1

2

∫rn (r)VH (r) dr

VH (r) =

∫r′

n (r′)

|r − r′|dr′

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 17 / 94

Page 24: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn-Sham method: Exchange-correlation energy

The remaining component: Many-body complications combined

=⇒ Will be discussed later

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 18 / 94

Page 25: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Total energy expression

Kohn-Sham (total1) energy:

EKS[n] =∑i

−1

2fi⟨ψi | ∇2 | ψi

⟩+

∫rn (r)Vext (r) dr

+1

2

∫r

∫r′

n (r) n (r′)

|r − r′|dr′ dr + Exc

1without ion-ion interactionapsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 19 / 94

Page 26: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn-Sham equations

Vary the Kohn-Sham energy EKS with respect to ψ∗j (r′′): δEKSδψ∗j (r′′)

⇒ Kohn-Sham equations

−1

2∇2 + VKS (r)

ψi (r) = εiψi (r)

n (r) =∑i

fi |ψi (r)|2

VKS (r) = Vext (r) + VH (r) + Vxc (r)

Vxc (r) = δExcδn(r)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 20 / 94

Page 27: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn-Sham equations

Vary the Kohn-Sham energy EKS with respect to ψ∗j (r′′): δEKSδψ∗j (r′′)

⇒ Kohn-Sham equations

−1

2∇2 + VKS (r)

ψi (r) = εiψi (r)

n (r) =∑i

fi |ψi (r)|2

VKS (r) = Vext (r) + VH (r) + Vxc (r)

Vxc (r) = δExcδn(r)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 20 / 94

Page 28: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn-Sham equations: Notes−1

2∇2 + VKS (r)

ψi (r) = εiψi (r) ; n (r) =

∑i

fi |ψi (r)|2

Equation looking like Schrodinger equation

The Kohn-Sham potential, however, depends on density

The equations are coupled and highly non-linear

⇒ Self-consistent solution required

εi and ψi are in principle only help variables (only εHOMO has ameaning)

The potential VKS is local

The scheme is in principle exact

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 21 / 94

Page 29: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn-Sham equations: Self-consistency

1 Generate a starting density ninit

2 Generate the Kohn-Sham potential ⇒ V initKS

3 Solve the Kohn-Sham equations ⇒ ψiniti

4 New density n1

5 Kohn-Sham potential V 1KS

6 Kohn-Sham orbitals ⇒ ψ1i

7 Density n2

8 . . .

. . . until self-consistency is achieved (to required precision)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 22 / 94

Page 30: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn-Sham equations: Self-consistency

1 Generate a starting density ninit

2 Generate the Kohn-Sham potential ⇒ V initKS

3 Solve the Kohn-Sham equations ⇒ ψiniti

4 New density n1

5 Kohn-Sham potential V 1KS

6 Kohn-Sham orbitals ⇒ ψ1i

7 Density n2

8 . . .

. . . until self-consistency is achieved (to required precision)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 22 / 94

Page 31: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn-Sham equations: Self-consistency

Usually the density coming out from the wave functions is mixed withthe previous ones, in order to improve convergence

In metals fractional occupations numbers are necessary

The required accuracy in self-consistency depends on the observableand the expected

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 23 / 94

Page 32: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn-Sham energy: Alternative expression

Take the Kohn-Sham equation, multiply from the left with fiψ∗i and

integrate:

−1

2fi

∫rψi (r)∇2ψi (r) dr + fi

∫rVKS (r) |ψi (r)|2 dr = fiεi

Sum over i and substitute into the expression for Kohn-Sham energy:

EKS[n] =∑i

fiεi − EH + Exc −∫

rn (r)Vxcdr

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 24 / 94

Page 33: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Exchange-correlation functional

The Kohn-Sham scheme is in principle exact — however, theexchange-correlation energy functional is not known explicitly

Exchange is known exactly, however its evaluation is usually verytime-consuming, and often the accuracy is not improved over simplerapproximations (due to error-cancellations in the latter group)

Many exact properties, like high/low-density limits, scaling rules etcare known

Famous approximations:I Local density approximation, LDAI Generalised gradient approximations, GGAI Hybrid functionalsI . . .

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 25 / 94

Page 34: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn-Sham method: Exchange-correlation energy

The remaining component: Many-body complications combined

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 26 / 94

Page 35: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Total energy expression

Kohn-Sham (total2) energy:

EKS[n] =∑i

−1

2fi⟨ψi | ∇2 | ψi

⟩+

∫rn (r)Vext (r) dr

+1

2

∫r

∫r′

n (r) n (r′)

|r − r′|dr′ dr + Exc

2without ion-ion interactionapsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 27 / 94

Page 36: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn-Sham equations

Vary the Kohn-Sham energy EKS with respect to ψ∗j (r′′): δEKSδψ∗j (r′′)

⇒ Kohn-Sham equations

−1

2∇2 + VKS (r)

ψi (r) = εiψi (r)

n (r) =∑i

fi |ψi (r)|2

VKS (r) = Vext (r) + VH (r) + Vxc (r)

Vxc (r) = δExcδn(r)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 28 / 94

Page 37: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Exchange-correlation functional

The Kohn-Sham scheme is in principle exact — however, theexchange-correlation energy functional is not known explicitly

Exchange is known exactly, however its evaluation is usually verytime-consuming, and often the accuracy is not improved over simplerapproximations (due to error-cancellations in the latter group)

Many exact properties, like high/low-density limits, scaling rules etcare known

Famous approximations:I Local density approximation, LDAI Generalised gradient approximations, GGAI Hybrid functionalsI . . .

