cape unit 2 chemistry reactions of halogenoalkanes cram sheet

2
CAPE CHEMISTRY U2 M1 SS 2.6 – 2.7 REACTIONS OF HALOGENOALKANES – PAGE 1 Useful Terms And Concepts Halogenoalkane This is a compound in which a halogen atom (F, Cl, Br, or I) replaces a hydrogen atom of an alkane. For example CH 3 Cl and CH 3 CH 2 Br are halogenoalkanes. Halogenoalkanes are more commonly called alkyl halides and/or haloalkanes. The functional group of halogenoalkanes is h bl 09 The Inductive Effect Another way of representing the polarity of a bond involving two atoms with different electronegativities is to draw an arrow on the bond in the direction in which the electrons are attracted. So a carbonhalogen bond could be represented: shown below. Substitution Reaction A substitution reaction occurs when an atom (or group) from an added reagent substitutes for one in the organic reactant: THERN MAIN ROAD CUNUPIA 693290 rather than showing that the halogen draws electrons towards itself. This is sometimes called an inductive effect and halogens are said to have a negative inductive effect. Alkyl groups like methyl, ethyl, etc. have the opposite effect. They tend to release electrons and have a positive inductive effect, as shown by the Note that the C atom is bonded to the same number of atoms in the product as in the reactant. The C atom may be saturated or unsaturated. X and Y can be many different atoms but generally not C. Hydrolysis A reaction between a compound and water. The hydroxide ion hydrolyses halogenoalkanes to alcohols. Inductive Effect The effect in which substituent atoms or groups in an organic compound can attract (I or negative inductive effect) or push away electrons (+I or positive inductive effect), forming polar bonds. MISTRY LESSONS 2012 L.P. #307 SOUT direction of the arrow. The effect is increased if more than one alkyl group is attached to the same carbon: Nucleophilic Substitution (S N ) A reaction involving the substitution of an atom or group of atoms in an organic compound with a nucleophile as the attacking substituent. Transition State (Activated Complex) Symbol:‡. A shortlived highenergy molecule, radical, or ion formed during a reaction between molecules possessing the necessary activation energy. The transition state decomposes at a definite rate to yield either the reactants again or the final products. The transition state can be considered to be at the top of the energy profile. 32909 GLOBAL CAPE CHEM Reaction With OH Alcohol Formation Halogenoalkanes provide one of the most useful methods of preparing alcohols. Halogenoalkanes undergo nucleophilic substitution reactions , in which a nucleophile displaces the halide leaving group from the Intermediate A transient species that exists between reactants and products in a state corresponding to a local energy minimum on a potential energy diagram. OUTHERN MAIN ROAD CUNUPIA 69 Classification Of Halogenoalkanes Halogenoalkanes are classified as being primary (1°), secondary (2°), or tertiary (3°). This classification is based on the carbon atom to which the halogen is directly attached . If the carbon atom that bears the halogen is which a nucleophile displaces the halide leaving group from the halogenoalkane substrate. The following is a typical nucleophilic substitution reaction. Bromoethane reacts with the hydroxide ion to give ethanol and the bromide ion. The hydroxide ion is the nucleophile. It reacts with the substrate (bromoethane) and displaces the bromide ion. The bromide ion is called the leaving group. HEMISTRY LESSONS 2012 L.P. #307 SO attached to only one other carbon, the carbon atom is said to be a primary carbon atom and the halogenoalkane is classified as a primary halogenoalkane. If the carbon that bears the halogen is itself attached to two other carbon atoms, then the carbon is a secondary carbon and the halogenoalkane is a secondary halogenoalkane. If the carbon that bears the halogen is attached to three other carbon atoms, then the carbon is a tertiary carbon and the halogenoalkane is a tertiary halogenoalkane. Examples of primary, secondary and tertiary halogenoalkanes are the following: In reactions of this type, one covalent bond is broken, and an new covalent bond is formed. In this example, the carbonbromine bond is broken and the carbonoxygen bond is formed. The leaving group (bromide) takes with it both of the electrons from the carbonbromine bond, and the nucleophile (hydroxide ion) supplies both electrons for the new carbonoxygen bond. These ideas are generalized in the following equation for a nucleophilic substitution reaction: GLOBAL CAPE CH For purposes of the CAPE syllabus, Nu = OH and L = Br or Cl. Choice Of Mechanism Primary halogenoalkanes S N 2 mechanism and tertiary halogenoalkanes S N 1 mechanism. S d hl lk b th t ll lik l t d S 1 S 2 Wh i dt k hi th i f t i Material compiled by Denison at Global in Cunupia. Interested students can call 6932909 Secondary halogenoalkanes as can be seen on the next page are equally likely to undergo S N 1 or S N 2. When requiredto makeachoice the primary factor is optical characteristics of the product. Hence, secondary halogenoalkanes S N 2 if product is optically inverted (i.e. of inverse or reverse chirality compared to the reacting halogenoalkane) and secondary halogenoalkanes S N 1 if product is racemic (i.e. contains a mixture of the dextroand levorotatory isomers).

