biofisica.rmn11 12.ingles

Upload: josito2003

Post on 04-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    1/28

    1

    Biophysics

    Nuclear Magnetic Resonance 1) Introduction to NMR (20, 27 of March)

    2) Applications in macromolecules (27 of March)

    3) Laboratory practice (17 of April)

    Antxon Martinez de Ilarduya

    [email protected] (UPC)

    Departament dEnginyeria Qumica

    Master en Ingeniera Biotecnolgica 2010-2011

    2

    i) Introduction

    - Technique for characterization of:

    - Organic compounds

    - Macromolecules: - Tacticity (vinyl polymers)

    - Composition and sequence distribution(copolymers)

    - Conformation (biopolymers, proteins)

    - Medicine: - MRI

    - Evolution: - 1946 Block y Purcel : 1H NMR

    - Currently : FT-RMN

    - 1H, 13C, 31P, 15N

    - 2D and 3D Spectra

    - Solid Samples (CP-MAS)

    NUCLEAR MAGNETIC RESONANCE (NMR)

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    2/28

    3

    ii) Theory

    Nuclei of atoms small magnets

    E=0

    H0

    Radiacin

    h = E

    Observables nucleus :

    a) Nuclei with rotation

    - They have magnetic moment

    - Can be observed by NMR

    a1) Spherical charge distribution

    spin I= 1/2 1H, 13C, 15N, 19F, 31P,...

    a2) Non spherical charge distribution

    spin I > 1/2 2H, 14N, 33S, 35Cl, ...

    (They have an electric quadrupole moment)

    NMR

    4

    b) Nucleus without rotation

    - They dont have magnetic moment

    - They cant be observed by NMR

    Spin I = 0 12C, 16O, ...

    Nucleus with spin I=1/2 (1H, 13C,...)

    - Antiparallel

    - In a magnetic field Ho: 2 directions

    - Parallel

    - Small excess in parallel direction to the magnetic field

    Population m= +1/2

    ----------------------- = 1.0000066

    Population m= +1/2

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    3/28

    5

    - Condition for resonance:

    Ho = Intensity of Magnetic Field

    = Radiation frequency

    = Magnetogyric ratio (Depends of the type of nucleus)

    2 = H0

    H0 (T) (1H) (MHz) (13C) (MHz) (19F) (MHz)

    4.7 200 50.29 188.15

    7.05 300 75.44 282.23

    11.75 500 125.73 470.38

    NMR

    6

    Nuclei of interest in NMRNMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    4/28

    7

    1H NMR

    The chemical shift ( ):

    - The hydrogen nucleus (proton)

    0

    - The hydrogen atom (proton + electron)

    - The shielding effect of the electron

    simplified scheme of the shielding effect in the hydrogen atom

    NMR

    8

    Effect of the substituent (between the effect in the proton and the hydrogen)

    Electronegativity of the substituent Unshielding >

    Paramagnetic effect

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    5/28

    9

    Effect of the electronegativity of the substituent

    el

    ectronegati

    vity

    NMR

    10

    Chemical shifts of a variety of protons referred to TMS NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    6/28

    11

    Calibration of NMR spectra

    - We introduce a reference (TMS)

    Si

    CH3

    H3C CH3

    CH3

    =e eTMS

    0

    ppm 12 11 10 9 8 7 6 5 4 3 2 1 0

    TMS

    partes por milln

    NMR

    12

    Spin-spin Coupling

    Chemical shift () influenced by the neighboring nuclei

    A

    Interest: 1) Easier assignation of signals

    2) J depends on conformation (Conformational studies)

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    7/28

    13

    H A H x

    H A H X

    H A H X

    -1/2

    +1/2

    H A

    A

    J HxHy

    (p p m )

    TM S

    0

    A C O P L A M I E N T O E S P I N - E S P I N

    A(p p m )

    TM S

    0

    J J

    X

    H AH X

    H X

    25 %

    25 %

    25 %

    25 %

    (p p m )

    TM S

    0

    J J

    X A

    J

    50 %

    25 % 25 %

    S i s te m a A X

    S i s te m a A X 2

    Spin-spin coupling

    HxHa

    Hx

    HxHa

    NMR

    14

    Number of signals in coupled protons

    Example: diethyl ether

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    8/28

    15

    Quantitative analysis

    - Integral of signals Number of protons

    3

    2

    3

    NMR

    16

    Problem 1: Establish the chemical structure and coupling constants ofdifferent protons of this compound with the help of the molecular formulaand the1H NMR spectrum.

