beam%beam’simula,ons and …...2016/04/04  · 9970 9980 9990 10000 10010 10020 10030 0 500 1000...

15
Beambeam simula,ons and analysis of la2ce nonlinearity using PTC Demin Zhou Acknowledgements: F. Zimmermann, K. Ohmi, K. Oide, E. Forest, D. Sagan (Cornell) FCCee OpBcs meeBng, Apr. 04, 2016

Upload: others

Post on 19-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Beam-‐beam  simula,ons  and  

    analysis  of  la2ce  nonlinearity  using  PTC

    Demin  Zhou  

    Acknowledgements:  F.  Zimmermann,  K.  Ohmi,  K.  Oide,  E.  Forest,  

    D.  Sagan  (Cornell)  

    FCC-‐ee  OpBcs  meeBng,  Apr.  04,  2016

  • Outline

    2

    ➤  Introduc,on            ●  FCC-‐ee  design  la2ces  provided  by  K.  Oide  ➤  Beam-‐beam  simula,ons            ●  BBWS:  beam-‐beam  +  simple  linear  map            ●  SAD:  beam-‐beam  +  design  la2ce            ●  At  present,  only  consider  average  turn-‐by-‐turn  radia,on  damping/excita,on  lumped  at  one  point,  no  quadrupole  radia,on  and  no  “saw-‐tooth”  effects  in  orbit    ➤  Analysis  of  la2ce  nonlinearity  (LN)            ●  La2ce  transla,on:  SAD  =>  Bmad  =>  PTC  [StraighYorward]            ●  Resonance  driving  terms  (RDTs)  calcula,ons  using  PTC  ➤  Summary  

  • 3

    ➤  The  idea            ●  Method  demonstrated  in  D.  Zhou  et  al,  TUPE016,  IPAC13            ●  One-‐turn  map:  

             ●  M0  can  be  simple  matrix  or  IP-‐to-‐IP  realis,c  map  from  a  design  la2ce            ●  Interplay  of  BB,  la2ce  and  other  issues  reflected  in  luminosity,  DA,  beam  tail,  par,cle  loss,  etc.            ●  Separated  simula,on/analysis  of  BB  and  LN  help  understand  the  mechanisms  of  their  interplay  

    1. Interplay of BB and latt. nonlin.

    M = MRAD �MBB �M0

  • 1. Parameters for simulations (half ring)

    4

    Z tC (km) 49990.9 49990.9E (GeV) 45.6 175

    Number of IPs 1 1Nb 90300 78

    Np(1011) 0.33 1.7Full crossing angle(rad) 0.03 0.03

    εx (nm) 0.09 1.3εy (pm) 1 2.5

    βx* (m) [optional] 1 [0.5] 1 [0.5]βy* (mm) [optional] 2 [1] 2 [1]

    σz (mm)SR 2.7 2.1σδ(10-3)SR 0.37 1.4

    Betatron tune νx/νy .55/.57 .54/.57Synch. tune νs 0.0075 0.0375

    Damping rate/turn (10-2) [x/y/z] 0.019/0.019/0.038 1.1/1.1/2.2Lum./IP(1034cm-2s-1) 68 1.3

    Ref.  F.  Zimmermann,  FCC-‐ee  design  mee,ng,  Dec.  9,  2015

  • 5

    ➤  βx*=1m,  βy*=2mm            ●  La2ce  ver.  FCCee_t_65_26_1_2  

    2. BB simulations: Lum.: t

    0

    1

    2

    3

    4

    5

    6

    0 0.005 0.01 0.015 0.02

    Spec

    ific

    Lum

    ./IP

    [103

    4 cm

    -2s-

    1 mA-

    2 ]

    Ibunch(e+)×Ibunch(e

    -) [mA2]

    Design Lum. BBWS w/o CW w/ BS

    BBWS w/ CW w/ BSSAD w/ CW w/ BS

    SAD w/o CW w/ BS

    0

    1

    2

    3

    4

    0 0.005 0.01 0.015 0.02

    Lum

    ./IP

    [103

    4 cm

    -2s-

    1 ]

    Ibunch(e+)×Ibunch(e

    -) [mA2]

    Design Lum. BBWS w/o CW w/ BS

    BBWS w/ CW w/ BSSAD w/ CW w/ BS

    SAD w/o CW w/ BS

  • 6

    ➤  βx*=0.5m,  βy*=1mm            ●  La2ce  ver.  FCCee_t_65_26  

    2. BB simulations: Lum.: t

    0

    1

    2

    3

    4

    5

    6

    0 0.005 0.01 0.015 0.02

    Spec

    ific

    Lum

    ./IP

    [103

    4 cm

    -2s-

    1 mA-

    2 ]

    Ibunch(e+)×Ibunch(e

    -) [mA2]

    Design Lum. BBWS w/o CW w/ BS

    BBWS w/ CW w/ BSSAD w/ CW w/ BS

    0

    1

    2

    3

    4

    0 0.005 0.01 0.015 0.02

    Lum

    ./IP

    [103

    4 cm

    -2s-

    1 ]

    Ibunch(e+)×Ibunch(e

    -) [mA2]

