building a popsicle (rbl)

Upload: khafit-mufadli

Post on 06-Apr-2018

236 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Building a Popsicle (RBL)

    1/25

    Building a Popsicle-Stick Bridge

    The goal: to build the strongest possible bridge to take a matchbox car, usingwooden popsicle sticks.

    Constraints: The bridge must span a 55cm gap

    No more than 100 popsicle sticks may be used

    The sticks may not be cut

    Only white glue may be used

    Construction paper may be used for the deck only

    The test load is applied to a 4cm-wide section at the top of the arch.

    The test jig looks like this:

    (Well-built bridges can support over 200kg - the weight of two adults)Structural Analysis

    A bit of thought, or modelling with a computer-aided design program, shows thatthe bridge can be reduced to a simple triangle. The force required to break a well-constructed bridge is orders of magnitude greater than any other forces acting on it,such as its own weight, the weight of the toy car, "wind load" etc.

  • 8/3/2019 Building a Popsicle (RBL)

    2/25

    This is not the case for a real bridge, of course, which must be designed for avariety of vehicle loads, wind loading, snow or ice buildup, earthquakes and so on.Also, because of the power law (mass increases as the cube of the size, whilestrength increases as the square of the size), small structures are much muchstronger than their full-size counterparts.

    A bit of simple physics (or CAD software) will put numbers to the forces. Simpleanalysis treats the sides as rigid bars, and the corners as free pivot points. Onelower corner is fixed to the support, while the other is allowed to slide. The base of

    the triangle is in tension, while the sides are in compression. The higher thetriangle, the less tension in the base. The limiting case for an infinitely hightriangle is zero tension in the base, and half the test weight in compression in eachside.If the triangle is made lower, the forces increase. In the limit of a zero-heighttriangle, they become infinite.

  • 8/3/2019 Building a Popsicle (RBL)

    3/25

    Forces in Simple Triangle: 200kg weight on apex

    Stresses in trianglular element, from "Felt" software. Red is under tension, blue isin compression.

    So the optimal shape to minimize the forces on the bridge is an infinitely hightriangle. Two problems - we have only 100 sticks, and the test jig is less than 40cmhigh.

  • 8/3/2019 Building a Popsicle (RBL)

    4/25

    The bridge is contructed of two compression elements and one tension element. Abit of experiment reveals that failure of a tension element is typically due toshearing of an overlap joint, while failure of a compression element is typicallydue to buckling.

    Design of a tension element for the base is relatively simple - a series of sticksoverlapped a suitable amount performs well. Design of a compressive element ismore difficult. The element must resist buckling, and must be designed so that thestress is distributed evenly across the individual sticks. This may be acheived in

    part by careful assembly - the element should be perfectly straight, and all thesticks should align exactly at the ends so that they all touch the supports.

    In real life, elements are often created with a complex cross-section in order toresist buckling. Three of the most common shapes are the I-beam, box section, andtube. Most real-world structures are made of these shapes.

    For the stick bridge, the requirement to not cut sticks makes it difficult to createthese common sections, though it is possible (though not the tube, of course).

    Instead, stiff elements may be made by laminating together pairs of sticks. Thisalso guards against weakness in individual sticks - depending on the supplier, somesticks may have grain diagonally across the stick. Since wood will split along thegrain, this makes them much weaker. In this case, pairs of sticks should belaminated so that the grains cross each other.

  • 8/3/2019 Building a Popsicle (RBL)

    5/25

    When these designs are tested, providing the joints are well made and sufficientlyoverlapped, the element will typically fail by buckling. Once the element starts to

    buckle, failure is progressively more rapid. As the sticks depart from perfectalignment, the inside of the curve becomes more stressed than the outside, takingthe inside sticks beyond their breaking strength. The joint may becomedelaminated, a stick may split along the grain, or a stick break across the grain.

    To prevent buckling, it is necessary to make the element stiffer. This can be doneby making it thicker, but the finite number of sticks puts a limit on this. Anothertechnique that may be used is the stayed mast, borrowed from sailboat design.

    In a sailboat, there are one or more masts (shown below on its side) which areunder compression and subject to sideways force from the sail (this force can bemany tons in strong winds). To stiffen the mast, steel cables are used together with"spreaders" to convert bending in the mast into tension in the cables which is moreeasily resisted.

    This concept may be used in the stick bridge, to resist bending of the compressivemembers by staying them against the bottom tension member. This idea is shownin the third design.

    Construction

    Typically, bridge elements are built first, then glued together to make two or moretrusses, The trusses are then joined with cross members, and finally the paper deckis glued on. Since at each step the glue must dry, it is important to allow enoughtime for all the steps. At least 3 days is required, and typically much more.

    When glueing elements, better results will be obtained if the sticks are clampedwhile the glue dries. Since you want to glue many elements at the same time, you

    http://andrew.triumf.ca/andrew/popsicle-bridge/triangle3.pnghttp://andrew.triumf.ca/andrew/popsicle-bridge/triangle3.png
  • 8/3/2019 Building a Popsicle (RBL)

    6/25

    need a lot of clamps. Fortunately, good spring clamps can be obtained at a "dollarstore". For single joins, clothes pegs may be used.

    For laminating, pieces of thick metal or wood and steel G-clamps allow many pairsof sticks to be laminated at once. Pairs of sticks may be arranged in two layers

    between the metal plates to give e.g. 24 pairs in 2 layers. It is important to makesure the sticks are exactly aligned and do not slip when pressure is applied.

    It is important that the final elements should be exactly straight, or they willbuckle. This means they must be glued together against a straight edge such as along piece of wood. Elements must be measured carefully and overlaps glued to

    bring them to the designed length.

