biologia celular 2001/2002prof.doutor josé cabeda aula teórica nº 3 fisiologia celular básica

63
2001/2002 Prof.Doutor José Cabeda Biologia Celular Aula Teórica Nº 3 Fisiologia Celular Básica Fisiologia Celular Básica

Upload: jayden-owens

Post on 26-Mar-2015

222 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof.Doutor José Cabeda Biologia Celular

Aula Teórica Nº 3

Fisiologia Celular BásicaFisiologia Celular Básica

Page 2: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof.Doutor José Cabeda Biologia Celular

Expressão Genética

Page 3: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Molecular definition of a gene

A gene is the entire nucleic acid sequence that is A gene is the entire nucleic acid sequence that is necessary for the synthesis of a functional necessary for the synthesis of a functional polypeptidepolypeptide

DNA regions that code for RNA molecules such as DNA regions that code for RNA molecules such as tRNA and rRNA may also be considered genestRNA and rRNA may also be considered genes

In eukaryotes, genes lie amidst a large expanse of In eukaryotes, genes lie amidst a large expanse of nonfunctional, noncoding DNA and genes may also nonfunctional, noncoding DNA and genes may also contain regions of noncoding DNAcontain regions of noncoding DNA

Page 4: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Bacterial operons produce polycistronic mRNAs while most eukaryotic mRNAs are monocistronic and contain introns

Figure 9-1

Page 5: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Organizing cellular DNA into chromosomes

Most bacterial chromosomes are circular with one Most bacterial chromosomes are circular with one replication originreplication origin

Eukaryotic chromosomes each contain one linear Eukaryotic chromosomes each contain one linear DNA molecule and multiple origins of replicationDNA molecule and multiple origins of replication

Bacterial DNA is associated with polyamines Bacterial DNA is associated with polyamines Eukaryotic DNA associates with histones to form Eukaryotic DNA associates with histones to form

chromatinchromatin

Page 6: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Chromatin exists in extended and condensed forms

Figure 9-29

Page 7: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Nucleosomes are complexes of histones

Figure 9-30

Page 8: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

The solenoid model of condensed chromatin

Figure 9-31

Page 9: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

A model for chromatin packing in metaphase chromosomes

Figure 9-35

Page 10: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Stained chromosomes have characteristic banding patterns

Figure 9-38

Page 11: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Chromosome painting distinguishes each homologous pair by color

Figure 9-0

Page 12: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Mitochondrial genetic codes differ from the standard genetic code

Page 13: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Bacterial gene control: the Jacob-Monod model

Cis acting DNA sequencesCis acting DNA sequences

Trans-acting genes/proteinsTrans-acting genes/proteins

Figure 10-2

Page 14: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

10.2 Bacterial transcription initiation

RNA polymerase initiates transcription of most genes at RNA polymerase initiates transcription of most genes at a unique DNA position lying upstream of the coding a unique DNA position lying upstream of the coding sequencesequence

The base pair where transcription initiates is termed the The base pair where transcription initiates is termed the transcription-initiation site or start sitetranscription-initiation site or start site

By convention, the transcription-initiation site in the DNA By convention, the transcription-initiation site in the DNA sequence is designated +1, and base pairs extending in sequence is designated +1, and base pairs extending in the direction of transcription (downstream) are assigned the direction of transcription (downstream) are assigned positive numbers which those extending in the opposite positive numbers which those extending in the opposite direction (upstream) are assigned negative numbersdirection (upstream) are assigned negative numbers

Various proteins (RNA polymerase, activators, Various proteins (RNA polymerase, activators, repressors) interact with DNA at or near the promoter to repressors) interact with DNA at or near the promoter to regulate transcription initiationregulate transcription initiation

Page 15: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

DNase I footprinting assays identify protein-DNA interactions

Figure 10-6

Page 16: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Gel-shift assays identify protein-DNA interactions

Figure 10-7

Page 17: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Most bacterial repressors are dimers containing helices that insert into adjacent major grooves of operator DNA

Figure 10-13

Page 18: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Ligand-induced conformational changes alter affinity of many repressors for DNA

Figure 10-14

Tryptophan binding induces a conformational change in the trp aporepressor

Page 19: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Many genes in higher eukaryotes are regulated by controlling their transcription

Figure 10-22

The nascent chain (run-on) assay allows measurement of the rate of transcription of a given gene

Page 20: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Regulatory elements in eukaryotic DNA often are many kilobases from start sites

The basic principles that control transcription in bacteria also The basic principles that control transcription in bacteria also apply to eukaryotic organisms: transcription is initiated at a apply to eukaryotic organisms: transcription is initiated at a specific base pair and is controlled by the binding of trans-specific base pair and is controlled by the binding of trans-acting proteins (transcription factors) to cis-acting regulatory acting proteins (transcription factors) to cis-acting regulatory DNA sequencesDNA sequences

However, eukaryotic cis-acting elements are often much However, eukaryotic cis-acting elements are often much further from the promoter they regulate, and transcription further from the promoter they regulate, and transcription from a single promoter may be regulated by binding of from a single promoter may be regulated by binding of multiple transcription factors to alternative control elementsmultiple transcription factors to alternative control elements

Transcription control sequences can be identified by analysis Transcription control sequences can be identified by analysis of a 5of a 5-deletion series-deletion series

Page 21: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Construction and analysis of a 5-deletion series

Figure 10-24

Page 22: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Three eukaryotic polymerases catalyze formation of different RNAs