    Design Lum. BBWS w/o CW w/ BS

    BBWS w/ CW w/ BSSAD w/ CW w/ BS

  • 7

    ➤  βx*=1m,  βy*=2mm  [Ver.  FCCee_z_65_36]            ●  La2ce  ver.  FCCee_z_65_36  

    2. BB simulations: Lum.: Z

    0

    2

    4

    6

    8

    10

    0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

    Spec

    ific

    Lum

    ./IP

    [103

    4 cm

    -2s-

    1 mA-

    2 ]

    Ibunch(e+)×Ibunch(e

    -) [mA2]

    Design Lum. BBWS w/o CW w/ BS

    BBWS w/ CW w/ BSSAD w/ CW w/ BS

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

    Lum

    ./IP

    [103

    4 cm

    -2s-

    1 ]

    Ibunch(e+)×Ibunch(e

    -) [mA2]

    Design Lum. BBWS w/o CW w/ BS

    BBWS w/ CW w/ BSSAD w/ CW w/ BS

  • 9970

    9980

    9990

    10000

    10010

    10020

    10030

    0 500 1000 1500 2000 2500 3000

    Num

    ber o

    f sur

    vivi

    ng p

    artic

    les

    Turn

    Np=1.1E11Np=1.3E11Np=1.5E11Np=1.7E11Np=1.9E11

    8

    ➤  Par,cle  losses  in  tracking            ●  Threshold  observed            ●  Nominal  Np=1.7E11            ●  Loss  rate  depend  on  β*x,y,              ●  Slipping  out  of  RF  bucket?            ●  Improper  se2ng  of  simula,ons?            Mismatch  in  transverse  beam  sizes,              No  crab  waist  for  the  strong  beam

    2. BB simulations: Particle loss: t

    FCCee_t_65_26_1_2  βx*=1m,  βy*=2mm

    FCCee_t_65_26  βx*=0.5m,  βy*=1mm

    FCCee_t_65_26_1_2_nocw  βx*=1m,  βy*=2mm 9970

    9980

    9990

    10000

    10010

    10020

    10030

    0 500 1000 1500 2000 2500 3000

    Num

    ber o

    f sur

    vivi

    ng p

    artic

    les

    Turn

    Np=0.8E11Np=1.1E11Np=1.4E11Np=1.7E11Np=2.0E11

    9970

    9980

    9990

    10000

    10010

    10020

    10030

    0 500 1000 1500 2000 2500 3000

    Num

    ber o

    f sur

    vivi

    ng p

    artic

    les

    Turn

    Np=0.8E11Np=1.1E11Np=1.4E11Np=1.7E11Np=2.0E11

  • 9

    ➤  Resonance  driving  terms  (RDTs)  indicate  la2ce  nonlinearity  

    3. RDTs

  • 10

    ➤  RDTs  indicate  la2ce  nonlinearity  3. RDTs

  • 11

    ➤  RDTs  indicate  la2ce  nonlinearity  3. RDTs

  • 12

    ➤  PTC  applied  to  SuperKEKB:  an  example            ●  2νx-‐νy  [(Jx)(Jy)1/2]  resonance            ●  3D  fields  near  IP  [Solenoid  and  FF  quad  fringe  fields]  generate  lots  of  low-‐order  nonlineari,es,  hard  to  be  compensated  using  arc  mul,poles  [global  correc,on]            ●  Simplified  la2ces  show  less  nonlinearity  

    3. RDTs: PTC calculation

  • 13

    ➤  PTC  applied  to  FCC-‐ee  t  la2ce:  an  example            ●  2νx-‐νy  [(Jx)(Jy)1/2]  resonance  for  lar.  ver.  FCCee_t_65_26            ●  In  general,  no  significant  3rd  resonances  in  FCC-‐ee  la2ces

    3. RDTs: PTC calculation

    Whole  ring Near  IP

  • 14

    ➤  PTC  applied  to  FCC-‐ee  t  la2ce:  an  example            ●  4th  order  RDTs  for  lar.  ver.  FCCee_t_65_26            ●  Residual  4th  order  RDTs  exist,  and  depend  on  la2ce  design/op,miza,on  

    3. RDTs: PTC calculation

    dνx,y/dJy,x 4νx

  • 4. Summary

    15

    ➤  Beam-‐beam  simula,ons          ●  Small  loss  [order  of  a  few  percent]  of  luminosity  due  to  BB+La2ce  [No  limit  in  luminosity  performance,  and  should  be  controllable  via  op,cs  op,miza,on]          ●  Par,cle  loss  in  SAD  simula,ons  [to  be  understood]  ➤  La2ce  analysis  using  PTC          ●  PTC  is  ready  for  RDTs  calcula,ons          ●  Iden,fy  sources  of  nonlinearity          ●  Iden,fy  dominant  nonlinear  terms  in  one-‐turn-‐map          ●  Evaluate  la2ce  designs  and  op,miza,ons    ➤  To  do  list          ●  Understand  macro-‐par,cle  losses  in  beam-‐beam  simula,ons  with  la2ces          ●  Simula,ons  for  FCC-‐ee  Z  la2ces  with  βx*=0.5m,  βy*=1mm          ●  Simula,ons  with  quadrupole/distributed  radia,on  and  “saw-‐tooth”  effects