    For final assembly, a setsquare should be used to make sure that the bridge isexactly vertical and that the top load-bearing elements are exactly flat andhorizontal. Any deviation - one stick protruding slightly, for instance - willconcentrate stress under load and be a point of failure. Since sticks cannot be cut,any small errors in alignment may be corrected by adding glue. The load-bearing

    points at the bottom corners and apex can be set up on flat metal plates (which theglue won't stick to) and glue added to build up the round end of the sticks to give aflat bearing surface.

    The bridge should be constructed to spread the load equally to all elements. Justthinking about it helps - imagine what happens when the weight is applied, andeach stick starts pushing on the next to transfer the load to the base. Are there anysticks that aren't doing anything ? Any sticks that are doing more than their fairshare of work ?

    Testing

    Testing your design is a good idea - it helps eliminate poor designs early beforeyou have spent too much time on them. Also, it's fun. The Richmond APEG test jiguses a car jack, cable and springs to pull evenly on the load plate, with anelectronic load cell to measure the force. My test jig uses a set of bathroom scalesand two threaded rods. Pieces of 2x4 are used for the cross-pieces. The uppercrosspiece had to be reinforced with a metal plate as sticks would be driven intothe soft wood when testing joints in pairs of sticks. Force is applied by turning thenuts on the screwed rods with a pair of wrenches.

    Caution - wear safety glasses and keep fingers clear. Though the stored energy inthe jig is much less than in the springs of the APEG tester, forces will still exceed100kg and elements may break suddenly.

    Photos

    Laminating pairs of sticks - G-clamps and metal plates

    Laminating pairs of sticks

    clamping while glue dries - spring clamps with swivel pads for evenpressure

    test jig - also used for final assembly

    http://andrew.triumf.ca/andrew/popsicle-bridge/7.jpghttp://andrew.triumf.ca/andrew/popsicle-bridge/71.jpghttp://andrew.triumf.ca/andrew/popsicle-bridge/72.jpghttp://andrew.triumf.ca/andrew/popsicle-bridge/73.jpghttp://andrew.triumf.ca/andrew/popsicle-bridge/7.jpghttp://andrew.triumf.ca/andrew/popsicle-bridge/71.jpghttp://andrew.triumf.ca/andrew/popsicle-bridge/72.jpghttp://andrew.triumf.ca/andrew/popsicle-bridge/73.jpg
  • 8/3/2019 Building a Popsicle (RBL)

    7/25

    "testing" the bridge

    first design

    second design

    third design (concept)

    third design (photo) 676lbs, 1st place 2008 APEG open category, PrinceGeorge BC

    Testing the first design (Video)

    Richmond/Delta APEG.BC

    Model Bridge Designby Garrett Boon

    FElt (open source system for finite element analysis; Linux)

    Andrew Daviel [email protected]

    March 2004 edited 2011

    http://andrew.triumf.ca/andrew/popsicle-bridge/75.jpghttp://andrew.triumf.ca/andrew/popsicle-bridge/76.jpghttp://andrew.triumf.ca/andrew/popsicle-bridge/77.jpghttp://andrew.triumf.ca/andrew/popsicle-bridge/triangle3.pnghttp://andrew.triumf.ca/andrew/popsicle-bridge/000_2448c.JPGhttp://video.triumf.ca/cgi-bin/ramgen/real8/bridge5.rmhttp://www.apeg.bc.ca/services/branches/rd.htmlhttp://www.garrettsbridges.com/popsicle-stick-bridges.htmlhttp://sourceforge.net/projects/felt/http://andrew.triumf.ca/andrew/popsicle-bridge/75.jpghttp://andrew.triumf.ca/andrew/popsicle-bridge/76.jpghttp://andrew.triumf.ca/andrew/popsicle-bridge/77.jpghttp://andrew.triumf.ca/andrew/popsicle-bridge/triangle3.pnghttp://andrew.triumf.ca/andrew/popsicle-bridge/000_2448c.JPGhttp://video.triumf.ca/cgi-bin/ramgen/real8/bridge5.rmhttp://www.apeg.bc.ca/services/branches/rd.htmlhttp://www.garrettsbridges.com/popsicle-stick-bridges.htmlhttp://sourceforge.net/projects/felt/
  • 8/3/2019 Building a Popsicle (RBL)

    8/25

    i

    The popsicle stick bridge is a classic science demonstration and competition. Every year many

    students world-wide build bridges made soley from popsicle sticks and glue, to see which

    designs can hold the most weight.

    We built one, using maybe 140 sticks, give or take a few. Not expecting it to hold much weight,

    we were surprised by how strong it ended up being! (results in last step)

    Step 1Design your bridge

    http://www.instructables.com/file/FEJRSKPFT7PUCE9/http://www.instructables.com/file/FEJRSKPFT7PUCE9/
  • 8/3/2019 Building a Popsicle (RBL)

    9/25

    i

    There are many ways to build bridges, both real bridges and popsicle stick bridges. Do some

    research, be creative, and remember - triangles are strong.

    A triangle spreads out weight and is much more stable than a simple rectangle or square

    support. Be sure to incorporate lots of triangles into your bridge design. More popsicle sticks

    doesn't necessarily mean a stronger bridge.

    In fact, according to the internet, "If there is a single most important shape in engineering, it is the

    triangle. Unlike a rectangle, a triangle cannot be deformed without changing the length of one of

    its sides or breaking one of its joints. In fact, one of the simplest ways to strengthen a rectangle is

    to add supports that form triangles at the rectangle's corners or across its diagonal length. A

    single support between two diagonal corners greatly strengthens a rectangle by turning it into two

    triangles."[link]

    My design consists of two main bottom supports, and two across the top, and then a lot of

    triangles across the sides, the top and bottom, and going from the bottom of one side to the topof the other. Very similar to the one in the diagram.

    Draw your design on paper, and estimate the number of sticks you will need.