Figure 10-25

I: pre-rRNAII: mRNAIII: tRNAs, 5S rRNA, small stable RNAs

Page 23: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

The TATA box is a highly conserved promoter in eukaryotic DNA

Figure 10-30

Alternative promoters in eukaryotes include initiators and CpG islands

Page 24: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Most eukaryotic genes are regulated by multiple transcription control mechanisms

Figure 10-34

Page 25: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Transcriptional activators are modular proteins composed of distinct functional domains

Figure 10-39

Page 26: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

DNA-binding domains can be classified into numerous structural types

Homeodomain proteinsHomeodomain proteins Zinc-finger proteinsZinc-finger proteins Winged-helix (forkhead) proteinsWinged-helix (forkhead) proteins Leucine-zipper proteinsLeucine-zipper proteins Helix-loop-helix proteinsHelix-loop-helix proteins

Page 27: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Homeodomain from Engrailed protein interacting with its specific DNA recognition site

Figure 10-40

Page 28: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Interactions of C2H2 and C4 zinc-finger domains with DNA

Figure 10-41

Page 29: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Interaction between a C6 zinc-finger protein (Gal4) and DNA

Figure 10-42

Page 30: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Interaction of a homodimeric leucine-zipper protein and DNA

Figure 10-43

Page 31: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Interaction of a helix-loop-helix in a homodimeric protein and DNA

Figure 10-44

Page 32: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Schematic model of silencing at yeast telomeres

Figure 10-57

Page 33: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Repressors and activators can direct histone deactylation at specific

genes

Figure 10-58

Page 34: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Model for cooperative assembly of an activated transcription-initiation complex in the TTR promoter

Figure 10-61

Page 35: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Repressors interfere directly with transcription initiation in several ways

Figure 10-62

Page 36: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Lipid-soluble hormones control the activities of nuclear receptors

Figure 10-63

Page 37: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Processing of eukaryotic mRNA

Figure 11-7

Page 38: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

The 5-cap is added to nascent RNAs after initiation by RNA polymerase II

Figure 11-8

Page 39: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Multiple protein isoforms are common in the vertebrate nervous

system

Figure 11-27

Alternative splicing of slo mRNA, which encodes a Ca2+-gated K+ channel in auditory hair cells, contributes to the perception of sounds of different frequencies

Page 40: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Model for passage of mRNPs through nuclear pore complexes

Figure 11-31

Page 41: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Proteins with a nuclear-localization signal (NLS) are recognized by receptors and

transported into the nucleus

Figure 11-35

Page 42: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

A model for the import of cytosolic cargo proteins bearing a basic NLS

Figure 11-37

Page 43: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

The roles of RNA in protein synthesis

Figure 4-20

Page 44: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

The genetic code is a triplet code

Page 45: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

The genetic code can be read in different frames

Figure 4-21

Page 46: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Simultaneous translation by multiple ribosomes and their rapid recycling increases the efficiency of protein synthesis

Figure 4-42

Page 47: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Animações

TranscriçãoPós-tradução

Page 48: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof.Doutor José Cabeda Biologia Celular

Processos fisiológicos dependentes de membranas

Page 49: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

As membranas biológicas exibem permeabilidade selectiva

Page 50: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Transporte passivo

Figure 15-2

Page 51: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Overview of membrane transport proteins

Figure 15-3

Page 52: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Uniporter-catalyzed transport Uniporters accelerate a reaction that is already Uniporters accelerate a reaction that is already

thermodynamically favored (similar to enzymes)thermodynamically favored (similar to enzymes) This type of transport is termed facilitated This type of transport is termed facilitated

transport or facilitated diffusiontransport or facilitated diffusion Three main features distinguish uniport transport Three main features distinguish uniport transport

(facilitated diffusion) from passive diffusion(facilitated diffusion) from passive diffusion The rate of facilitated diffusion is much higher than The rate of facilitated diffusion is much higher than

passive diffusionpassive diffusion Transport is specificTransport is specific Transport occurs via a limited number of uniportersTransport occurs via a limited number of uniporters

Page 53: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

A comparison of the uptake rate of glucose by facilitated diffusion and

passive diffusion

Figure 15-5

Page 54: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Ionic gradients and an electric potential are maintained across the

plasma membrane

Page 55: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

The membrane potential in animal cells depends largely on K+ resting

potential

Figure 15-8

Page 56: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Active transport by ATP-powered pumps

Figure 15-10

Page 57: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

AE1 protein, a Cl-/HCO3- antiporter, is

crucial to CO2 transport by erythrocytes

Figure 15-20

Page 58: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Transepithelial movement of glucose and amino acids requires multiple

transport proteins

Figure 15-25

Page 59: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Parietal cells acidify the stomach contents while maintaining a neutral

cytosolic pH

Figure 15-26

Page 60: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Osmotic pressure causes water to move across membranes

Figure 15-30

Page 61: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Water channels are necessary for bulk flow of water across cell membranes

Figure 15-32

Aquaporin is a water channel that increases a membrane’s permeability to water

Page 62: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

The structure of aquaporin, a water channel protein in the erythocyte plasma membrane

Figure 15-33

Page 63: Biologia Celular 2001/2002Prof.Doutor José Cabeda Aula Teórica Nº 3 Fisiologia Celular Básica

2001/2002 Prof. Doutor José Cabeda Biologia Celular

Changes in intracellular osmotic pressure cause leaf stomata to open

Figure 15-34