carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential...

Upload: fmanayay

Post on 28-Feb-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Carboxymethyl Cellulose Enables Silk Fibroin Nanofibrous Scaffold With Enhanced Biomimetic Potential for Bone Ti

    1/13

    Carbohydrate Polymers 151 (2016)335347

    Contents lists available at ScienceDirect

    Carbohydrate Polymers

    j ournal homepage: www.elsevier .com/ locate /carbpol

    Carboxymethyl cellulose enables silk fibroin nanofibrous scaffoldwith enhanced biomimetic potential for bone tissue engineeringapplication

    B.N. Singh, N.N. Panda, R. Mund, K. Pramanik

    Department of Biotechnology andMedical Engineering, National Institute of Technology, Rourkela, India

    a r t i c l e i n f o

    Article history:

    Received 21 January 2016

    Received in revised form 23May2016

    Accepted 24May2016

    Available online 25May2016

    Keywords:

    Silk fibroin

    Electrospinning

    Carboxymethyl cellulose

    Calcium phosphate

    Tissue engineered scaffold

    a b s t r a c t

    Novel silk fibroin (SF) and carboxymethyl cellulose (CMC) composite nanofibrous scaffold (SFC) were

    developed to investigate their ability to nucleate bioactive nanosized calcium phosphate (Ca/P) by

    biomineralization for bone tissue engineering application. The composite nanofibrous scaffold was pre-

    pared by free liquid surface electrospinning method. The developed composite nanofibrous scaffold was

    observed to control the size ofCa/P particle (100nm) as well as uniform nucleation ofCa/P over the

    surface. The obtained nanofibrous scaffolds were fully characterized for their functional, structural and

    mechanical property. The XRD and EDX analysis depicted the development ofapatite like crystals over

    SFC scaffolds ofnanospherical in morphology and distributed uniformly throughout the surface ofscaf-

    fold. Additionally, hydrophilicity as a measure ofcontact angle and water uptake capacity is higher than

    pure SF scaffold representing the superior cell supporting property ofthe SF/CMC scaffold. The effect of

    biomimeticCa/P onosteogenicdifferentiation ofumbilical cord bloodderivedhumanmesenchymal stem

    cells (hMSCs) studied in early and late stage ofdifferentiation shows the improved osteoblastic differen-

    tiation capability as compared to pure silk fibroin. The obtained result confirms the positive correlation

    ofalkaline phosphatase activity, alizarin staining and expression ofrunt-related transcription factor 2,

    osteocalcin and type1collagen representing thebiomimeticpropertyofthe scaffolds. Thus, thedeveloped

    composite has been demonstrated to be a potential scaffold for bone tissue engineering application. 2016 Elsevier Ltd. All rights reserved.

    1. Introduction

    The development of an ideal scaffold for bone tissue engi-

    neering application has been an extensive area of research in the

    last decades. Various biopolymers have emerged through time

    to meet the required specification for bone tissue regeneration.

    The polymer blends and composite are more efficient than the

    individual biopolymer as scaffold material (Li et al., 2014; L u

    et al., 2013). Bombyx mori silk fibroin (SF), a naturally occur-

    ring biopolymer, has excellent tuneable mechanical propertieswhich make it an important scaffold entity for hard as well as

    soft tissue engineering applications (Meinel et al., 2005; Minoura,

    Tsukada & Nagura, 1990; Omenetto & Kaplan, 2010; Santin,Motta,

    Freddi & Cannas, 1999). The two major components ofBombyx

    mori silk are silk fibroin, a hydrophobic structural protein con-

    sisting of equimolar ratio of heavy and light chain of protein

    Corresponding author.

    E-mail address:[email protected] (K. Pramanik).

    and sericin, a hydrophilic component (Ochi, Hossain, Magoshi &

    Nemoto, 2002; Tanaka et al., 1999; Zhou et al., 2000). In the last

    decade, apart from silk various other proteins and polysaccharides

    based biopolymers such as cellulose, starch, chitosan, alginate and

    their derivatives have been chosen for their potential applications

    inmany areas such as pharmacy, medicine, tissue engineering and

    biotechnology (Gombotz &Wee, 2012;Nguyen &West, 2002). Car-

    boxymethylcellulose (CMC), a highly hydrophilic semi-synthetic

    natural polymer has significant super absorbing, defoaming and

    chelating abilities and finds widespread applicability in phar-maceutical industries (Ghanbarzadeh & Almasi, 2011; Wang &

    Wang, 2010;Whistler,2012). Thenatural structural matrixof bone

    consists of type-I collagen fibers, which is reinforced with hydrox-

    yapatite like inorganic phase by biomineralization (Fratzl, Gupta,

    Paschalis & Roschger, 2004). Hydroxyapatite, the main mineral

    phaseof boneand skeletal systemshaveseveral favourableproper-

    ties namely biocompatibility, osteoconductivity, osteoinductivity

    and bioactivity (Cao & Hench, 1996; Jiang et al., 2013; Suchanek &

    Yoshimura, 1998). Thus, it is significant to mimic the biomineral-

    ized organic phase of natural bone. The aim of this present work is

    http://dx.doi.org/10.1016/j.carbpol.2016.05.088

    0144-8617/ 2016 Elsevier Ltd. All rightsreserved.