    Be creative with your design!

    http://www.instructables.com/file/FI644AFFTRJ72S4/http://www.teachersdomain.org/resource/phy03.sci.phys.mfe.triarch/http://www.instructables.com/file/FI644AFFTRJ72S4/http://www.teachersdomain.org/resource/phy03.sci.phys.mfe.triarch/
  • 8/3/2019 Building a Popsicle (RBL)

    10/25

  • 8/3/2019 Building a Popsicle (RBL)

    11/25

    immediately, but your bridge will not hold as much weight if you test it before the

    glue has cured. Be sure to take pictures of your popsicle bridge and send them to

    me! I would absolutely love to see photos of the bridges you have made. In fact, I

    have a photo contest going on for the month of January, so be sure to check that

    out.

    How to Make a Sturdy Popsicle Stick BridgeBy Julia Salgado, eHow Contributor

    updated August 05, 2011

    Print this article

    For young engineers, building a Popsicle stick bridge is an ideal way to test the theories of physicsand engineering in a safe and methodical environment. Building these lightweight models will allowyou to work through different ideas and different theories as to what structures are most efficient atbearing weight. The shape of the triangle resists compressive force to such an extent that a relativelysmall and lightweight triangle will be able to bear far more weight than other shapes of equal size.Consequently a successful Popsicle stick bridge will incorporate triangles into the design, utilizing thetensile strength of the basic shape.

    Related Searches:

    Bridge Fell Out

    Building Arch

    Difficulty:

    Moderate

    Instructions

    Things You'll Need

    Wood glue

    40 Popsicle sticks

    1.

    1

    http://www.ehow.com/print/how_10035784_make-sturdy-popsicle-stick-bridge.htmlhttp://www.ehow.com/search.html?rs=1&s=Bridge+Fell%20Out&skin=corporate&t=allhttp://www.ehow.com/search.html?rs=1&s=Bridge+Fell%20Out&skin=corporate&t=allhttp://www.ehow.com/search.html?rs=1&s=Building+Arch&skin=corporate&t=allhttp://www.ehow.com/print/how_10035784_make-sturdy-popsicle-stick-bridge.htmlhttp://www.ehow.com/search.html?rs=1&s=Bridge+Fell%20Out&skin=corporate&t=allhttp://www.ehow.com/search.html?rs=1&s=Building+Arch&skin=corporate&t=all
  • 8/3/2019 Building a Popsicle (RBL)

    12/25

    Lay a Popsicle stick flat on the work surface. Spread wood glue on half of one side ofanother stick and lay that stick glue side down on the first stick, so that half of the newstick overhangs the end. Spread more wood glue on half of one side of a third stickand slide that under the overhanging end of the second stick. The ends of your thirdand first stick should just be touching. Continue laying and gluing sticks in this wayuntil you have a chain of six sticks in a row.

    2

    Repeat this process to make another chain of six sticks, then make two more chainsof four sticks each. Lay a chain of six next to a chain of four to create the two parallelsides of a trapezium. Connect the two chains by placing a diagonal Popsicle stick ateach end and gluing it into place. Create a triangle by placing another diagonalPopsicle stick beside where the first stick joins the four-stick chain and gluing it intoplace so that it connects to the six-stick chain. Do the same at the other end of thechain.

    3

    Where the second diagonal joins the six-stick chain, place another diagonal Popsiclestick to rejoin the four-stick chain at roughly the middle of the bridge. Complete thistriangle with a final diagonal Popsicle stick. Repeat this whole process on the otherpair of chains to create two sides of the bridge.

    4

    Stand the two sides of the bridge up and ask assistants to support them in a verticalposition. Glue a Popsicle into place connecting the two six-stick chains, keeping themapart by just under the length of a Popsicle stick. Add another Popsicle stick at theother end to keep the two sides parallel. Support the two sides with vertical aides. Apiles of books will suffice.

    5

    Glue more horizontal Popsicle sticks across the top of the structure, beginning at bothends and adding one in the middle. Two triangles should then be made withhorizontal Popsicle sticks joining the two four-stick chains; then a single diagonal

    Popsicle stick should be glued into place connecting two of the corners at each end ofthe structure.

    Chart Tape www.grafsticktapeandlabel.com

    Lowest Price Guarantee! Graphic Chart Tape all sizes

    Buy Scaffolding Equipmentwww.scaffold.com.sg

    Looking for new/used scaffolding equipment? Buy them here. Call us!

    Structural Wire Ropes www.geobrugg.com

    Architectural solutions made from steel wire ropes and steel wire net

    Bridge Inspection Units www.moog-online.de/en

    MOOG - Your manufacturer for underbridge units.

    Short Pratt Truss Bridge UpdatedByGarrett Boon posted/modified on November 6, 2011