    2.

    0000

    2.

    9860

    3.

    0410

    (ppm)

    0.00.51.01.52.02.53.03.54.04.5

    2.

    0000

    1247.

    69

    1240.

    63

    1233.

    57

    1226.

    25

    (ppm)

    4.104.20

    3.

    0410

    385.

    63

    378.

    32

    371.

    26

    (ppm)

    1.20

    C4H8O2

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    9/28

    17

    Problem 2:Establish the chemical structure of this organic compound withthe help of FTIR and1H NMR spectra.

    2 2 2 2 31

    C10H12O3

    NMR

    18

    13C NMR

    Disadvantages:

    - Not abundant nucleus (1%)

    - Low sensibility (accumulate 200- 10000 spectra)

    - It is not quantitative

    Advantages:

    - sharp peaks (not couplings)

    - Wide spectral width (250 ppm). Better resolution.

    OCH2CHCH2O

    OH

    CH, CH2

    1

    1

    24

    323

    4

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    10/28

    19

    Scheme of chemical shifts in 13C NMR

    C=O

    NMR

    20

    Experimental Method

    - Solvent without hydrogens (deuterated)

    CDCl3 ; deuterated DMSO; CD3COCD3 ; D2O

    - introduce TMS or derivative (one drop)

    - NMR tubes of special glass

    - Put the sample in the superconductive Magnet

    - He y N2 (liquid)

    - Field homogenization (Shims)

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    11/28

    21

    Magnetic field direction

    Irradiacin

    Radiation emission(to detector)

    Pulse irradiation

    (All frequencies)

    I

    t

    FID

    I

    (ppm)

    Spectrum

    FT

    Relaxation of nuclei

    (Radiation emission (FID)

    (intensity vs. time)

    FT NMR Spectrum(intensity vs. frequency)

    NMR

    22

    Pulse Diagram :

    1) 1 H NMR

    pulso

    FID

    P1 AT D1

    P1 = Pulse duration

    AT= Acquisition time

    D1= Time delay between pulse and pulse

    pulso

    FID

    P1 AT D1

    13C

    IRADIACION

    CONTINUA1

    HDESACOPLADOR

    TRANSMISOR

    2) 13C NMR (with nOe and1H decoupled)

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    12/28

    23

    3) DEPT

    Very useful multipulse sequence for the determination of the multiplicity of

    different carbons (13C)

    C, CH, CH2, CH3

    Depending on the pulse duration it is possible to observe different spectra

    NMR

    24

    135

    C not observed

    CH2 down

    CH, CH3 up

    90

    CH up

    C, CH2, CH3 not observed

    45

    CH , CH2, CH3 up

    C not observed

    13C

    DEPT 135

    DEPT 90

    DEPT 45

    CH2CH3

    CH3CH2

    DEPTNMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    13/28

    25

    Examples: Isobutanol (CH3)2CHCH2OH

    a) 13C

    CH3

    CH

    CH2

    c) DEPT 135 CH

    CH3

    CH2

    CH

    b) DEPT 90

    NMR

    26

    Example: Beta-Ionona

    7 85,6

    2

    1

    4

    1 (CH3)

    10 3

    5 (CH3)

    CH

    CH3

    CH2

    CH

    CH

    CH2CH3

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    14/28

    27

    4) 2D NMR

    Very useful for the interpretation of complicated 1D NMR spectra

    NMR signals overlapped or at very similar chemical shifts

    Solution 2D NMR

    Changing:

    D1 P1, P2 Different 2D spectra t1 y t2 (COSY, HETCOR, NOESY...)