    http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.carbpol.2016.05.088http://www.sciencedirect.com/science/journal/01448617http://www.elsevier.com/locate/carbpolmailto:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.carbpol.2016.05.088http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.carbpol.2016.05.088mailto:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.carbpol.2016.05.088&domain=pdfhttp://www.elsevier.com/locate/carbpolhttp://www.sciencedirect.com/science/journal/01448617http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.carbpol.2016.05.088
  • 7/25/2019 Carboxymethyl Cellulose Enables Silk Fibroin Nanofibrous Scaffold With Enhanced Biomimetic Potential for Bone Ti

    2/13

    336 B.N. Singh et al. / Carbohydrate Polymers 151 (2016) 335347

    to bring several advantageous properties of both silk fibroin (high

    mechanical strength, biocompability) and carboxymethylcellulose

    (hydrophilicity,chelatingcapacity) at thesame templateto develop

    a biomaterial for bone tissueengineering application. We consider

    the developmentofSF/CMCbasedcompositescaffolds asa promis-

    ingstrategy to overcomethelimitations of thepure SF scaffolds. In

    fact, there are published reports on SF/CMCbased composite films

    and hydrogels being put into various biotechnology and biomedi-

    cal applications (Ju et al., 2014; Kundu,Mohapatra& Kundu,2011).

    The present research has however, focused on the processing of

    the composite material into nanofibers through free liquid surface

    electrospinning techniquewithanaimofcreatinga close juxtaposi-

    tion between bone and the scaffold for enhanced osteointegration.

    Electrospun nanofibrous scaffold closely resembles the nanofi-

    brous structure of natural extracellular matrix (ECM) and thus,

    promotes better cell attachment and proliferation (Ma & Zhang,

    1999). SF and CMC havenegligible inflammatory reactionsand are

    biocompatible(Miyamoto, Takahashi, Ito, Inagaki & Noishiki, 1989;

    Santin,Motta, Freddi &Cannas,1999).Moreover, thechelating abil-

    ity of CMC can coordinate bonding between COO and Ca2+, and

    elicit the homogeneous Ca/P crystal nucleation which is a vital

    osteogenic property that an ideal scaffold should demonstrate for

    bone regeneration. This paper not only presents a comprehensive

    understanding of themorphological and physicochemical charac-teristics of the SF/CMC nanofibrous scaffold, but also accounts a

    thorough investigation of their biological performance for bone

    regenerationthrough the useof seededhumanmesenchymal stem

    cells (hMSCs) that are derived from the human umbilical cord

    blood. In this study, the novelty and the superiority of the SF/CMC

    nanofibrous scaffold over other polymeric/composite scaffoldshas

    been explored to enhance osteogenic differentiation of the cells.

    The osteogenic response of MSCs to biomimetic SF/CMC com-

    posite nanofibrous scaffolds was assessed by expression analysis

    of osteogenic genes (RUNX2 transcription factor, Osteocalcin and

    type1 collagen), alkaline phosphatase activity, and calcium depo-

    sition.

    2. Materials and methods

    2.1. Materials

    Bombyx mori silk cocoons were purchased from Central Tasar

    Research and Training Institute (Jharkhand, India). Lithium bro-

    mide(LiBr),sodiumcarbonate (Na2CO3) andformicacid(98%)were

    procured from Merck, India. Dulbeccos Modified Eagle Medium

    (DMEM), Phosphate-buffered saline (PBS), Fetal bovine serum

    (FBS), Trypsin (0.25%), Alexa-Fluor 488 conjugated phalloidin,

    Live/Dead staining kit, Antibiotic-Antimycotic solution, anti-

    RUNX2 antibody, anti-osteocalcin antibody and FITC-conjugated

    secondary antibodies, TRIzol, High-capacity cDNA Reverse Tran-

    scription Kit and SYBER Green RT-PCR kit were purchased

    from Invitrogen, USA. The dialysis cassette was obtained from

    Thermo fisher, USA. Bovine serum albumin (BSA), SIGMAFASTTM

    p-nitrophenylphosphate (pNPP) tablets, paraformaldehyde, Triton

    X-100, 46-Diamidino-2-phenyindole (DAPI), Dimethyl Sulfoxide

    (DMSO), MTT assay kit, Alizarin red S (ARS) solution, CMC as

    sodium salt (molecular weight 700kDa and degree of substitu-

    tion 0.650.85) ammoniumhydroxide, cetylpyridinium chloride

    (CPC) were obtained from Sigma.

    2.2. Preparation of regenerated silk fibroin

    Silk fibroin (SF) was extracted from Bombxy mori silk cocoon

    and the regenerated aqueous SF solution was prepared follow-

    ing the previously established protocol (Rockwood, Preda, Ycel,

    Wang, Lovett& Kaplan, 2011; Sah& Pramanik, 2010). Briefly Bom-

    byx mori silk cocoons were chopped and degummed in 0.02M

    aqueous Na2CO3 for 20min at 100C, followed by washing in

    distilledwatertoremovesericinandotherimpurities.Afterdegum-

    ming, silk fibers were dried at 37C for overnight. Degummed silk

    fibers were then dissolved in 9.3M LiBr aqueous solution at 45C

    for 2hr to 3hr resulted in a 10wt% solution. The obtained solution

    was then dialyzed against deionizedwater for 23days to remove

    LiBrions. Theobtainedsolutionswerethencentrifugedat5000 rpm

    to removeun-dissolved impurities andaggregates. Finally SF solu-

    tions were freeze dried and used for further study.