    http://googleads.g.doubleclick.net/aclk?sa=l&ai=B9dq3BcPJTv_iBYH-kAXx8PToB6TN1O4C5NvQ-TzAjbcB4NwqEAEYASDj8ZsCKAQ4AFCxs47T_v____8BYOkCoAG85ZLbA7IBDHd3dy5laG93LmNvbboBCjMzNngyODBfanPIAQHaAUdodHRwOi8vd3d3LmVob3cuY29tL2hvd18xMDAzNTc4NF9tYWtlLXN0dXJkeS1wb3BzaWNsZS1zdGljay1icmlkZ2UuaHRtbKgDAegDnALoA4sF9QMCBAAE&num=1&sig=AOD64_02Gbaibm2BYCrpR34aRgobkuTCvQ&client=ca-ehow_336x280&adurl=http://www.grafsticktapeandlabel.com/category-s/48.htmhttp://googleads.g.doubleclick.net/aclk?sa=l&ai=BY2VDBcPJTv_iBYH-kAXx8PToB8X8r4oDvYfBpSnAjbcBsOMtEAIYAiDj8ZsCKAQ4AFCN6ryKA2DpAqAB4-a70gOyAQx3d3cuZWhvdy5jb226AQozMzZ4MjgwX2pzyAEB2gFHaHR0cDovL3d3dy5laG93LmNvbS9ob3dfMTAwMzU3ODRfbWFrZS1zdHVyZHktcG9wc2ljbGUtc3RpY2stYnJpZGdlLmh0bWyAAgGpAgeL4m2x0qk-yAK10KcnqAMB6AOcAugDiwX1AwIEAAQ&num=2&sig=AOD64_3MXRqjqS0C1InrxfDv_38fqXP_dQ&client=ca-ehow_336x280&adurl=http://www.scaffold.com.sghttp://googleads.g.doubleclick.net/aclk?sa=l&ai=BY2VDBcPJTv_iBYH-kAXx8PToB8X8r4oDvYfBpSnAjbcBsOMtEAIYAiDj8ZsCKAQ4AFCN6ryKA2DpAqAB4-a70gOyAQx3d3cuZWhvdy5jb226AQozMzZ4MjgwX2pzyAEB2gFHaHR0cDovL3d3dy5laG93LmNvbS9ob3dfMTAwMzU3ODRfbWFrZS1zdHVyZHktcG9wc2ljbGUtc3RpY2stYnJpZGdlLmh0bWyAAgGpAgeL4m2x0qk-yAK10KcnqAMB6AOcAugDiwX1AwIEAAQ&num=2&sig=AOD64_3MXRqjqS0C1InrxfDv_38fqXP_dQ&client=ca-ehow_336x280&adurl=http://www.scaffold.com.sghttp://googleads.g.doubleclick.net/aclk?sa=L&ai=B8oFoBcPJTv_iBYH-kAXx8PToB4GanoQC2aSn3BvAjbcBwJoMEAMYAyDj8ZsCKAQ4AFD6pYnx-f____8BYOkCsgEMd3d3LmVob3cuY29tugEKMzM2eDI4MF9qc8gBAdoBR2h0dHA6Ly93d3cuZWhvdy5jb20vaG93XzEwMDM1Nzg0X21ha2Utc3R1cmR5LXBvcHNpY2xlLXN0aWNrLWJyaWRnZS5odG1sqQLMUqbDsUqyPsgCqai_HKgDAegDnALoA4sF9QMCBAAE&num=3&sig=AOD64_3_1-QhlLscHs9p6Acul0_jvsgYnw&client=ca-ehow_336x280&adurl=http://www.geobrugg.com/contento/English/Home/tabid/2774/Default.aspx?language=en-UShttp://googleads.g.doubleclick.net/aclk?sa=L&ai=B_qsDBcPJTv_iBYH-kAXx8PToB9OSwIYCi5DTmBfAjbcBkLAKEAQYBCDj8ZsCKAQ4AFDn3OvTB2DpArIBDHd3dy5laG93LmNvbboBCjMzNngyODBfanPIAQHaAUdodHRwOi8vd3d3LmVob3cuY29tL2hvd18xMDAzNTc4NF9tYWtlLXN0dXJkeS1wb3BzaWNsZS1zdGljay1icmlkZ2UuaHRtbKkCge56Cc-0tj6oAwHoA5wC6AOLBfUDAgQABA&num=4&sig=AOD64_2iVI4HAEabzP4QkFBjxnY629EUvA&client=ca-ehow_336x280&adurl=http://www.moog-online.de/enhttp://www.garrettsbridges.com/author/Garrett%20Boon/http://www.garrettsbridges.com/author/Garrett%20Boon/http://googleads.g.doubleclick.net/aclk?sa=l&ai=B9dq3BcPJTv_iBYH-kAXx8PToB6TN1O4C5NvQ-TzAjbcB4NwqEAEYASDj8ZsCKAQ4AFCxs47T_v____8BYOkCoAG85ZLbA7IBDHd3dy5laG93LmNvbboBCjMzNngyODBfanPIAQHaAUdodHRwOi8vd3d3LmVob3cuY29tL2hvd18xMDAzNTc4NF9tYWtlLXN0dXJkeS1wb3BzaWNsZS1zdGljay1icmlkZ2UuaHRtbKgDAegDnALoA4sF9QMCBAAE&num=1&sig=AOD64_02Gbaibm2BYCrpR34aRgobkuTCvQ&client=ca-ehow_336x280&adurl=http://www.grafsticktapeandlabel.com/category-s/48.htmhttp://googleads.g.doubleclick.net/aclk?sa=l&ai=B9dq3BcPJTv_iBYH-kAXx8PToB6TN1O4C5NvQ-TzAjbcB4NwqEAEYASDj8ZsCKAQ4AFCxs47T_v____8BYOkCoAG85ZLbA7IBDHd3dy5laG93LmNvbboBCjMzNngyODBfanPIAQHaAUdodHRwOi8vd3d3LmVob3cuY29tL2hvd18xMDAzNTc4NF9tYWtlLXN0dXJkeS1wb3BzaWNsZS1zdGljay1icmlkZ2UuaHRtbKgDAegDnALoA4sF9QMCBAAE&num=1&sig=AOD64_02Gbaibm2BYCrpR34aRgobkuTCvQ&client=ca-ehow_336x280&adurl=http://www.grafsticktapeandlabel.com/category-s/48.htmhttp://googleads.g.doubleclick.net/aclk?sa=l&ai=BY2VDBcPJTv_iBYH-kAXx8PToB8X8r4oDvYfBpSnAjbcBsOMtEAIYAiDj8ZsCKAQ4AFCN6ryKA2DpAqAB4-a70gOyAQx3d3cuZWhvdy5jb226AQozMzZ4MjgwX2pzyAEB2gFHaHR0cDovL3d3dy5laG93LmNvbS9ob3dfMTAwMzU3ODRfbWFrZS1zdHVyZHktcG9wc2ljbGUtc3RpY2stYnJpZGdlLmh0bWyAAgGpAgeL4m2x0qk-yAK10KcnqAMB6AOcAugDiwX1AwIEAAQ&num=2&sig=AOD64_3MXRqjqS0C1InrxfDv_38fqXP_dQ&client=ca-ehow_336x280&adurl=http://www.scaffold.com.sghttp://googleads.g.doubleclick.net/aclk?sa=l&ai=BY2VDBcPJTv_iBYH-kAXx8PToB8X8r4oDvYfBpSnAjbcBsOMtEAIYAiDj8ZsCKAQ4AFCN6ryKA2DpAqAB4-a70gOyAQx3d3cuZWhvdy5jb226AQozMzZ4MjgwX2pzyAEB2gFHaHR0cDovL3d3dy5laG93LmNvbS9ob3dfMTAwMzU3ODRfbWFrZS1zdHVyZHktcG9wc2ljbGUtc3RpY2stYnJpZGdlLmh0bWyAAgGpAgeL4m2x0qk-yAK10KcnqAMB6AOcAugDiwX1AwIEAAQ&num=2&sig=AOD64_3MXRqjqS0C1InrxfDv_38fqXP_dQ&client=ca-ehow_336x280&adurl=http://www.scaffold.com.sghttp://googleads.g.doubleclick.net/aclk?sa=L&ai=B8oFoBcPJTv_iBYH-kAXx8PToB4GanoQC2aSn3BvAjbcBwJoMEAMYAyDj8ZsCKAQ4AFD6pYnx-f____8BYOkCsgEMd3d3LmVob3cuY29tugEKMzM2eDI4MF9qc8gBAdoBR2h0dHA6Ly93d3cuZWhvdy5jb20vaG93XzEwMDM1Nzg0X21ha2Utc3R1cmR5LXBvcHNpY2xlLXN0aWNrLWJyaWRnZS5odG1sqQLMUqbDsUqyPsgCqai_HKgDAegDnALoA4sF9QMCBAAE&num=3&sig=AOD64_3_1-QhlLscHs9p6Acul0_jvsgYnw&client=ca-ehow_336x280&adurl=http://www.geobrugg.com/contento/English/Home/tabid/2774/Default.aspx?language=en-UShttp://googleads.g.doubleclick.net/aclk?sa=L&ai=B8oFoBcPJTv_iBYH-kAXx8PToB4GanoQC2aSn3BvAjbcBwJoMEAMYAyDj8ZsCKAQ4AFD6pYnx-f____8BYOkCsgEMd3d3LmVob3cuY29tugEKMzM2eDI4MF9qc8gBAdoBR2h0dHA6Ly93d3cuZWhvdy5jb20vaG93XzEwMDM1Nzg0X21ha2Utc3R1cmR5LXBvcHNpY2xlLXN0aWNrLWJyaWRnZS5odG1sqQLMUqbDsUqyPsgCqai_HKgDAegDnALoA4sF9QMCBAAE&num=3&sig=AOD64_3_1-QhlLscHs9p6Acul0_jvsgYnw&client=ca-ehow_336x280&adurl=http://www.geobrugg.com/contento/English/Home/tabid/2774/Default.aspx?language=en-UShttp://googleads.g.doubleclick.net/aclk?sa=L&ai=B_qsDBcPJTv_iBYH-kAXx8PToB9OSwIYCi5DTmBfAjbcBkLAKEAQYBCDj8ZsCKAQ4AFDn3OvTB2DpArIBDHd3dy5laG93LmNvbboBCjMzNngyODBfanPIAQHaAUdodHRwOi8vd3d3LmVob3cuY29tL2hvd18xMDAzNTc4NF9tYWtlLXN0dXJkeS1wb3BzaWNsZS1zdGljay1icmlkZ2UuaHRtbKkCge56Cc-0tj6oAwHoA5wC6AOLBfUDAgQABA&num=4&sig=AOD64_2iVI4HAEabzP4QkFBjxnY629EUvA&client=ca-ehow_336x280&adurl=http://www.moog-online.de/enhttp://googleads.g.doubleclick.net/aclk?sa=L&ai=B_qsDBcPJTv_iBYH-kAXx8PToB9OSwIYCi5DTmBfAjbcBkLAKEAQYBCDj8ZsCKAQ4AFDn3OvTB2DpArIBDHd3dy5laG93LmNvbboBCjMzNngyODBfanPIAQHaAUdodHRwOi8vd3d3LmVob3cuY29tL2hvd18xMDAzNTc4NF9tYWtlLXN0dXJkeS1wb3BzaWNsZS1zdGljay1icmlkZ2UuaHRtbKkCge56Cc-0tj6oAwHoA5wC6AOLBfUDAgQABA&num=4&sig=AOD64_2iVI4HAEabzP4QkFBjxnY629EUvA&client=ca-ehow_336x280&adurl=http://www.moog-online.de/enhttp://www.garrettsbridges.com/author/Garrett%20Boon/
  • 8/3/2019 Building a Popsicle (RBL)