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 29 / 94

Page 38: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Exchange-correlation functional: LDA

Local density approximation:

Use the exchange-correlation energy functional for homogeneouselectron gas at each point of space: Exc '

∫r n (r) ehegxc [n(r)]dr

Works surprisingly well even in inhomogeneous electron systems,thanks fulfillment of certain sum rules

I Energy differences over-bound: Cohesion, dissociation, adsorptionenergies

I Lattice constants somewhat (1-3 %) too small, bulk modulii too largeI Asymptotic potential decays exponentially outside charge distribution,

leads to too weak binding energies for the electrons, eg. ionisationpotentials

I Contains self-interaction in single-particle case

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 30 / 94

Page 39: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Exchange-correlation functional: GGA

Generalised gradient approximation:

The gradient expansion of the exchange-correlation energy does notimprove results; sometimes leads to divergencies

Thus a more general approach is taken, and there is room for severalforms of GGA: Exc '

∫r n (r) exc[n(r), |∇n(r)|2]dr

Works reasonably well, again fulfilling certain sum rulesI Energy differences are improvedI Lattice constants somewhat, 1-3 % too large, bulk modulii too smallI Contains self-interaction in single-particle caseI Again exponential asymptotic decay in potentialI ⇒ Negative ions normally not boundI Usually the best compromise between speed and accuracy in large

systems

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 31 / 94

Page 40: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Exchange-correlation functional: Hybrid functionals

Hybrid functionals

Include partially the exact (Hartree-Fock) exchange:Exc ' αEHF + (1− α)EGGA

x + EGGAc ; again many variants

Works in general wellI Energy differences are still improvedI Vibrational properties slightlyI Improved magnetic moments in some systemsI Partial improvement in asymptotic formI Usually the best accuracy if the computation burden can be handledI Calculations for crystals appearing

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 32 / 94

Page 41: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Exchange-correlation functional: Observations

The accuracy can not be systematically improved!

van der Waals interactions still a problem (tailored approximations insight)

Most widely used parametrisations:I GGA

F Perdew-Burke-Ernzerhof, PBE (1996); among phycisistsF Beck–Lee-Yang-Parr, BLYP (early 1990’s); among chemists

I Hybrid functionalsF PBE0; among phycisistsF B3LYP; among chemists

I van der Waals “included”F DFT-D3; empirical (pair-)potentialF vdW-DF*; rVV10?

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 33 / 94

Page 42: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Exchange-correlation functional: Observations

The accuracy can not be systematically improved!

van der Waals interactions still a problem (tailored approximations insight)

Most widely used parametrisations:I GGA

F Perdew-Burke-Ernzerhof, PBE (1996); among phycisistsF Beck–Lee-Yang-Parr, BLYP (early 1990’s); among chemists

I Hybrid functionalsF PBE0; among phycisistsF B3LYP; among chemists

I van der Waals “included”F DFT-D3; empirical (pair-)potentialF vdW-DF*; rVV10?

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 33 / 94

Page 43: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Exchange-correlation functional: Observations

The accuracy can not be systematically improved!

van der Waals interactions still a problem (tailored approximations insight)

Most widely used parametrisations:I GGA

F Perdew-Burke-Ernzerhof, PBE (1996); among phycisistsF Beck–Lee-Yang-Parr, BLYP (early 1990’s); among chemists

I Hybrid functionalsF PBE0; among phycisistsF B3LYP; among chemists

I van der Waals “included”F DFT-D3; empirical (pair-)potentialF vdW-DF*; rVV10?

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 33 / 94

Page 44: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Exchange-correlation functional: Observations

The accuracy can not be systematically improved!

van der Waals interactions still a problem (tailored approximations insight)

Most widely used parametrisations:I GGA

F Perdew-Burke-Ernzerhof, PBE (1996); among phycisistsF Beck–Lee-Yang-Parr, BLYP (early 1990’s); among chemists

I Hybrid functionalsF PBE0; among phycisistsF B3LYP; among chemists

I van der Waals “included”F DFT-D3; empirical (pair-)potentialF vdW-DF*; rVV10?

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 33 / 94

Page 45: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Exchange-correlation functional: Observations

The accuracy can not be systematically improved!

van der Waals interactions still a problem (tailored approximations insight)

Most widely used parametrisations:I GGA

F Perdew-Burke-Ernzerhof, PBE (1996); among phycisistsF Beck–Lee-Yang-Parr, BLYP (early 1990’s); among chemists

I Hybrid functionalsF PBE0; among phycisistsF B3LYP; among chemists

I van der Waals “included”F DFT-D3; empirical (pair-)potentialF vdW-DF*; rVV10?

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 33 / 94

Page 46: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Exchange-correlation functional: Observations

The accuracy can not be systematically improved!

van der Waals interactions still a problem (tailored approximations insight)

Most widely used parametrisations:I GGA

F Perdew-Burke-Ernzerhof, PBE (1996); among phycisistsF Beck–Lee-Yang-Parr, BLYP (early 1990’s); among chemists

I Hybrid functionalsF PBE0; among phycisistsF B3LYP; among chemists

I van der Waals “included”F DFT-D3; empirical (pair-)potentialF vdW-DF*; rVV10?

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 33 / 94

Page 47: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Exchange-correlation functional: Observations

The accuracy can not be systematically improved!

van der Waals interactions still a problem (tailored approximations insight)

Most widely used parametrisations:I GGA

F Perdew-Burke-Ernzerhof, PBE (1996); among phycisistsF Beck–Lee-Yang-Parr, BLYP (early 1990’s); among chemists

I Hybrid functionalsF PBE0; among phycisistsF B3LYP; among chemists

I van der Waals “included”F DFT-D3; empirical (pair-)potentialF vdW-DF*; rVV10?

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 33 / 94

Page 48: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Exchange-correlation functional: Observations

The accuracy can not be systematically improved!

van der Waals interactions still a problem (tailored approximations insight)

Most widely used parametrisations:I GGA

F Perdew-Burke-Ernzerhof, PBE (1996); among phycisistsF Beck–Lee-Yang-Parr, BLYP (early 1990’s); among chemists

I Hybrid functionalsF PBE0; among phycisistsF B3LYP; among chemists

I van der Waals “included”F DFT-D3; empirical (pair-)potentialF vdW-DF*; rVV10?