    2.3. Generation of SF/CMC nanofibers

    Nanofibers ofSF/CMCblendswerefabricated by theelectrospin-

    ning method. Four different compositions of SF/CMC (100/0, 99/1,

    98/2 and 97/3 (w/w)) blend solutions (10wt%) were prepared by

    dissolvingappropriate amountofSFandCMCpowder in98%formic

    acid with stirring tomakewell dispersedhomogenous solutions. A

    10wt% pure SF solution was used as control. The electrospinning

    of the solutions was done by using a free liquid surface electro-

    spinningmachine(NS Lab200,ELMARCO), at 4.25 kVcm1 voltage,

    40% relative humidity of electrospinning chamber and 12rpm ofwire based spinning electrode at 202 C. Multiple Taylor cones

    were developed over the spinning electrode in response to the

    potential difference created between spinning and collector elec-

    trode separated apart at 16cm. The different composite scaffolds

    are designatedasSF, SFC1A, SFC2B and SFC3C for 100/0, 99/1, 98/2

    and97/3 (w/w)compositionsrespectively.Thegelatin nanofibrous

    scaffold fabricated by electrospinning of 10wt% solution of gelatin

    under similar electrospinning conditionswasused as control.

    2.4. Post treatment of electrospun scaffolds

    The electrospun SF and SFC nanofibrous scaffolds were then

    cross-linked with 3wt% EDC-NHS [2:1 (w/w)] in ethanol: water

    (95:5v/v)] solution and were further treated with 0.1M CaCl2solution overnight at 40 C. The cross-linked scaffoldswere rinsed

    thoroughly with deionizedwater to remove ions like chlorine and

    residual cross-linking reagent, and dried under vacuum at room

    temperature for 24h. The different composite scaffolds treated

    with CaCl2 were designated as SF1, SFC1 and SFC2 corresponding

    to SF, SF/CMC (99:1w/w) and SF/CMC (98:2w/w) respectively.

    2.5. In vitro mineralization

    The in vitro mineralization of the scaffold was performed by

    incubating11 cm2 sizesof scaffoldsin 20ml simulatedbodyfluid

    (SBF)preparedfollowing theearlier reportedmethod(Kokubo,Kim

    & Kawashita, 2003) for 7days. The pH of the fluids was adjusted

    to 7.4 at 36.5 C. After 7days, the scaffolds were taken out, gentlyrinsed in distilledwater and dried at room temperature for further

    analysis.

    2.6. Morphological characterization

    Characterization of the developedscaffoldwasdone beforeand

    after the in-vitro mineralization. To scaffolds with 0.50.5cm2

    sizes of scaffolds were coated with gold, and observed under

    fieldemissionscanningelectronmicroscope (FESEM)(NOVANANO

    SEM, USA) formorphological assessment. The average fiber diam-

    eters were measured from ten different FESEM images of5000

    magnificationusing Image J software.EnergydispersiveX-rayanal-

    ysis (EDX)was used to ensuremineral deposition on the scaffolds.

  • 7/25/2019 Carboxymethyl Cellulose Enables Silk Fibroin Nanofibrous Scaffold With Enhanced Biomimetic Potential for Bone Ti

    3/13

    B.N. Singh et al./ Carbohydrate Polymers 151 (2016) 335347 337

    2.7. Physicochemical characterizations

    The nature of interactions among the functional groups of the

    prepared SFC composite scaffolds and their interaction with Ca/P

    were determined using Fourier transforms infrared (FTIR) spec-

    troscopic analysis (FTIR, Shimadzu AIM-8800, Japan) operated in

    the transmittance mode in 4000400cm1 region. The structural

    features of the scaffolds were assessed by X-ray diffraction (XRD)

    study (Rigaku Ultima-IV, Japan) and the data was collected in a

    2 range of 1070 with 5 per min scanning rate. The topogra-phy of the scaffoldwasanalysedby atomic forcemicroscope (AFM,

    NTEGRE (NTMDT)) operated in semi-contact mode. The contact

    angle of thenanofibrous scaffolds (11 cm2) was measured using

    K100MK3 tensiometer (Kruss GmbH, Hamburg, Germany) operat-

    ing at 6mm/min detection speed and 3mm/minmeasuring speed.

    Threespecimenswereusedfor singlesetofscaffoldandtheaverage

    result was reported. The water uptake capacity was measured by

    immersing small pieces (22 cm2) of pre-weighed dried nanofi-

    brous scaffolds in PBS at room temperature. After particular time

    interval specimenwas removed andthenweighed.By dividing the

    difference in weight before and after the swelling by the origi-

    nal specimen weight, we obtained the equilibrium water uptake

    percentage of the scaffolds.