    13/25

    This is the updated design of my Short Pratt Truss Bridge made from popsicle

    sticks. The only difference from the original was the addition of 4 more popsicle

    sticks in key areas. I doubled up the angled sticks on each end, and made the

    lateral bracing into an X shape rather than a zig-zag pattern.

    This bridge used 50 popsicle sticks, weighed 75 grams, and held 200 pounds. Its

    efficiency score was 1212, which is the highest out of any popsicle stick bridge I

    have ever built.

    Pratt Truss Popsicle Stick Bridge

    Side Close Up

    Angle View

    http://www.garrettsbridges.com/photos/popsicle-bridges/short-pratt-truss-bridge-updated/attachment/img_5819/http://www.garrettsbridges.com/photos/popsicle-bridges/short-pratt-truss-bridge-updated/attachment/img_5778/http://www.garrettsbridges.com/photos/popsicle-bridges/short-pratt-truss-bridge-updated/attachment/img_5776-2/
  • 8/3/2019 Building a Popsicle (RBL)

    14/25

    Angle View

    Portal View for the Popsicle Bridge

    Design Analysis

    The Pratt Truss was designed by Thomas and Caleb Pratt in 1844. It became

    popular for railway bridges because it made good use of iron. The Pratt has many

    variations, most with their own unique name. For instance, the Baltimore,

    Pennsylvania, and the Parker are all based off the Pratt.

    http://www.garrettsbridges.com/photos/popsicle-bridges/short-pratt-truss-bridge-updated/attachment/shorttrussbd/http://www.garrettsbridges.com/photos/popsicle-bridges/short-pratt-truss-bridge-updated/attachment/img_5821-2/http://www.garrettsbridges.com/photos/popsicle-bridges/short-pratt-truss-bridge-updated/attachment/img_5820-2/
  • 8/3/2019 Building a Popsicle (RBL)

    15/25

    Pratt Truss

    How the forces are spread out

    Here are two diagrams showing how the forces are spread out when the Pratt Truss

    is under a load. The first shows the load being applied across the entire top of the

    bridge. The second shows a localized load in the center of the bridge. In bothcases the total load = 100. Therefore, you can take the numbers as a percentage of

    the total load.

    Pratt Truss With Centered Load

    Pratt Truss with Spread Load

    These diagrams bring up several interesting things. Notice that the two end

    diagonal members do not change. Also, there is little change on the bottom chordbetween the two pictures. However, there is drastic changes on the internal truss

    http://www.garrettsbridges.com/design/pratt-truss/attachment/prattspreadload/http://www.garrettsbridges.com/design/pratt-truss/attachment/prattcenterload/http://www.garrettsbridges.com/wp-content/uploads/2010/12/pratttruss.gif
  • 8/3/2019 Building a Popsicle (RBL)

    16/25

    members. The centered load dramatically increases the amount of force that is

    applied to the internal members of the bridge. Also, the forces are increased on

    the top chord of the centered loaded bridge.

    This seemingly insignificant change in how the bridge is loaded makes a big

    difference in how your model bridge will perform. If you have the ability to change

    and set how your bridge is loaded, Id shoot for spreading the load across the

    entire span. This pretty much goes for any model bridge design, not just the Pratt

    Truss.

    Pratt Truss for model bridges

    The Pratt Truss is one of my favorites. I have used it often for my model bridges,

    including balsa, basswood, and popsicle sticks. It is easy to construct, and is a solid

    choice for a model bridge design.

    Additional Resources

    Pictures of real Pratt Bridges

    History of Truss Design

    Menghitung Momen Gaya dalam Statika Bangunan

    01:37 GONDELLS 6 comments

    HMM nyari2 ARTIKEL BUAT NGISI Tentang Mekanika Rekayasa1

    Mata Kuliah yang paling aku sukai yang Membicarakan tentang gaya2.. yang

    berpengaruh pada suatu bidang..

    Berhasil menemukan Modul Pembelajarannya tapi yang ku temuin dibuat

    oleh temen2 dari TIM FAKULTAS TEKNIK

    UNIVERSITAS NEGERI YOGYAKARTA

    Judul modul ini adalah Menghitung Momen Gaya dalam Statika Bangunan

    merupakan bahan ajar yang digunakan sebagai panduan praktikum peserta diklat Sekolah

    Menengah Kejuruan (SMK) untuk membentuk salah satu bagian dari kompetensi

    Menghitung Statika Bangunan

    http://bridgehunter.com/category/tag/pratt-truss/http://mysite.du.edu/~jcalvert/tech/machines/bridges.htmhttp://belajar-teknik-sipil.blogspot.com/2010/03/menghitung-momen-gaya-dalam-statika.htmlhttp://bridgehunter.com/category/tag/pratt-truss/http://mysite.du.edu/~jcalvert/tech/machines/bridges.htmhttp://belajar-teknik-sipil.blogspot.com/2010/03/menghitung-momen-gaya-dalam-statika.html
  • 8/3/2019 Building a Popsicle (RBL)

    17/25

    Sebagian isinya..:

    Pembebanan (loading) pada Konstruksi Bangunan telah diatur pada Peraturan Pembebanan

    Indonesia untuk gedung (PPIUG) tahun 1983. Oleh karena itu supaya lebih mendalam

    diharapkan peserta diklat membaca peraturan tersebut, karena dalam uraian berikut hanya

    diambil sebagian saja.

    Ada 5 macam pembebanan yaitu :

    a. Beban mati (berat sendiri konstruksi dan bagian lain yang melekat)

    b. Beban hidup (beban dari pemakaian gedung seperti rumah tinggal,

    kantor, tempat pertunjukkkan)

    c. Beban angin (beban yang disebabkan oleh tekanan angin)

    d. Beban gempa (beban karena adanya gempa)

    e. Beban khusus (beban akibat selisih suhu, penurunan, susut dan

    sebagainya)

    Berdasarkan wujudnya beban tersebut dapat diidealisasikan sebagai (1) beban terpusat, (2)

    beban terbagi merata, (3) beban tak merata (beban bentuk segitiga, trapesium dsb). Beban-

    beban ini membebani konstruksi (balok, kolom, rangka, batang dsb) yang juga

    diidealisasikan sebagai garis sejajar dengan sumbunya. Beban terpusat adalah beban yang

    titik singgungnya sangat kecil yang dalam batas tertentu luas bidang singgung tersebut

    dapat diabaikan. Sebagai contoh beban akibat tekanan roda mobil atau motor, pasangan

    tembok setengah batu di atas balok, beton ataupun

    baja dsb. Satuan beban ini dinyatakan dalam Newton atau turunannya kilonewton (kN). Lihat

    gambar 1.