    NMR

    28

    4.1) COSY

    1H-1H Homonuclear correlation

    Utility

    - Knowing which protons are coupled to each other

    - Determination of J values

    Hx

    HxHa

    spin-spin coupling

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    15/28

    29

    Interpretation of a COSY

    Symmetric respect to the

    diagonal (take one side)

    Diagonal (spectrum in one

    dimension)

    Off of diagonal: Signals ofcoupled protons

    Coupled protons:

    1.Trace a vertical and ahorizontal line to diagonal

    2. When this line meet the

    diagonal trace a vertical to thesignal

    H3C C CH2CH3

    O 1 23

    Coupling signal

    coupled

    protons

    1 23

    NMR

    30

    Example 2: Ethyl Benzene

    CH2CH3

    CH2

    CH3Phenyl

    Coupling signal

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    16/28

    31

    Example 3: 1-propanol: CH3CH2CH2OHCH3

    CH2OH OH

    CH2CH3

    NMR

    32

    Example 4: 2-Chlorobutane: CH3CHClCH2CH32 4 3 1

    a b c

    a

    b

    c

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    17/28

    33

    Problem 3:Assign the1H NMR signals ofthe following organic compound CH3

    CH3

    CH3 CH3O

    54

    3

    2

    1

    7

    810

    6

    NMR

    34

    Problem 4:Assign the1H NMR signals of the following organiccompound (C6H12O). (FTIR absorptions at 3300 and 1640 cm

    -1)

    1H-RMN

    13C-RMN

    510

    2,5

    10

    10

    10

    10

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    18/28

    35

    FTIR absorptions at 3338 and 1642 cm-1

    NMR

    36

    COSY

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    19/28

    37

    4.2. HETCOR

    Heteronuclear correlation 1H-13C or 1H-X90

    {1H}1H:

    13C:

    90 90

    t1

    - Utility:

    - Correlate protons and carbons attached to each other.

    - Easy assignement of 1H y 13C signals in complex compounds

    NMR

    38

    Methodology:

    1) Trace from 1H peak an horizontal line to the coupling signal.2) Then trace a vertical line (direct couplings H-C)

    Example 1: Polyaspartate of ethylene glycol methyl ether

    NHCHCH2CO

    COOCH2CH2OCH3n

    c

    a b

    CH

    a

    b

    cCH3

    CH3b aCH c

    Couplin signals 1H-13C

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    20/28

    39

    Example 2: Isobutanol(CH3)2CHCH2OH

    CH2

    CH

    CH3

    1H

    13C

    NMR

    40

    Problem 5:Asign the13C NMR signals of the following organic compoundwith the help of the HETCOR spectrum

    CH3

    CH3

    CH3 CH3O

    54

    3

    2

    1 7

    810

    6

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    21/28

    41

    Problem 6:Asign the1H y13C signals of the following organic compound withthe help of COSY, DEPT 135, and HETCOR spectra. FTIR (band at 1640 cm-1) (C13H18O)

    CDCl3

    1H-RMN

    13C-RMN

    DEPT 135

    20

    48 8

    88 8 8

    NMR

    42

    COSYHETCOR

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    22/28

    43

    Other 2D experiments:

    NOE-2D (NOESY): Allows the determination of the distances ofdifferent protons in a molecule (Conformational studies in proteins)

    INADEQUATE: 13C-13C Correlacin. (Similar to COSY). Low sensibility

    COLOC: Long distance correlation 1H-13C. (Assignments of C y C=O)

    J-Resolved Homonuclear and Heteronuclear: Determination of J y .

    NMR

    44

    Main Applications of NMR in Biopolymers

    1) Determination of the chemical structure (type of

    comonomers) and microstructure (comonomers sequence

    distribution ).

    2) Study the conformation in solution

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    23/28

    45

    1) Determination of the chemical structure (type of comonomers)

    and microstructure (comonomers sequence distribution ).

    NMR: Very useful tool

    In most of the cases it is required to assign the signals by

    2D NMR spectra:

    (1H-1H COSY, 1H-13C HETCOR, 1H-1H NOESY y 1H-13C COLOC)

    NMR

    46

    1.

    0000

    0.

    1822

    1.

    9779

    0.

    1955

    0.

    1943

    2.

    9787

    Integral

    (ppm)

    0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5

    Example 1: PHB (Biopolymer synthesized by bacteria)

    CH CH2 C

    O

    O

    CH3

    O CH2CH2CH2 C

    O

    x y

    1

    2

    3 1' 2' 3'

    1

    3

    2

    1 3 2

    CHCl3

    TMS

    Composition:

    1=K1x

    0.18=K2y

    x+y=100

    x=91.7% y=8.3%

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    24/28

    47

    (ppm)

    0102030405060708090100110120130140150160170

    CH CH2 C

    O

    O

    CH3

    O CH2CH2CH2 C

    O

    x y

    1

    2

    3 1' 2' 3'

    4 4'

    Example 1: PHB (Biopolymer synthesized by bacteria)

    1

    3

    2

    1 3 2

    CDCl34

    4

    NMR

    48

    (ppm)

    62.563.063.564.064.565.065.566.066.567.067.568.068.569.0

    Automatic Deconvolution

    Fit type : lorentz

    No. Position (Hz/ppm) Width (Hz/ppm) Intensity Integral(rel./abs.)