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 33 / 94

Page 49: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Exchange-correlation functional: Observations

The accuracy can not be systematically improved!

van der Waals interactions still a problem (tailored approximations insight)

Most widely used parametrisations:I GGA

F Perdew-Burke-Ernzerhof, PBE (1996); among phycisistsF Beck–Lee-Yang-Parr, BLYP (early 1990’s); among chemists

I Hybrid functionalsF PBE0; among phycisistsF B3LYP; among chemists

I van der Waals “included”F DFT-D3; empirical (pair-)potentialF vdW-DF*; rVV10?

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 33 / 94

Page 50: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Exchange-correlation functional: Observations

The accuracy can not be systematically improved!

van der Waals interactions still a problem (tailored approximations insight)

Most widely used parametrisations:I GGA

F Perdew-Burke-Ernzerhof, PBE (1996); among phycisistsF Beck–Lee-Yang-Parr, BLYP (early 1990’s); among chemists

I Hybrid functionalsF PBE0; among phycisistsF B3LYP; among chemists

I van der Waals “included”F DFT-D3; empirical (pair-)potentialF vdW-DF*; rVV10?

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 33 / 94

Page 51: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Summary

1 Density functional theory

2 Bloch theorem / supercells

3 Localised basis sets

4 Plane wave basis set

5 Pseudo potentials

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 34 / 94

Page 52: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Periodic systems

In realistic systems there are ≈ 1020 atoms in cubic millimetre —unformidable to treat by any numerical method

At this scale the systems are often repeating (crystals)

. . . or the observable is localised and the system can be made periodic

Choices: Periodic boundary conditions or isolated (saturated) cluster

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 35 / 94

Page 53: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Periodic systems

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 36 / 94

Page 54: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Periodic systems

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 36 / 94

Page 55: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Periodic systems

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 36 / 94

Page 56: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Periodic systems

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 36 / 94

Page 57: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Periodic systems

Is it possible to replace the summation over translations L with amodulation?

Bloch’s theorem

For a periodic potential V (r + L) = V (r) the eigenfunctions can bewritten in the form

ψi (r) = e ik·ruik (r) ,

uik (r + L) = uik (r)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 37 / 94

Page 58: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Periodic systems

Is it possible to replace the summation over translations L with amodulation?

Bloch’s theorem

For a periodic potential V (r + L) = V (r) the eigenfunctions can bewritten in the form

ψi (r) = e ik·ruik (r) ,

uik (r + L) = uik (r)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 37 / 94

Page 59: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Periodic systems: Reciprocal space

Reciprocal lattice vectors:

b1 = 2πa2 × a3

a1 · a2 × a3

b2 = 2πa3 × a1

a2 · a3 × a1

b3 = 2πa1 × a2

a3 · a1 × a2

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 38 / 94

Page 60: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Periodic systems: Brillouin zone

First Brillouin zone: Part of space closer to the origin than to anyinteger multiple of the reciprocal lattice vectors,K′ = n1b1 + n2b2 + n3b3

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 39 / 94

Page 61: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Integration over reciprocal space

Thus the summation over infinite number of translations becomes anintegral over the first Brillouin zone:

∞∑L

⇒∫

k∈1.BZdk

In practise the integral is replaced by a weighted sum of discretepoints: ∫

kdk ≈

∑k

wk

Thus eg.

n (r) =∑

k

wk

∑i

fik |ψik (r)|2

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 40 / 94

Page 62: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Periodic systems: Dispersion

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 41 / 94

Page 63: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Band structure: Example Pb/Cu(111)Photoemission vs DFT calculations for a free-standing layer

Felix Baumberger, Anna Tamai, Matthias Muntwiler, Thomas Greber and Jurg Osterwalder;

Surface Science 532-535 (2003) 82-86 doi:10.1016/S0039-6028(03)00129-8

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 42 / 94

Page 64: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Monkhorst-Pack algorithmApproximate the integral with an equidistance grid of k vectors withidentical weight:

n =2p − q − 1

2q, p = 1 . . . q

kijk = n1b1 + n2b2 + n3b3

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 43 / 94

Page 65: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Monkhorst-Pack algorithmApproximate the integral with an equidistance grid of k vectors withidentical weight:

n =2p − q − 1

2q, p = 1 . . . q

kijk = n1b1 + n2b2 + n3b3

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 43 / 94

Page 66: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Symmetry operations

If the atoms are related by symmetry operation S (Sψ (r) = ψ (Sr))the integration over the whole 1st Brillouin zone can be reduced intothe irreducible Brillouin zone, IBZ

Sψik (r) = ψik (Sr) = e ik·Sruik (Sr) = e ik′·ruik′ (r) , k′ = S−1k

∫kdk ≈

∑k∈BZ

wk =∑

k∈IBZ

∑S

w ′Sk

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 44 / 94

Page 67: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Symmetry operations

If the atoms are related by symmetry operation S (Sψ (r) = ψ (Sr))the integration over the whole 1st Brillouin zone can be reduced intothe irreducible Brillouin zone, IBZ

Sψik (r) = ψik (Sr) = e ik·Sruik (Sr) = e ik′·ruik′ (r) , k′ = S−1k

∫kdk ≈

∑k∈BZ

wk =∑

k∈IBZ

∑S

w ′Sk

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 44 / 94

Page 68: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Symmetry operations

If the atoms are related by symmetry operation S (Sψ (r) = ψ (Sr))the integration over the whole 1st Brillouin zone can be reduced intothe irreducible Brillouin zone, IBZ

Sψik (r) = ψik (Sr) = e ik·Sruik (Sr) = e ik′·ruik′ (r) , k′ = S−1k

∫kdk ≈

∑k∈BZ

wk =∑

k∈IBZ

∑S

w ′Sk

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 44 / 94

Page 69: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Irreducible Brillouin zone: Examples