    2.8. Mechanical characterization

    Universaltestingmachine (Instron3369,Bioplus,USA)wasused

    to determine the tensile strength of the SFC nanofibrous scaffolds

    both in dry and wet conditions. The scaffolds were cut into small

    rectangular shapes (3050.050.01mm3) andloaded between

    the clamps of thetensile tester. Tensile testingwasperformedwith

    acrossheadspeedof5mm/min.Formeasurementinwetcondition,

    the samples loadedbetween theclamps were immersed in bioplus

    bath filled with 3 l SBF maintained at 371 C. The value reported

    is theaverage ofmeasurement takenwith three specimens.

    2.9. In vitro evaluation of the SFC nanofibrous scaffolds by cell

    culture

    2.9.1. hMSCs seeding and culture

    The umbilical cord blood derived hMSCs were cultured in our

    laboratory in completemedia (DMEMsupplementedwith 10% FBS

    and 1% antibiotic solution) (Bissoyi, Pramanik, Panda & Sarangi,

    2014). The cells weremaintained at 37C in 5% CO2incubator and

    the culture medium was refreshed every 2days till the cell den-

    sityreached 8090% confluence. Diskshaped scaffold specimensof

    6mmin diameterwere sterilized in75%ethanol overnight and then

    extensively rinsedwith PBS. The scaffoldswere then incubated for

    overnight in complete medium in 24-well plate and hMSCs (105

    cells/cm2) were seeded on the scaffolds after 24h of incubation.

    Thecell seededscaffoldswere incubatedat 37C for 46h toallow

    cell adhesion. After the cell attachment, the cell seeded nanofi-brous scaffolds were cultured for two weeks in osteogenic media

    (complete media,which additionally supplementedwith 5mM-glycerol phosphate, 50mg/ml ascorbic acid-2-phosphateand1nM

    dexamethasone) at 37 C in humidified atmosphere containing 5%

    CO2.

    2.9.2. hMSCs morphology, attachment, viability, metabolic

    activities and distribution

    The qualitative and quantitative assessment of morphology,

    attachment, viability and proliferation of hMSCs seeded on each

    of the prepared nanofibrous scaffolds were monitored during

    714days of culture under FESEM and confocal microscope. For

    FESEM study, the cultured cell-seeded scaffolds were fixed with

    2.5% glutaraldehyde for 20min and dehydrated consecutively for

    5min using gradient ethanol concentrations (30%, 50%, 70%, 90%

    and 100% (v/v) in water). After drying at room temperature,

    the scaffolds were coated with gold and observed under FESEM

    (Biswas, Pramanik & Jonnalagadda, 2014). Morphological and cel-

    lular attachment assessment was done by confocal microscopy.

    The seeded scaffolds were first fixed with 4% paraformaldehyde

    for 30min and incubated in 3% BSA for another 30min. The fixed

    specimens were then permeabilized using 0.1% Triton X-100 for

    5min and again incubatedwith Alexa-Fluor 488 conjugated phal-

    loidin at room temperature for 15min in dark condition. After

    rinsing with PBS and stainingwithDAPI for 15min, the specimens

    weremounted over the glass slides and the images were taken by

    Leica TCS SP5 X Super continuum Confocal Microscope (Bissoyi,

    Pramanik, Panda & Sarangi, 2014).

    Cell viability and distribution of viable cells in the scaffolds

    werealsoevaluatedby thesameconfocalmicroscopic analysis.The

    seeded scaffoldswere incubated in two molecular probes, namely

    calcein AM and EthD-1 staining solution, simultaneously in dark

    for 30min and then observed under the microscope to determine

    the presence and distribution of live (green) and dead (red) cells

    throughout the scaffolds. The quantitative estimation of cell via-

    bility on cell seeded scaffolds (104 cells/cm2) was done by MTT

    assay on3rd, 7th and 14thday of culture using a standardprotocol

    (Ghasemi-Mobarakeh et al., 2008). After 3, 7, and 14days the cul-ture medium(complete media)was removed, rinsed in 100l PBSand100l of MTTsolution (0.5mg/ml)wasadded toeachwell (96wells plate) and incubated for 4h at 37C in 5% CO2. After incuba-

    tion, MTT solution was replaced with 100l of DMSO and finallytheabsorbancewasmeasuredat490nmusingUVvisspectropho-

    tometer (Double beamspectrophotometer 2203, Systronics).

    2.9.3. Osteogenic differentiation

    Theosteogenic differentiationactivityof hMSCs (104 cells/cm2)

    seededon the SFCnanofibrous scaffoldsandcultured inosteogenic

    media were quantitatively estimated bymeasuring alkaline phos-

    phatase (ALP)secretion by the culturedhMSCsusingpNPP solution

    as the reaction substrate for ALP. 50l of Lysis solution (0.5%

    TritonX-100) and subsequently, 200l of 1mg/ml p-NPP solutionwere added to each well and incubated for 1.5h at 37 C. The

    absorbance was later measured at 405nm after 7, 14 and 21days

    using UVvis spectrophotometer (Double beam spectrophotome-

    ter 2203, Systronics).