  • 8/3/2019 Building a Popsicle (RBL)

    18/25

    Beban merata adalah beban yang bekerja menyentuh bidang konstruksi yang cukup luas

    yang tidak dapat diabaikan. Beban ini dinyatakan dalam satuan Newton/meter persegiataupun newton per meter ata u yang sejenisnya lihat gambar 2.

    Beban tidak merata dapat berupa beban berbentuk segitiga baik satu sisi maupun dua sisi,

    berbentuk trapesium dsb. Satuan beban ini dalam newton per meter pada bagian ban yang

    paling besar lihat

    gambar 3.

    http://1.bp.blogspot.com/_t7rNlHc4Y64/S41dSuXjIPI/AAAAAAAAAN8/D9ZjaSQ2C_0/s1600-h/Graphic2.jpghttp://2.bp.blogspot.com/_t7rNlHc4Y64/S41dK4h_avI/AAAAAAAAAN0/KlzDNjspbM0/s1600-h/Graphic1.jpg
  • 8/3/2019 Building a Popsicle (RBL)

    19/25

    Berikut ini dicuplikkan beberapa beban bahan bangunan menerut PPIUG 1983 halaman 11.

    1. Baja beratnya 7850 kg/m3,

    2. Batu gunung beratnya 1500 kg/m3

    3. batu pecah beratnya 1450 kg/m3,

    4. beton beratnya 2200 kg/m3,

    5. beton bertulang beratnya 2400 kg/m3,

    6. kayu kelas 1 beratnya 1000 kg/m3 dan

    7. pasangan bata merah 1700 kg/m3.

    Contoh perhitungan beban :

    Hitunglah beban yang bekerja pada balok beton bertulang ukuran 30 cm x 60 cm yang

    ditengah-tengahnya terdapat tembok pasangan setengah batu lebar 15 cm yang dipasang

    melintang dengan ukuran tinggi 3 m, panjang 4 m.

    Jawaban :

    Berat sendiri balok = 0.3 m x 0.6 m x 2400 kg/m3

    = 432 kg/m (kg/m gaya)

    Gravitasi bumi = 10 kg/ms2 maka beban menjadi 4320 N/m = 432 kN/m

    Berat tembok sebagai beban terpusat sebesar :

    http://3.bp.blogspot.com/_t7rNlHc4Y64/S41dgnMxttI/AAAAAAAAAOE/dAN5Ve9w7Dw/s1600-h/Graphic3.jpg
  • 8/3/2019 Building a Popsicle (RBL)

    20/25

    = 0.15 m x 3 m x 4 m x 1700 kg/m3

    = 3060 kg (kg gaya) = 30600 N = 30.6 kN

    Secara visual dapat dilihat pada gambar 4.

    Pada konstruksi bangunan beban yang diperhitungkan bukan hanya beban mati

    seperti yang telah diuraikan di atas, tetapi dikombinasikan dengan beban hidup yang disebut

    dengan pembebanan tetap, bahkan ada kombinasi yang lain seperti dengan beban angin

    menjadi pembebanan sementara. Bila pada contoh di atas, balok digunakan untuk

    menyangga ruang rumah tinggal keluarga, maka menurut PPIUG halaman 17 besarnya

    beban hidup sebesar 200 kg/m2. Bila luas lantai yang dipikul balok sebesar 2 m tiap panjang

    balok (dalam contoh di atas beban lantai tidak dihitung) maka beban karena beban hidup

    adalah 200 kg/m2 x 2 m = 400 kg/m (kg gaya/m) = 4000 N/m = 4 kN/m. Dengan demikian

    beban tetap yang bekerja pada balok adalah 4,32 + 4 = 8,32 kN/m yang secara visual dapat

    dilihat

    pada gambar 5.

    Dilihat dari persentuhan gaya dan yang dikenai gaya, beban dapat dibedakan sebagai

    beban langsung dan beban tidak langsung. Beban langsung adalah beban yang langsung

    http://1.bp.blogspot.com/_t7rNlHc4Y64/S41dsLUF1uI/AAAAAAAAAOU/CggW6vLdjk4/s1600-h/Graphic5.jpghttp://3.bp.blogspot.com/_t7rNlHc4Y64/S41dl0XgM7I/AAAAAAAAAOM/B_z5qmDzJM0/s1600-h/Graphic4.jpg
  • 8/3/2019 Building a Popsicle (RBL)

    21/25

    mengenai benda, sedang beban tidak langsung adalah beban yang membebani benda

    dengan perantaraan benda lain (lihat gambar 6 ).

    a. Pengertian Gaya

    Gaya dapat didefisinikan sebagai sesuatu yang menyebabkan benda (titik materi)

    bergerak baik dari diam maupun dari gerak lambat menjadi lebih lambat maupun lebih

    cepat. Dalam teknik bangunan gaya berasal dari bangunan itu sendiri berat

    benda di atasnya atau yang menempelnya, tekanan angin, gempa, perubahan suhu

    dan pengaruh pengerjaan. Gaya dapat digambarkan dalam bentuk garis (atau

    kumpulan garis) yang memiliki dimensi besar, garis kerja, arah kerja dan titik tangkap.

    Satuan gaya menurut Sistem Satuan Internasional (SI) adalah Newton dan turunannya (kN).

    Akan tetapi ada yang memberi satuan kg gaya (kg). Bila gravitasi bumi diambil

    10 m/detik2 maka hubungan satuan tersebut adalah 1 kg gaya (atau sering ditulis 1 kg)

    ekuivalen dengan 10 Newton. Pada gambar 8 dijelaskan pengertian gaya tersebut.

    b. Kesetaraan gaya

    Kesetaraan gaya adalah kesamaan pengaruh antara gaya pengganti (resultan)

    dengan gaya yang diganti (gaya komponen) tanpa memperhatikan titik tangkap gayanya.

    http://3.bp.blogspot.com/_t7rNlHc4Y64/S41d_wfY5OI/AAAAAAAAAOk/jeeWptfc5dA/s1600-h/Graphic7.jpghttp://2.bp.blogspot.com/_t7rNlHc4Y64/S41dxCYS9KI/AAAAAAAAAOc/OrIW7GKjyRs/s1600-h/Graphic6.jpg
  • 8/3/2019 Building a Popsicle (RBL)

    22/25

    Dengan demikian pada suatu keadaan tertentu, walaupun gaya sudah setara atau

    ekuivalen, ada perbedaan pengaruh antara gaya pengganti dengan yang diganti.