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 45 / 94

Page 70: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Doubling the unit cell

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 46 / 94

Page 71: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Doubling the unit cell (super-cells)

If one doubles the unit cell in one direction, it is enough to take onlyhalf of the k points in the corresponding direction in the reciprocalspace

And has to be careful when comparing energies in cells with differentsize

unless either equivalent sampling of k points is used or one isconverged in the total energy in both cases

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 47 / 94

Page 72: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Doubling the unit cell (super-cells)

If one doubles the unit cell in one direction, it is enough to take onlyhalf of the k points in the corresponding direction in the reciprocalspace

And has to be careful when comparing energies in cells with differentsize unless either equivalent sampling of k points is used

or one isconverged in the total energy in both cases

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 47 / 94

Page 73: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Doubling the unit cell (super-cells)

If one doubles the unit cell in one direction, it is enough to take onlyhalf of the k points in the corresponding direction in the reciprocalspace

And has to be careful when comparing energies in cells with differentsize unless either equivalent sampling of k points is used or one isconverged in the total energy in both cases

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 47 / 94

Page 74: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Summary

1 Density functional theory

2 Bloch theorem / supercells

3 Localised basis sets

4 Plane wave basis set

5 Pseudo potentials

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 48 / 94

Page 75: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Implementation of Kohn-Sham equations: Discretisation

Kohn-Sham orbitals expanded in a basis set: ψik =∑

α cikαχαDifferent choices of basis set:

I Localised: Gaussian (x jykz le−(x/σ)2

), Slater (x jykz le−(x/σ)), wavelet,. . .

I Extended: Plane wavesI Combination: FLAPW, GPW/GAPW, . . .

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 49 / 94

Page 76: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Summary

1 Density functional theory

2 Bloch theorem / supercells

3 Localised basis sets

4 Plane wave basis setBasics of plane wave basis setOperatorsEnergy terms in plane wave basis set

5 Pseudo potentials

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 50 / 94

Page 77: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn–Sham method

The ground state energy is obtained as the solution of a constrainedminimisation of the Kohn-Sham energy:

minΦ

EKS[Φi (r)]

∫Φ?i (r)Φj(r)dr = δij

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 51 / 94

Page 78: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn–Sham method

The ground state energy is obtained as the solution of a constrainedminimisation of the Kohn-Sham energy:

minΦ

EKS[Φi (r)]

∫Φ?i (r)Φj(r)dr = δij

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 51 / 94

Page 79: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Expansion using a basis set

For practical purposes it is necessary to expand the Kohn-Shamorbitals using a set of basis functions

Basis set ϕα(r)Mα=1

Usually a linear expansion

ψi (r) =M∑α=1

cαiϕα(r)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 52 / 94

Page 80: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves

Philosophy

Assemblies of atoms are slight distortions to free electrons

ϕα(r) =1√Ωe iGα·r

(. . . = cos(Gα · r) + i sin(Gα · r))

+ orthogonal

+ independent of atomic positions

+ no BSSE

± naturally periodic

– many functions needed

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 53 / 94

Page 81: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves

Philosophy

Assemblies of atoms are slight distortions to free electrons

ϕα(r) =1√Ωe iGα·r

+ orthogonal

+ independent of atomic positions

+ no BSSE

± naturally periodic

– many functions needed

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 53 / 94

Page 82: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves

Philosophy

Assemblies of atoms are slight distortions to free electrons

ϕα(r) =1√Ωe iGα·r

+ orthogonal

+ independent of atomic positions

+ no BSSE

± naturally periodic

– many functions needed

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 53 / 94

Page 83: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves

Philosophy

Assemblies of atoms are slight distortions to free electrons

ϕα(r) =1√Ωe iGα·r

+ orthogonal

+ independent of atomic positions

+ no BSSE

± naturally periodic

– many functions needed

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 53 / 94

Page 84: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves

Philosophy

Assemblies of atoms are slight distortions to free electrons

ϕα(r) =1√Ωe iGα·r

+ orthogonal

+ independent of atomic positions

+ no BSSE

± naturally periodic

– many functions needed

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 53 / 94

Page 85: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves

Philosophy

Assemblies of atoms are slight distortions to free electrons

ϕα(r) =1√Ωe iGα·r

+ orthogonal

+ independent of atomic positions

+ no BSSE

± naturally periodic

– many functions needed

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 53 / 94

Page 86: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Computational box

Box matrix : h = [a1, a2, a3]

Box volume : Ω = det hapsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 54 / 94

Page 87: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Lattice vectors

Direct lattice h = [a1, a2, a3]

Translations in direct lattice: L = i · a1 + j · a2 + k · a3

Reciprocal lattice 2π(ht)−1 = [b1,b2,b3]

bi · aj = 2πδij

Reciprocal lattice vectors : G = i · b1 + j · b2 + k · b3

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 55 / 94

Page 88: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Lattice vectors

Direct lattice h = [a1, a2, a3]

Translations in direct lattice: L = i · a1 + j · a2 + k · a3

Reciprocal lattice 2π(ht)−1 = [b1,b2,b3]

bi · aj = 2πδij

Reciprocal lattice vectors : G = i · b1 + j · b2 + k · b3

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 55 / 94

Page 89: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Expansion of Kohn-Sham orbitals

Plane wave expansion

ψik(r) =∑

G

cik(G)e i(k+G)·r

To be solved: Coefficients cik(G)

Different routes:

Direct optimisation of total energy

Iterative diagonalisation/minimisation

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 56 / 94

Page 90: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Expansion of Kohn-Sham orbitals

Plane wave expansion

ψik(r) =∑

G

cik(G)e i(k+G)·r

To be solved: Coefficients cik(G)

Different routes:

Direct optimisation of total energy

Iterative diagonalisation/minimisation

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 56 / 94

Page 91: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Dependence on position