    The cell-seeded scaffolds were cultured in osteogenic media

    andanalysed qualitatively andquantitatively for theexpression of

    RUNX2 transcription factor and osteocalcin differentiation mark-

    ers by immunocytochemistry. The scaffolds were fixed with 4%

    paraformaldehyde for 15min and rinsed well in PBS, followed by

    permeabilizationwith0.5%TritonX-100 for5minat room temper-

    ature. The permeabilized scaffolds were rinsed with 1X PBS and

    incubated for 30min at RT in 3% BSA solution. After blocking the

    non-specific sites, each specimen was separately incubated with

    anti-RUNX2 antibody and anti-osteocalcin for 1h at RT followedby thoroughwashing.FITC-conjugated secondaryantibody(1:200)

    was then added to it and incubated for 30min. Counter staining

    with DAPI was performed for 510min after washing in 1X PBS

    and imagewas taken by confocalmicroscopy.

    Moreover, the RUNX2 transcription factor, osteocalcin and

    type1 collagen (Col1) gene expressions of the hMSCs (105

    cells/cm2) seeded on the SF and SFC nanofibrous scaffolds were

    quantitatively evaluated in real time quantitative polymerase

    chain reaction (RT-PCR). After two weeks of culture in osteogenic

    medium, cell-scaffold construct was immersed in TRIzol and

    homogenised by vortexing to isolate RNA. These isolated RNAs

    were converted to cDNA using High-capacity cDNA Reverse Tran-

    scriptionKit according to themanufacturers instructions. A SYBER

    Green RT-PCR kit was used for quantitative estimation of gene

  • 7/25/2019 Carboxymethyl Cellulose Enables Silk Fibroin Nanofibrous Scaffold With Enhanced Biomimetic Potential for Bone Ti

    4/13

    338 B.N. Singh et al. / Carbohydrate Polymers 151 (2016) 335347

    Table 1

    Primer sequencesused for quantitative RT-PCR gene expression analysis.

    genes 53 primers

    Runx2 Forward GTCTCACTGCCTCCCTTCTG

    Reverse CACACATCTCCTCCCTTCTG

    Osteocalcin Forward GTGACGAGTTGGCTGACC

    Reverse TGGAGAGGAGCAGAACTGG

    Type 1collagen Forward GACCTCTCTCCTCTGAAACC

    Reverse AACTGCTTTGTGCTTTGGG

    B-actin Forward TTCCAGTCCTTCCTGReverse GCCCGACTCGTCATACTC

    expression. The2ct relative quantification methodwas used for

    the estimation of gene expression. Therelativeexpressions of each

    gene were normalized against Ct value of thehouse-keeping gene.

    The selected primer sequence for the gene of interest and house-

    keeping gene are shown in Table 1.

    2.9.4. Biomineralization of hMSCs seeded on SFC nanofibrous

    scaffolds and calcium quantification

    Theformationofmineralizednoduleson thecell-seedednanofi-

    brous scaffolds cultured in osteogenic media were analysed and

    confirmed by FESEM analysis and alizarin red assay. FESEM and

    EDX analysis were performed following the protocol as describedin 2.5.2. Alizarin red S stain (ARS) solution was prepared by dis-

    solving 0.5g ARS in 25ml MiliQ water and pH of the solutionwas

    adjusted to 4.1-4.3 by adding 10% NH4OH. The cell-seeded scaf-

    folds werefirst fixedwith2.5%glutaraldehyde for 2h and 1mlARS

    solution was then added to each well. The specimens were then

    incubatedat 37 Cfor1handlaterwashedinMiliQwatertoremove

    excess dye adsorbed on the scaffold surface. Biomineralization of

    hMSCs on the SFC nanofibrous scaffolds were qualitatively eval-

    uated by examining the intensity of the red colour developed on

    the scaffold surface by using inverted phase contrast microscope

    (Axiovert 40 CFL) at 20X magnification. The degree of biomin-

    eralization was estimated through calcium quantification which

    involved the aspiration of ARS stain by specimen incubation with

    500l of cetylpyridinium chloride (CPC) for 1h and recording theabsorbance at 550 nm(Gregory, Gunn, Peister & Prockop, 2004)

    using UVvis spectrophotometer (Double beam spectrophotome-

    ter 2203, Systronics).

    2.10. Statistical analysis

    The experiments were done in triplicate, and data were pre-

    sented as meanSD. Statistical significance was determined by

    single way ANOVA. p Value less than 0.05was considered as sig-

    nificant.

    3. Results and discussion

    3.1. In vitro mineralization of SFC nanofibers

    3.1.1. Rheological and microstructural analysis

    The rheological behaviour of pure SF andvarious SF/CMCblend

    solutionswas studied by viscometer measurement. Fig. 1C shows

    that the pure SF solution exhibits shear thickening behaviour at

    lower shear rate followed by shear thinning behaviour at higher

    shear rate. The SF/CMC (99/1w/w) blend solution also exhibited

    similar trend as SF solution whereas SF/CMC (98/2w/w) solution

    showedfaster shear thickeningat lower shear rateandslowershear

    thinningbehaviour at highershear rate. Thus, SF andSF/CMC(99/1

    and 98/2w/w) solutions show similar behaviour of shear thick-

    ening and shear thinning as of natural silk dope (Holland, Terry,

    Porter & Vollrath, 2006). The polymeric chains of SF/CMC solution

    was organised either parallel or entangled due to suppression of

    repulsive forcesbetween thenegative charges of polymeric chains

    at low pH of formic acid (Lu et al., 2011; Zhang et al., 2012; Zhu,

    Zhang, Shao & Hu, 2008). This resulted in increased viscosity and

    shearthickeningbehaviour at lowershear rateofSF/CMCsolutions.