    Pada prinsipnya gaya dikatakan setara apabila gaya pengganti dan penggantinya

    baik gerak translasi maupun rotasi besarnya sama. Pada gambar 9 gaya P yang bertitiktangkap di A dipindahkan di B dalam garis kerja yang sama adalah setara (dalam arti efek

    gerak translasi dan rotasinya) tetapi hal ini dapat berpengaruh terhadap jenis gaya yang

    dialami benda, pada waktu titik tangkap gaya di A mengalami gaya tekan, sedang pada

    waktu di B benda mengalami gaya tarik.

    c. Keseimbangan Gaya

    Keseimbangan gaya adalah hampir sama dengan kesetaraan gaya bedanya pada

    arah gayanya. Pada kesetaraan gaya antara gaya pengganti dengan gaya yang diganti arah

    yang dituju sama, sedang pada keseimbangan gaya arah yang dituju berlawanan, gaya

    pengganti (reaksi) arahnya menuju titik awal dari gaya yang diganti (aksi). Pada gambar 10

    divisualisasikan keseimbangan gaya.

    Dengan kata lain keseimbangan gaya yang satu garis kerja dapat dikatakan bahwa

    gaya aksi dan reaksi besarnya sama tapi arahnya berlawanan.

    Pada statika bidang (koplanar) ada dua macam keseimbangan yaitu keseimbangan

    translasi (keseimbangan gerak lurus) dan keseimbangan rotasi (keseimbangan gerak

    berputar).

    http://2.bp.blogspot.com/_t7rNlHc4Y64/S41epfa1ikI/AAAAAAAAAO0/I2eseqEIBQQ/s1600-h/Graphic9.jpghttp://3.bp.blogspot.com/_t7rNlHc4Y64/S41elTS22HI/AAAAAAAAAOs/5_ODINKer-M/s1600-h/Graphic8.jpg
  • 8/3/2019 Building a Popsicle (RBL)

    23/25

    Untuk mencapai keseimbangan dalam statika disyaratkan ? Gy = 0 (jumlah gaya vertikal =

    0), ?Gx = 0 (jumlah gaya horisontal = 0) dan ?M=0 (jumlah momen pada sebuah titik =0)

    d. Pengertian Momen

    Momen gaya terhadap suatu titik didefisinikan sebagai hasil kali antara gaya dengan

    jaraknya ke titik tersebut. Jarak yang dimaksud adalah jarak tegak lurus dengan gaya

    tersebut. Momen dapat diberi tanda positif atau negatif bergantung dari perjanjian

    yang umum, tetapi dapat juga tidak memakai perjanjian umum, yang penting bila arah

    momen gaya itu berbeda tandanya harus berbada. Pada gambar 11 diperlihatkan momen

    gaya terhadap suatu titik.

    Di samping momen terhadap suatu titik ada juga momen kopel yang didefinisikan sebagai

    momen akibat adanya dua buah gaya yang sejajar dengan besar sama tetapi arahnya

    berlawanan.

    Gambar 12 menunjukkan momen kopel tersebut.

    Momen dapat digambar dalam bentuk vektor momen dengan aturan bahwa arah vektor

    momen merupakan arah bergeraknya sekrup yang diputar oleh momen. Lihat gambar 13.

    http://2.bp.blogspot.com/_t7rNlHc4Y64/S41exyNHy3I/AAAAAAAAAPE/BNkbHxN8jfQ/s1600-h/Graphic11.jpghttp://4.bp.blogspot.com/_t7rNlHc4Y64/S41es92taRI/AAAAAAAAAO8/L6bzGiERdsg/s1600-h/Graphic10.jpg
  • 8/3/2019 Building a Popsicle (RBL)

    24/25

    e. Momen Statis

    Menurut teori Varignon momen pada suatu titik dikatakan statis bila besarnya momen gaya

    pengganti (resultan) sama dengan gaya yang diganti.

    ? Contoh :

    Gaya P1 dan P2 dengan jaraklmempunyai resultan R. Tentukan letak R agar momen di titik

    A statis.

    ? Jawab :

    http://1.bp.blogspot.com/_t7rNlHc4Y64/S41e1fF0rlI/AAAAAAAAAPM/oH4T8yYPfcg/s1600-h/Graphic12.jpg
  • 8/3/2019 Building a Popsicle (RBL)

    25/25

    Misal jarak R dengan P1 (titik A) = a, maka untuk memenuhi momen

    statis di A adalah : momen resultan = jumlah momen komponen.

    f. Menyusun Gaya yang Setara

    Istilah lain menyusun gaya adalah memadu gaya atau mencari resultan gaya. Pada

    prinsipnya gaya-gaya yang dipadu harus setara (ekuivalen) dengan gaya resultannya

    1) Menyusun Gaya yang Kolinier

    2) Menyusun Dua Gaya yang Konkuren

    3) Menyusun Beberapa Gaya Konkuren

    Juga dikasih tau cara mencari besar dan arah resultan. Dengan cara Analisi dan Grafis..

    http://3.bp.blogspot.com/_t7rNlHc4Y64/S41e7A9HmaI/AAAAAAAAAPc/Btspwy49GVg/s1600-h/Graphic14.jpghttp://1.bp.blogspot.com/_t7rNlHc4Y64/S41e5uorJDI/AAAAAAAAAPU/qa5BGt_6Cc8/s1600-h/Graphic13.jpg