Translation:φ(r) −→ φ(r − RI )

φ(r − RI ) =∑

G

φ(G)e iG·(r−RI )

=∑

G

(φ(G)e iG·r

)e−iG·RI

Structure Factor:SI (G) = e−iG·RI

Derivatives:

∂φ(r − RI )

∂RI ,s= −i

∑G

Gs

(φ(G)e iG·r

)SI (G)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 57 / 94

Page 92: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Dependence on position

Translation:φ(r) −→ φ(r − RI )

φ(r − RI ) =∑

G

φ(G)e iG·(r−RI )

=∑

G

(φ(G)e iG·r

)e−iG·RI

Structure Factor:SI (G) = e−iG·RI

Derivatives:

∂φ(r − RI )

∂RI ,s= −i

∑G

Gs

(φ(G)e iG·r

)SI (G)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 57 / 94

Page 93: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Dependence on position

Translation:φ(r) −→ φ(r − RI )

φ(r − RI ) =∑

G

φ(G)e iG·(r−RI )

=∑

G

(φ(G)e iG·r

)e−iG·RI

Structure Factor:SI (G) = e−iG·RI

Derivatives:

∂φ(r − RI )

∂RI ,s= −i

∑G

Gs

(φ(G)e iG·r

)SI (G)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 57 / 94

Page 94: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Kinetic energy

Kinetic energy operator in the plane wave basis:

−1

2∇2ϕG(r) = −1

2(iG )2 1√

Ωe iG·r =

1

2G 2ϕG(r)

Thus the operator is diagonal in the plane wave basis set

Ekin(G) =1

2G 2

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 58 / 94

Page 95: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Cutoff: Finite basis set

Choose all basis functions into thebasis set that fulfill

1

2G 2 ≤ Ecut

— a cut-off sphere

NPW ≈1

2π2ΩE

3/2cut [a.u.]

Basis set size depends on volume of box and cutoff only— and is variational!

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 59 / 94

Page 96: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Cutoff: Finite basis set

Choose all basis functions into thebasis set that fulfill

1

2G 2 ≤ Ecut

— a cut-off sphere

NPW ≈1

2π2ΩE

3/2cut [a.u.]

Basis set size depends on volume of box and cutoff only— and is variational!

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 59 / 94

Page 97: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Cutoff: Finite basis set

Choose all basis functions into thebasis set that fulfill

1

2G 2 ≤ Ecut

— a cut-off sphere

NPW ≈1

2π2ΩE

3/2cut [a.u.]

Basis set size depends on volume of box and cutoff only

— and is variational!

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 59 / 94

Page 98: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Cutoff: Finite basis set

Choose all basis functions into thebasis set that fulfill

1

2G 2 ≤ Ecut

— a cut-off sphere

NPW ≈1

2π2ΩE

3/2cut [a.u.]

Basis set size depends on volume of box and cutoff only— and is variational!

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 59 / 94

Page 99: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Fast Fourier Transform

The information contained in ψ(G) and ψ(r) are equivalent

ψ(G)←→ ψ(r)

Transform from ψ(G) to ψ(r) and back is done using fast Fouriertransforms (FFT’s)

Along one direction the number of operations ∝ N log[N]

3D-transform = three subsequent 1D-transforms

Information can be handled always in the most appropriate space

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 60 / 94

Page 100: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Fast Fourier Transform

The information contained in ψ(G) and ψ(r) are equivalent

ψ(G)←→ ψ(r)

Transform from ψ(G) to ψ(r) and back is done using fast Fouriertransforms (FFT’s)

Along one direction the number of operations ∝ N log[N]

3D-transform = three subsequent 1D-transforms

Information can be handled always in the most appropriate space

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 60 / 94

Page 101: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Fast Fourier Transform

The information contained in ψ(G) and ψ(r) are equivalent

ψ(G)←→ ψ(r)

Transform from ψ(G) to ψ(r) and back is done using fast Fouriertransforms (FFT’s)

Along one direction the number of operations ∝ N log[N]

3D-transform = three subsequent 1D-transforms

Information can be handled always in the most appropriate space

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 60 / 94

Page 102: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Fast Fourier Transform

The information contained in ψ(G) and ψ(r) are equivalent

ψ(G)←→ ψ(r)

Transform from ψ(G) to ψ(r) and back is done using fast Fouriertransforms (FFT’s)

Along one direction the number of operations ∝ N log[N]

3D-transform = three subsequent 1D-transforms

Information can be handled always in the most appropriate space

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 60 / 94

Page 103: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Integrals

Parseval’s theorem

Ω∑

G

A?(G)B(G) =Ω

N

∑i

A?(ri )B(ri )

Proof.

I =

∫ΩA?(r)B(r)dr

=∑GG′

A?(G)B(G)

∫exp[−iG · r] exp[iG′ · r]dr

=∑GG′

A?(G)B(G) Ω δGG′ = Ω∑

G

A?(G)B(G)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 61 / 94

Page 104: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Integrals

Parseval’s theorem

Ω∑

G

A?(G)B(G) =Ω

N

∑i

A?(ri )B(ri )

Proof.

I =

∫ΩA?(r)B(r)dr

=∑GG′

A?(G)B(G)

∫exp[−iG · r] exp[iG′ · r]dr

=∑GG′

A?(G)B(G) Ω δGG′ = Ω∑

G

A?(G)B(G)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 61 / 94

Page 105: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Electron density

n(r) =∑ik

wkfik|ψik(r)|2 =1

Ω

∑ik

wkfik∑G,G′

c?ik(G)cik(G′)e i(G−G′)·r

n(r) =2Gmax∑

G=−2Gmax

n(G)e iG·r

The electron density can be expanded exactly in a plane wave basis with acut-off four times the basis set cutoff.