    Whereas, as the concentration of CMC increased (>2wt%) shear

    thickening started early with lower shear rate followed by early

    shear thinning after reaching maximum shear viscosities. Thus

    SF/CMC solutions with increased CMCcontent (>2wt%), exhibited

    higher shear thinning behaviour at lower shear rate due to the

    strong interaction between SF and CMC, which leads to increasing

    thesolutioninertiaandhinders theelectrospinning (Zhou,Chu,Wu

    &Wu,2011).

    Themicrostructures of SF, SFC1 and SFC2 scaffolds, both before

    and after the mineralization, are presented in Fig. 1 where the

    FESEM images show the irregular distribution of nanofibers in

    the form of non-woven mats. The SFC3 blend failed to produce

    nanofibers because the solution was highly viscous owing to the

    increasedCMCcontent in it.Prior tomineralization, the nanofibers

    hadsmoothersurfaces and their fiber diameterwasincreasedwith

    CMC addition as shown in Fig. 1AC. Majority of nanofibers are

    within 100300nm diameter range, where pure SF exhibits an

    average diameter of 146.638.3nm, whereas SFC1A and SFC2B

    displaying a linear increment of average diameters 183.782nm

    and 227.887nm respectively. This increase in fiber diameter isfavourable for cell adhesion as it is similar to thebiomimetic archi-

    tecture of human body where by the diameter of collagen fibers

    of natural extracellular matrix (ECM) are in 50500nm diameter

    range(Fratzl, Gupta, Paschalis &Roschger,2004). After invitromin-

    eralization, thefiber surfaceswere observed tobe rough indicating

    the nucleation of Ca/P crystals on the scaffold. The surface of pure

    SF nanofibers and SF1 (Fig. 1B-a,b) was hardly rough suggesting

    itsmarginal biomineralizingability (random andweak) in forming

    Ca/P crystals. However, SFC1 and SFC2 (Fig. 1EF) demonstrated

    highernucleation siteswith uniformandspherical Ca/P crystal for-

    mations of sizes100nm. Fig. 1D illustrate in situ mineralization

    of SF/CMC nanofibrous scaffold. Fig. 1D illustrates the in situmin-

    eralization of SF/CMC nanofibrous scaffold. The mineralization of

    the nanofibers can be attributed to the formation of free hydroxylgroups/carboxyl groups during the electrospinning of SFC blends

    in formic acid (derivatizing solvent for CMC) contributing to the

    increased number of Ca2+ ion nucleation sites on the nanofibers.

    After that,PO43 ions from surroundingSBF solutionwasadsorbed

    by calcium ion and that resulted in the formation of nanosized

    Ca/P crystals in SBF (1X) solutions (Heinze &Heinze, 1997; Salama,

    Abou-Zeid, El-Sakhawy & El-Gendy, 2015). The gradual increase

    in CMC composition augments the free hydroxyl groups/carboxyl

    groups content and thus SFC2 exhibits thehighest mineralization.

    The biomineralization of electrospun SF/CMC based nanofibrous

    scaffold shows a controlled nucleation of Ca-P crystal.Whereas in

    case of scaffold coatedwithCMC,most of the Ca2+ nucleation sites

    may exposed to SBF thereby uncontrolled mineralization of scaf-

    fold occurs. Furthermore in electrospinning under high shear rate(in range of 104 1/s) polymeric chainsof SF and CMC get entangled

    or parallelly aligned (Agarwal, Burgard,Greiner &Wendorff, 2016)

    Because ofwhichCMCwaswell distributedover the surface aswell

    as within the fiber this has led to the exposure of Ca2+ nucleation

    sites on the scaffold surface in controlled manner. The controlled

    mineralization of matrix provides superior osteogenic differenti-

    ation of hMSCs in comparison to the matrix with uncontrolled

    biomineralization. The scaffolds completely covered with Ca-P or

    hydroxyapatite by uncontrolledmineralizationare detrimental for

    hMSCs (Rungsiyanont, Dhanesuan, Swasdison & Kasugai, 2011).

    In some of the study on hydroxyethyl cellulose nanofiber it has

    been observed that complete electrospunmatwas covered by Ca-

    P mineral within 24h of soaking period in SBF solution, which

    further reduces the pore size thereby may prevents cell penetra-

  • 7/25/2019 Carboxymethyl Cellulose Enables Silk Fibroin Nanofibrous Scaffold With Enhanced Biomimetic Potential for Bone Ti

    5/13

    B.N. Singh et al./ Carbohydrate Polymers 151 (2016) 335347 339

    Fig. 1. (A) FESEM images of electrospunSF, SFC1A and SFC2B (a, c). (B) FESEM images of SF, SF1, SFC1 and SFC2 after SBF treatment for 7days(a, d). (C) Change in viscosity

    ofthe SF andSF/CMC solution at differentconcentrations. (D)Illustrationof in situ mineralization of SF/CMCcomposite nanofibrous scaffold.