Upload: denison-dwarkah

Post on 27-May-2015

1.876 views

Category:

Education


7 download

DESCRIPTION

Everything you'll ever need to know to answer any CAPE chemistry question on halogenoalkanes. Print double sided for one sheet that will solve all your problems. Ideal for a five minute revision session just before the exam, or for a first time student wanting to know what's really important in this section of the syllabus.

TRANSCRIPT

Page 1: Cape unit 2 chemistry reactions of halogenoalkanes   cram sheet

CAPE CHEMISTRY U2 M1 SS 2.6 – 2.7 REACTIONS OF HALOGENOALKANES – PAGE 1Useful Terms And ConceptsHalogenoalkane ‐ This is a compound in which a halogen atom (F, Cl, Br, or I) replaces a hydrogen atom of an alkane. For example CH3Cl and CH3CH2Br are halogenoalkanes. Halogenoalkanes  are more commonly called alkyl halides and/or haloalkanes. The functional group of halogenoalkanes is h b l

09

The Inductive EffectAnother way of representing the polarity of a bond involving two atoms with different electronegativities is  to draw an arrow on the bond in the direction in which the electrons are attracted. So a carbon‐halogen bond could be represented:

shown below.

Substitution Reaction ‐A substitution reaction occurs when an atom (or group) from an added reagent substitutes for one in the organic  reactant:

THER

N M

AIN  R

OAD

 CUNUPIA 69

3290

rather than

showing that the halogen draws electrons towards itself. This is sometimes called an inductive effect and halogens are said to have a negative inductive effect.

Alkyl groups like methyl‐, ethyl‐, etc. have the opposite effect. They tend to release electrons and have a positive inductive effect, as  shown by the 

Note that the C atom is bonded to the same number of atoms in the product as in the reactant. The C atom may be saturated or unsaturated. X and Y can be many different atoms but generally not C.

Hydrolysis ‐ A reaction between a compound and water. The hydroxide ion hydrolyses halogenoalkanes to alcohols.

Inductive Effect ‐ The effect in which substituent atoms or groups in anorganic compound can attract (‐I or negative inductive effect) or pushaway electrons (+I or positive inductive effect), forming polar bonds.

MISTR

Y LESSONS20

12 L.P. #30

7 SO

UT direction of the arrow.

The effect is increased if more than one alkyl group is attached to the same carbon:

Nucleophilic Substitution (SN) ‐ A reaction involving the substitution of an atom or group of atoms in an organic compound with a nucleophile as the attacking substituent.

Transition State (Activated Complex) ‐ Symbol:‡. A short‐lived high‐energy molecule, radical, or ion formed during a reaction between  molecules possessing the necessary activation energy. The transition state decomposesat a definite rate to yield either the reactants again or the final products.The transition state can be considered to be at the top of the energy profile.

32909                   GLO

BAL CA

PE CHEM

Reaction With OH‐ ‐ Alcohol FormationHalogenoalkanes provide one of the most useful methods of preparing alcohols. Halogenoalkanes undergo nucleophilic substitution reactions, in which a nucleophile displaces the halide leaving group from the

Intermediate ‐ A transient species that exists between reactants and products in a state corresponding to a local energy minimum on a potential energy diagram. 

OUTH

ERN M

AIN  R

OAD

 CUNUPIA 69

Classification Of HalogenoalkanesHalogenoalkanes are classified as being primary (1°), secondary (2°), or tertiary (3°). This classification is based on the carbon atom to which the halogen is directly attached. If the carbon atom that bears the halogen is 

which a nucleophile displaces the halide leaving group from the halogenoalkane substrate. The following is a typical nucleophilic substitution reaction. Bromoethane reacts with the hydroxide ion to give ethanol and the bromide ion.

The hydroxide ion is the nucleophile. It reacts with the substrate(bromoethane) and displaces the bromide ion. The bromide ion is called the leaving group.