NPW(4Ecut) = 8NPW(Ecut)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 62 / 94

Page 106: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Electron density

n(r) =∑ik

wkfik|ψik(r)|2 =1

Ω

∑ik

wkfik∑G,G′

c?ik(G)cik(G′)e i(G−G′)·r

n(r) =2Gmax∑

G=−2Gmax

n(G)e iG·r

The electron density can be expanded exactly in a plane wave basis with acut-off four times the basis set cutoff.

NPW(4Ecut) = 8NPW(Ecut)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 62 / 94

Page 107: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: OperatorsThe Kohn-Sham equations written in reciprocal space:

−1

2∇2 + VKS(G,G′)

ψik (G) = εiψik (G)

However, it is better to do it like Car and Parrinello (1985) suggested:Always use the appropriate space (via FFT)There one needs to apply an operator on a wave function:∑

G′

O(G,G′)ψ(G′)

=∑G′

c(G′)〈G|O|G′〉

Matrix representation of operators in: O(G,G′) = 〈G|O|G′〉Eg. Kinetic energy operator

TG,G′ = 〈G| − 1

2∇2|G′〉 =

1

2G 2δG,G′

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 63 / 94

Page 108: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kohn–Sham energy

EKS = Ekin + EES + Epp + Exc

Ekin Kinetic energy

EES Electrostatic energy (sum of electron-electron interaction +nuclear core-electron interaction + ion-ion interaction)

Epp Pseudo potential energy not included in EES

Exc Exchange–correlation energy

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 64 / 94

Page 109: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kinetic energy

Ekin =∑ik

wkfik〈ψik|−1

2∇2|ψik〉

=∑ik

wkfik∑GG′

c∗ik(G)cik(G′)〈k + G|−1

2∇2|k + G′〉

=∑ik

wkfik∑GG′

c∗ik(G)cik(G′) Ω1

2|k + G|2 δG,G′

= Ω∑ik

wkfik∑

G

1

2|k + G|2 |cik(G)|2

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 65 / 94

Page 110: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Periodic Systems

Hartree-like terms are most efficiently evaluated in reciprocal spacevia the

Poisson equation

∇2VH(r) = −4πntot(r)

VH(G) = 4πn(G)

G 2

VH(G) is a local operator with same cutoff as ntot

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 66 / 94

Page 111: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Electrostatic energy

EES =1

2

∫∫n(r)n(r′)

|r − r′|dr′dr +

∑I

∫n(r)V I

core(r)dr +1

2

∑I 6=J

ZIZJ

|RI − rJ |

The isolated terms do not converge; the sum only for neutral systems

Gaussian charge distributions a’la Ewald summation:

nIc(r) = − ZI(Rc

I

)3π−3/2 exp

[−(

r − RI

RcI

)2]

Electrostatic potential due to nIc:

V Icore(r) =

∫nIc(r′)

|r − r′|dr′ = − ZI

|r − RI |erf

[|r − RI |

RcI

]

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 67 / 94

Page 112: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Electrostatic energy

EES =1

2

∫∫n(r)n(r′)

|r − r′|dr′dr +

∑I

∫n(r)V I

core(r)dr +1

2

∑I 6=J

ZIZJ

|RI − rJ |

The isolated terms do not converge; the sum only for neutral systems

Gaussian charge distributions a’la Ewald summation:

nIc(r) = − ZI(Rc

I

)3π−3/2 exp

[−(

r − RI

RcI

)2]

Electrostatic potential due to nIc:

V Icore(r) =

∫nIc(r′)

|r − r′|dr′ = − ZI

|r − RI |erf

[|r − RI |

RcI

]apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 67 / 94

Page 113: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Electrostatic energy

Electrostatic energy

EES = 2πΩ∑G 6=0

|ntot(G)|2

G 2+ Eovrl − Eself

Eovrl =∑′

I ,J

∑L

ZIZJ

|RI − rJ − L|erfc

|RI − rJ − L|√Rc

I2 + Rc

J2

Eself =

∑I

1√2π

Z 2I

RcI

Sums expand over all atoms in the simulation cell, all direct latticevectors L; the prime in the first sum indicates that I < J is imposedfor L = 0.

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 68 / 94

Page 114: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Exchange-correlation energy

Exc =

∫rn(r)εxc(r)dr = Ω

∑G

εxc(G)n?(G)

εxc(G) is not local in G space; the calculation in real space requiresvery accurate integration scheme.

If the function εxc(r) requires the gradients of the density, they arecalculated using reciprocal space, otherwise the calculation is done inreal space (for LDA and GGA; hybrid functionals are more intensive)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 69 / 94

Page 115: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Basic self-consistent cycle

n(r)FFT−→ n(G)

Vxc[n](r)

VES(G)

VKS(r) = Vxc[n](r) + VES(r)FFT←− VES(G)

ψik(r)Ni×FFT←− ψik(G)

VKS(r)ψik(r)Ni×FFT−→ [VKSψik] (G)

update ψik(G)

ψ′ik(r)Ni×FFT←− ψ′ik(G)

n′(r) =∑

ik wkfik |ψ′ik(r)|2

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 70 / 94

Page 116: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Calculation of forces

With the plane wave basis set one can apply the

Hellmann-Feynman theorem

(FI =)− d

dRI〈Ψ | HKS | Ψ〉 = −〈Ψ | ∂

∂RIHKS | Ψ〉

All the terms where RI appear explicitly are in reciprocal space, andare thus very simple to evaluate:

∂RIe−iG·RI = −iGe−iG·RI

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 71 / 94

Page 117: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Calculation of forces

With the plane wave basis set one can apply the

Hellmann-Feynman theorem

(FI =)− d

dRI〈Ψ | HKS | Ψ〉 = −〈Ψ | ∂

∂RIHKS | Ψ〉

All the terms where RI appear explicitly are in reciprocal space, andare thus very simple to evaluate:

∂RIe−iG·RI = −iGe−iG·RI

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 71 / 94

Page 118: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Summary

Plane waves are delocalised, periodic basis functions

Plenty of them are needed, however the operations are simple

The quality of basis set adjusted using a single parametre, the cut-offenergy

Fast Fourier-transform used to efficiently switch between real andreciprocal space

Forces and Hartree term/Poisson equation are trivial

The system has to be neutral! Usual approach for charged states:Homogeneous neutralising background

The energies must only be compared with the same Ecut

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 72 / 94

Page 119: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Summary

Plane waves are delocalised, periodic basis functions

Plenty of them are needed, however the operations are simple

The quality of basis set adjusted using a single parametre, the cut-offenergy

Fast Fourier-transform used to efficiently switch between real andreciprocal space

Forces and Hartree term/Poisson equation are trivial

The system has to be neutral! Usual approach for charged states:Homogeneous neutralising background

The energies must only be compared with the same Ecut

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 72 / 94

Page 120: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Summary

Plane waves are delocalised, periodic basis functions

Plenty of them are needed, however the operations are simple

The quality of basis set adjusted using a single parametre, the cut-offenergy

Fast Fourier-transform used to efficiently switch between real andreciprocal space

Forces and Hartree term/Poisson equation are trivial

The system has to be neutral! Usual approach for charged states:Homogeneous neutralising background

The energies must only be compared with the same Ecut

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 72 / 94

Page 121: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Summary

Plane waves are delocalised, periodic basis functions

Plenty of them are needed, however the operations are simple

The quality of basis set adjusted using a single parametre, the cut-offenergy

Fast Fourier-transform used to efficiently switch between real andreciprocal space

Forces and Hartree term/Poisson equation are trivial

The system has to be neutral! Usual approach for charged states:Homogeneous neutralising background

The energies must only be compared with the same Ecut

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 72 / 94

Page 122: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Summary

Plane waves are delocalised, periodic basis functions

Plenty of them are needed, however the operations are simple

The quality of basis set adjusted using a single parametre, the cut-offenergy

Fast Fourier-transform used to efficiently switch between real andreciprocal space

Forces and Hartree term/Poisson equation are trivial

The system has to be neutral! Usual approach for charged states:Homogeneous neutralising background

The energies must only be compared with the same Ecut

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 72 / 94

Page 123: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Summary

Plane waves are delocalised, periodic basis functions

Plenty of them are needed, however the operations are simple

The quality of basis set adjusted using a single parametre, the cut-offenergy

Fast Fourier-transform used to efficiently switch between real andreciprocal space

Forces and Hartree term/Poisson equation are trivial

The system has to be neutral! Usual approach for charged states:Homogeneous neutralising background

The energies must only be compared with the same Ecut

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 72 / 94

Page 124: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Plane waves: Summary

Plane waves are delocalised, periodic basis functions

Plenty of them are needed, however the operations are simple

The quality of basis set adjusted using a single parametre, the cut-offenergy

Fast Fourier-transform used to efficiently switch between real andreciprocal space

Forces and Hartree term/Poisson equation are trivial

The system has to be neutral! Usual approach for charged states:Homogeneous neutralising background

The energies must only be compared with the same Ecut

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 72 / 94

Page 125: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Summary

1 Density functional theory

2 Bloch theorem / supercells

3 Localised basis sets

4 Plane wave basis set

5 Pseudo potentialsIntroduction to pseudo potentialsGeneration of pseudo potentialsUsage of pseudo potentials

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 73 / 94

Page 126: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Why use pseudo potentials?

Reduction of basis set sizeeffective speedup of calculation

Reduction of number of electronsreduces the number of degrees of freedomFor example in Pt: 10 instead of 78

Unnecessary “Why bother? They are inert anyway...”

Inclusion of relativistic effectsrelativistic effects can be included ”partially” into effective potentials

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 74 / 94

Page 127: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Why pp? Estimate for number of plane waves

plane wave cutoff ↔ most localized function

1s Slater type function ≈ exp[−Zr ]Z: effective nuclear charge

φ1s(G) ≈ 16πZ 5/2

G 2 + Z 2

Cutoff Plane waves

H 1 1

Li 4 8

C 9 27

Si 27 140

Ge 76 663

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 75 / 94

Page 128: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Pseudo potential

What is it?

Replacement of the all-electron, −Z/r problem with a Hamiltoniancontaining an effective potential

It should reproduce the necessary physical properties of the fullproblem at the reference state

The potential should be transferable, ie. also be accurate in differentenvironments

The construction consists of two steps of approximations

Frozen core approximation

Pseudisation

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 76 / 94

Page 129: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Frozen core approximation

Core electrons are chemically inert

Core/valence separation is sometimes not clear

Core wavefunctions are from atomic reference calculation

Core electrons of different atoms do not overlap

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 77 / 94

Page 130: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Remaining problems

Valence wavefunctions must be orthogonal to core states→ nodal structures → high plane wave cutoff

Thus pseudo potential should produce node-less functions and includePauli repulsion

Pseudo potential replaces Hartree and XC potential due to the coreelectrons

XC functionals are not linear: approximation

EXC(nc + nv) = EXC(nc) + EXC(nv)

This assumes that core and valence electrons do not overlap. Thisrestriction can be overcome with the ”non–linear core correction”(NLCC) discussed later

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 78 / 94

Page 131: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Remaining problems

Valence wavefunctions must be orthogonal to core states→ nodal structures → high plane wave cutoff

Thus pseudo potential should produce node-less functions and includePauli repulsion

Pseudo potential replaces Hartree and XC potential due to the coreelectrons

XC functionals are not linear: approximation

EXC(nc + nv) = EXC(nc) + EXC(nv)

This assumes that core and valence electrons do not overlap. Thisrestriction can be overcome with the ”non–linear core correction”(NLCC) discussed later

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 78 / 94

Page 132: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Atomic pseudo potentials: Basic idea

1 Create a pseudo potential for each atomic species separately, in areference state (usually a neutral or slightly ionised atom)

2 Use these in the Kohn-Sham equations for the valence only(T + V (r, r′) + VH(nv) + VXC(nv)

)Φvi (r) = εiΦ

vi (r)

Goal

Pseudo potential V (r, r′) has to be chosen such that the main propertiesof the all-electron atom are imitated as well as possible

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 79 / 94

Page 133: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Pseudisation of valence wave functions

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 80 / 94

Page 134: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Generation of pseudo potentials: General recipe

1 Atomic all–electron calculation (reference state)⇒ Φv

l (r) and εl .