    tion within the scaffold (Chahal, Hussain, Kumar, Yusoff & Rasad,

    2015). Thus too low or too muchmineralization is not favourable

    forhumanbone tissueregeneration. However pore size and poros-

    ity within nanofibrous scaffold can be further improved either by

    using a direct-write 60W laser at standard room condition or by

    using porogenslikeNaCl,which enablesnanofibrousscaffoldswith

    improved stem cells recruitment or penetration property(Ki et al.,

    2008; Rodrguez, Sundberg, Gatenholm & Renneckar, 2014). Also

    celluloseandbacterial cellulosearerich in carboxylategroups(salt

    form of the acid) which provide higher negatively charged sur-

    face and may be not suitable for cell attachment. Whereas in case

    of SF/CMC nanofiber, surface of the fibers were rich in positively

    charged aminegroup (-NH3+) present in SF favour the cells attach-

    ment and proliferation.

    3.1.2. Structural and functional property

    XRDdiffractogram of the scaffolds representing their chemical

    structures and phases are shown in Fig. 2A, where the diffraction

    patterns show minor variation among the scaffolds. The peaks at

    20.8 (2) and 24.3 (2) (Fig. 2A-a) indicate the silk II conforma-tion (Um, Kweon, Park & Hudson, 2001) contributing to superior

    stabilityandmechanical properties of thenanofibers. Aweak peak

    at27.6 (2) indicatesthe silk I structure(Ha,Park&Hudson, 2003;Singh, Panda& Pramanik,2016; Um,Kweon, Park &Hudson, 2001).

    Moreover, the diffractogram clearly suggest the change in crys-

    tallinity of the SF scaffolds with gradual addition of CMC and this

    phenomenon possibly due to the interactions between the amide

    groupsof SFandthehydroxyl/carboxylgroups ofCMCchains.After

    7daysof SBFtreatment,X-raydiffractogram(Fig.2A-b)depictsCa/P

    bone like apatite formation over the scaffolds, where SFC2 shows

    prominent peak at 2 equal to 31.8, 45.52, 56.37 and 66.36 in

  • 7/25/2019 Carboxymethyl Cellulose Enables Silk Fibroin Nanofibrous Scaffold With Enhanced Biomimetic Potential for Bone Ti

    6/13

    340 B.N. Singh et al. / Carbohydrate Polymers 151 (2016) 335347

    Fig. 2. (A)XRD spectrum of SF,SFC1AandSFC2B beforeSBF treatment(a). XRDspectrumof SF,SF1, SFC1 andSFC2 after incubation in SBFfor a week (b). (B)FT-IRspectrum

    ofSF, SFC1A and SFC2B beforeincubationin SBF (a) and (b) after incubation in SBF for 7days. (C) AFM images of (a) SF1 and (b) SFC2 after treatment in SBF for 7days.

    closeproximitywithreferencespectrumforhydroxyapatite (Sigma

    Aldrich) as compared to others. Thus it has been confirmed that,

    SFC2 promoteshighermineralizationas comparedto SFC1 and SF1,

    whereas SF shows minimal level of mineralization. This confirms

    our hypothesis that the addition of CMC canenhance themineral-

    ization property, which was further investigated by FT-IR analysis

    withmineralised nanofibrous scaffold.

    The characteristics functional groups in SF, SFC1A and SFC2Bare represented by FTIR spectra as shown in Fig. 2B-a. The ran-

    domcoil conformations of pure SF correspond to the characteristic

    peaks at1640cm1 (amide I),1527cm1 (amide II)and 1241 cm1

    (amideIII), thepeaksshiftto 1627cm1, 1519cm1 and 1236 cm1

    respectively after cross-linking with EDC/NHS (Chen, Chen & Lai,

    2012). The peak at 1627cm1 and 1519cm1 inSFC2B(Fig. 2B-b)

    became intensified, which indicates the ability of CMC in facilitat-

    ing the conformational transition from random coils to -sheetsby formingadditional intermolecular hydrogenbondsbetween the

    carboxylgroups ofCMCand amidegroupsofSF.However, the peak

    intensified and narrowed at 1236cm1 in SFC2B is attributed to

    the overlapping of amide III band with the acetyl ester band of

    CMC (Ritcharoen, Supaphol & Pavasant, 2008). The FT-IR peak at

    1060cm1 isdue to>CH O-CH2stretchingofCMC(Itagaki,Tokai&

    Kondo, 1997). After in vitromineralization the scaffoldswerechar-

    acterizedby FT-IRto assesstheirmineralizationability.Asobserved

    in FT-IR spectra (Fig. 2B-b) the Ca/P deposition on the scaffolds is

    reflected by the characteristicpeak at 1062cm1 correspondingto

    the P-O asymmetric stretching mode of vibration of PO43 group

    (Stan, 2009; Varma & Babu, 2005). The P-O stretching mode has

    been observed at 1012cm1 and 976cm1 corresponds to majorband for phosphate group. The peaks observed at about 610 cm1

    and568cm1 areduetoO-P-O bendingandstretching respectively

    (Greish & Brown, 2001; Varma & Babu, 2005). The absorbed CO2corresponding to 14001450cm1 peak indicates the deposition

    of carbonatedCa/P on the nanofibers. Since thecharacteristicpeak

    for deposited Ca/P was observed much more prominent in SFC2

    (Fig.2B-b)in comparison toother scaffoldindicatingthatCMCplays

    significant role in the improvement of biomineralizationof nanofi-

    brous scaffold. Most of the peaks observed with SFC2 showmore

    peakbroadening incomparison toSF1withtime, thatindicatesthat

    SFC2supportssuperiormineralization andintramolecular bonding

    with developedCa/P (Pramanik,Mishra, Banerjee,Maiti, Bhargava

    & Pramanik, 2009).