HEM

ISTR

Y LESSONS 20

12 L.P. #30

7 SOattached to only one other carbon, the carbon atom is said to be a primary 

carbon atom and the halogenoalkane is classified as a primary halogenoalkane. If the carbon that bears the halogen is itself attached to two other carbon atoms, then the carbon is a secondary carbon and the halogenoalkane is a secondary halogenoalkane. If the carbon that bears the halogen is attached to three other carbon atoms, then the carbon is a tertiary carbon and the halogenoalkane is a tertiary halogenoalkane. Examples of primary, secondary and tertiary halogenoalkanes are the following:

In reactions of this type, one covalent bond is broken, and an new covalent bond is formed. In this example, the carbon‐bromine bond is broken and the carbon‐oxygen bond is formed. The leaving group (bromide) takes with it both of the electrons from the carbon‐bromine bond, and the nucleophile (hydroxide ion) supplies both electrons for the new carbon‐oxygen bond. 

These ideas are generalized in the following equation for a nucleophilic substitution reaction:

GLO

BAL C

APE CH

For purposes of the CAPE syllabus, Nu = OH‐ and L = Br or Cl.

Choice Of MechanismPrimary halogenoalkanes SN2 mechanism and tertiary halogenoalkanes SN1 mechanism.

S d h l lk b th t ll lik l t d S 1 S 2 Wh i d t k h i th i f t i

Material compiled by Denison at Global in Cunupia. Interested 

students can call 693‐2909

Secondary halogenoalkanes as can be seen on the next page are equally likely to undergo SN1 or SN2. When required to make a choice the primary factor is optical characteristics of the product. Hence, secondary halogenoalkanes ‐ SN2 if product is optically inverted (i.e. of inverse or reverse chirality compared to the reacting halogenoalkane) and secondary halogenoalkanes ‐ SN1 if product is racemic (i.e. contains a mixture of the dextro‐ and levorotatory isomers).

Page 2: Cape unit 2 chemistry reactions of halogenoalkanes   cram sheet

CAPE CHEMISTRY U2 M1 SS 2.6 – 2.7 REACTIONS OF HALOGENOALKANES – PAGE 2How Halogenoalkanes ReactSince nucleophiles are electron rich species, nucleophilic substitution occurs in compounds in which a strongly electronegative atom or group leads to adipolar bond. The electron‐deficient center can then be attacked by the electron‐rich nucleophile causing the electronegative atom or group to be d l d

MechanismsSN1 Reaction Mechanism ‐ Tertiary Halogenoalkanes

displaced.

There are two possible mechanisms for nucleophilic substitution. In an SN1 reaction the molecule first forms a carbonium ion; for example:

RCH2Cl → RCH2+ + Cl–

The nucleophile then attaches itself to this carbonium ion:

RCH2+ + OH–→ RCH2OH

In an S 2 reaction the nucleophile approaches as the other group leaves A 69

32909

In an SN2 reaction the nucleophile approaches as the other group leaves, forming a transition state in which the carbon has five attached groups.

07 SOUTH

ERN M

AIN  R

OAD

 CUNUPIA

The hydrolysis of a tertiary halogenoalkane proceeds by the following steps.

1. In  the course of random collisions, the halide ion ionizes by heterolytic fission. The result of this rate‐limiting step is a carbocation and a halide ion: (CH3)3C‐Br → (CH3)3C+ + Br‐

2. The hydroxide ion attacks the carbocation and bonds to it, forming the product.

SN2 Reaction Mechanism ‐ Primary Halogenoalkanes

The preferred mechanism depends on several factors some of which are shown in the table below:

PE CHEM

ISTR

Y LESSONS 20

12 L.P. #3

The hydrolysis of a primary halogenoalkane proceeds by the following steps.

1. The OH‐ ion attacks the δ+ carbon atom of the C‐X bond. It approaches the molecule from the opposite side to the halogen, where its attack is 

GLO

BAL C

AP

pp g ,not impeded by the bulky halogen with its δ‐ charge.

2. A transition state forms in which the halogen atom and the oxygen atom are both partially bonded to the carbon atom. 

3. The halide ion leaves the transition state and the product is formed.

SN1 = Substitution Nucleophilic Unimolecular because a nucleophile is involved and the start of the reaction involves one species (which breaks into two fragments).

SN2 = Substitution Nucleophilic Bimolecular because a nucleophile is involved and the start of the reaction involves two species.

STEP

S IN 

SMDETAILED LO

OK AT

 SS N2 MEC

HAN

IS

Material compiled by Denison at Global in Cunupia. Interested 

students can call 693‐2909