    1 5100.62/ 67.5860 2.36/ 0.0312 3.161070e+008 83.66/1.074359e+009

    2 5084.78/ 67.3761 2.14/ 0.0284 3.243536e+007 7.81/1.002685e+008

    3 4799.54/ 63.5965 2.61/ 0.0346 2.910169e+007 8.54/1.096137e+008

    CH CH2 C

    O

    O

    CH3

    O CH2CH2CH2 C

    O

    x y

    Example 1: PHB (Biopolymer synthesized by bacteria)

    2

    CH

    CH2

    A B

    AA

    AB

    BAAB

    BA

    Microstructure:

    AA: 83.7 % AB+BA: 16.3 % BB: 0 %

    Degree of randomness: 1/(((AA+0.5(AB+BA))/0.5(AB+BA)) + 1/(((BB+0.5(AB+BA))/0.5(AB+BA))

    Degree of randomness = 1.09 (Random copolymer)

    Microstructure:NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    25/28

    49

    2) Study the conformation in solution

    NMR: Frequenly used for the study of the conformation of

    proteins.

    1H NMR:

    a) : depends on the type of conformation (helix, -

    sheet,)

    b) 3J CH-NH: depends on the dihedral angle between

    the protons.

    c) Dipolar coupling (nOe effect). Used to calculate the

    internuclear proton distances.

    NMR

    50

    a) : depends on the type of conformation (helix,

    -sheet,)

    helix-sheet

    coil

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    26/28

    51

    b) 3J CH-NH: depends on the diedral angle of protons:

    Hlix

    -Sheet

    NMR

    52

    c) Dipolar coupling (nOe effect). Used to calculate

    internuclear proton distances

    Conantokin-G: Gly-Glu-Gla-Gla-Leu-Gln-Gla-Asn-Gln-Gla-Leu-Ile-Arg-Gla-Lys-Ser-Asn-NH2

    NOESY:

    CH

    NH

    MOLECULAR

    DINAMICS

    Helical Conformation

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    27/28

    53

    Poly(-peptides)

    NC

    CH2

    C

    H

    OROOC H

    n

    R: Alkyl

    -They form structures with the main chain in helix conformation

    NMR

    54

    - Helix-coil transition (solvent effect)

    NMR

  • 7/31/2019 Biofisica.rmn11 12.Ingles

    28/28

    55

    - Helix-coil transition (effect of temperature)

    NH

    CH

    H

    H

    C

    C

    This kind of polymers have the main chain in helix conformation that breaks with the

    addition of acids or by thermal effects.

    NMR

    Bibliography"Spectrometric Identification of Organic Compounds," R.M. Silverstein, G.C. Bassler and T.C. Morrill, John Wiley &

    Sons, New York, 5th Ed. 1991.

    "NMR and Chemistry; An Introduction to Nuclear Magnetic Resonance Spectroscopy," J. Akitt, Chapman and Hall,

    London, 1973.

    "Nuclear Magnetic Resonance for Organic Chemistry," D. W. Mathieson, Academic Press, London, 1967.

    "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," L. M. Jackman and S. Sternhell,Pergamon Press, Oxford, 1969.

    One-dimensional and Two-dimensional NMR Spectra by Modern Pulse Techniques, K. Nakanishi, University Science

    Books, California, 1990.

    "NMR of Proteins and Nueclic Acids K. Wthrich, John Wiley, 1986.

    "Nuclear Magnetic Resonance Spectroscopy," F. A. Bovey, Academic Press, 2nd Ed., 1988.

    "Tables of Spectral Data for Structure Determination of Organic Compounds," E. Pretsch, T. Clerc, J. Seibl, W. Simon,

    2nd Ed. Springer-Verlag, 1989.

    "Magnetic Resonance of Biomolecules," P. F. Knowles, D. Marsh, and H. W. E. Rattle, Wiley, London, 1976.

    "13C NMR Spectroscopy, High Resolution Methods and Applications in Organic Chemistry and Biochemistry," E.

    NMR