2 Pseudize Φvl ⇒ ΦPS

l

3 Calculate potential from

[T + Vl(r)] ΦPSl (r) = εlΦ

PSl (r)

4 Calculate pseudo potential by unscreening of Vl(r)

V PSl (r) = Vl(r)− VH(nPS)− VXC(nPS)V PS

l is dependent on l! Otherwise poor transferability

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 81 / 94

Page 135: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Norm-conserving pseudo potentials

Hamann-Schluter-Chiang-Recipe (HSC) conditionsD R Hamann, M Schluter & C Chiang, Phys Rev Lett 43, 1494 (1979)

1 Real and pseudo valence eigenvalues agree for a chosen prototypeatomic configuration: εl = εl

2 Real and pseudo atomic wave functions agree beyond a chosen coreradius rc : Ψl(r) = Φl(r) for r ≥ rc

3 Integral from 0 to R of the real and pseudo charge densities agree forR ≥ rc (norm conservation): 〈Φl |Φl〉R = 〈Ψl |Ψl〉R for R ≥ rc ,

〈Φ|Φ〉R =∫ R

0 r2|φ(r)|2dr4 The logarithmic derivatives of the real and pseudo wave function and

their first energy derivatives agree for r ≥ rc .

Points 3) and 4) are related via −12

[(rΦ)2 d

dεddr lnΦ

]R

=∫ R

0 r2|Φ|2dr

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 82 / 94

Page 136: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Semi-local pseudo potential

Final semi-local form

V PS(r, r′) = V PSloc (r) +

Lmax∑L=0

∆V PSL (r)|YL〉〈YL|

Local pseudo potential V PSloc

Non-local pseudo potential ∆V PSL = V PS

L − V PSloc

Any L quantum number can have a non-local part

This form leads, however, to large computing requirements in plane wavebasis sets

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 83 / 94

Page 137: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 84 / 94

Page 138: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 85 / 94

Page 139: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 86 / 94

Page 140: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Kleinman–Bylander formWrite the pseudo potential terms as

Kleinman-Bylander operator

VKBPS,nl

(r, r′)

=∑L

|∆VLφL〉ωL〈∆VLφL|

ωL = 〈φL | ∆VL | φL〉

φL is the pseudo wave function

EPS,nl =∑ik

wkfik∑L

〈ψik | ∆VLφL〉ωL〈∆VLφL | ψik〉

Now the expression is fully non-local f (r′) f (r) and thuscomputationally efficient also in plane wave basis set!

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 87 / 94

Page 141: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Ghost states

Problem: In Kleinman–Bylander form, the node-less wave function isno longer the solution with the lowest energy

Solution: Carefully tune the local part of the pseudo potential until theghost states disappear

How to detect ghost states: Look for following properties

Deviations of the logarithmic derivatives of the energyof the KB–pseudo potential from those of the respectivesemi-local pseudo potential or all–electron potential.Comparison of the atomic bound state spectra for thesemi-local and KB–pseudo potentials.Ghost states below the valence states are identified by arigorous criteria by Gonze et al

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 88 / 94

Page 142: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Ultra–soft pseudo potentials and PAW method

Many elements require high cutoff for plane wave calculationsI First row elements: O, FI Transition metals: Cu, ZnI f elements: Ce

relax norm-conservation condition∫nPS(r)dr +

∫Q(r)dr = 1

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 89 / 94

Page 143: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Ultra–soft pseudo potentials and PAW method

Augmentation functions Q(r) depend on environment.

No full un-screening possible, Q(r) has to be recalculated for eachatom and atomic position.

Complicated orthogonalisation and force calculations.

Allows for larger rc , reduces cutoff for all elements to about 30 Ry

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 90 / 94

Page 144: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Non-linear core correction (NLCC)

For many atoms (eg. alkali atoms, transition metals) core statesoverlap with valence states; thus linearisation of XC energy breaksdown

Possible curesI Add additional states to valence

F adds more electronsF needs higher cutoff

I Add core charge to valence charge in XC energy ⇒ non–linear corecorrection (NLCC)S.G. Louie et al., Phys. Rev. B, 26 1738 (1982)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 91 / 94

Page 145: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Testing of pseudo potentials

Calculation of other atomic valence configurations (occupations),comparison with all-electron results

Calculation of transferability functions, logarithmic derivatives,hardness

Calculation of small molecules, comparison with all electroncalculations (geometry, harmonic frequencies, dipole moments)

Calculation of other test systems

Check of basis set convergence (cutoff requirements)

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 92 / 94

Page 146: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Convergence test for pseudo potentials in O2

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 93 / 94

Page 147: Basics of Density Functional Theory (DFT) - apsi · Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi D epartement de Chimie Ecole Normale Sup erieure,

Pseudo potentials: Summary

Pseudo potential are necessary when using plane wave basis sets in order tokeep the number of the basis function manageable

Pseudo potentials are generated at the reference state; transferability is thequantity describing the accuracy of the properties at other conditions

The mostly used scheme in plane wave calculations is the Troullier-Martinspseudo potentials in the fully non-local, Kleinman-Bylander form

Once created, a pseudo potential must be tested, tested, tested!!!

apsi (ENS, UPMC, CNRS) DFT Sidi-BelAbbes 94 / 94