  • 7/25/2019 Carboxymethyl Cellulose Enables Silk Fibroin Nanofibrous Scaffold With Enhanced Biomimetic Potential for Bone Ti

    7/13

    B.N. Singh et al./ Carbohydrate Polymers 151 (2016) 335347 341

    Fig. 3. (A) Load vs Extension curve for SF and SFC2B scaffolds in dry and wet condition. (B) Distribution of tensile strength and tensile strength at break of SF and SFC2B

    scaffold. (C) Swelling behaviour at differenttime interval observed with SF andSFC2B in PBS solution. (D)Variation of contact anglemeasured with SF andSFC2B scaffolds

    representing the superior hydrophilic property of SFC2B.

    The structure and surface morphology of SF1 and SFC2 scaf-

    folds after biomineralization were examined by AFM analysis.We

    observed enhanced Ca/P deposition and improved surface rough-

    ness of SFC2 than that observed with of SF1, as revealed by the

    AFM images (Fig. 2C). As indicated in Fig. 2C, SF1 showed smoothsurface with average surface roughness of 0.247mwhereas SFC2showedaverageroughnessof0.322m.Thegrowthof Ca/Pcrystalsover SFC2 improves its surface roughness and thus, it can promote

    cell adhesion, proliferation and differentiation (El-Ghannamet al.,

    2004).

    3.2. Mechanical properties

    The ultimate tensile strength (UTS) of SF and SFC2B nanofi-

    brous scaffolds are depicted in Fig. 3A, wherein dry state, the

    UTS was measured as 12.71.5MPa and 10.541.3MPa and

    the corresponding values in wet state were 3.820.7MPa and

    3.460.6MPa respectively. A minute variation in UTS observed

    with both the scaffolds in wet state suggests that the addition ofCMC can improvemineralizationwithoutmuchaffectingmechan-

    ical property.Even, inwetstate, the tensile strainat breakofSFC2 B

    was measured to be 18.373.8%, whichwasquite higher than the

    pure SF scaffold (8.363.3%). The corresponding increase in ten-

    sile strainwithadditionof a small amountof CMCis118%.Thus the

    2% CMC addition to SF may improve the cell retention ability and

    increase the number of cell penetration inside the scaffold during

    cell-seeding.

    3.3. Hydrophilicity and swelling behaviour

    Thecelladhesion,proliferationandtissue integrationare greatly

    influencedby the hydrophilicity of thescaffolds(Altankov& Groth,

    1994). Table 2 shows mean contact angle measurements of the

    scaffolds, where the mean advancing contact angle (MACA) and

    mean receding contact angles (MRCA) (a measure of wettability

    and de-wettability) of SFC2B is lower than pure SF scaffold rep-

    resenting the higher hydrophilicity of the composite scaffold. This

    phenomenon is also corroborated from Fig. 3D where the reced-ing contact angles for SFC2B attained 0 after certain time period,

    whereasthemeasuredvalue isaround30 forSF scaffold.Themean

    contactanglehysteresisplaysanimportant rolein theintrusionand

    extrusionof bodyfluids throughthe scaffolds. Thiswill furtheraug-

    mentthecelladhesionpropertyofSFC2Bscaffoldsincomparisonto

    pureSFastheoptimumcontact angleof thesurface forcelladhesion

    is reported in the range between 55 and 75 (Groth & Altankov,

    1996). The increase in hysteresis of SFC2B in comparison to pure

    SF scaffold indicates an increased in surface roughness or chemical

    in-homogeneityalong thecontactline.Moreover,thewateruptake

    (Fig. 3C) determined for SFC2B lying in the range of 361%417%

    in comparison to 180%270% for SF, also suggests higher water

    uptake capacity of nutrients into the interior of the SFC2B scaf-

    fold and thereby an enhanced the cell migration andproliferationare achieved in this region. Thus the addition of a small amount

    of CMC improves the hydrophilic property of SF based nanofibrous

    scaffolds, thus facilitates biofluid transport, cellmigration, preven-

    tion from dehydration, exudates accumulation across the wound

    and maintenance of microenvironment and pH (Agrawal & Ray,

    2001; Zahedi, Rezaeian, Ranaei-Siadat, Jafari & Supaphol, 2010).

    Table 2

    Mean contact anglemeasurement of SF andSFC2B nanofibrous scaffolds.

    Scaffolds MACA [] MRCA [] Hysteresis []

    SF 64.2 4.2 36.9 3.8 26.6 3.0

    SF/CMC2 57.4 0.3 18.5 1.8 38.9 3.2

  • 7/25/2019 Carboxymethyl Cellulose Enables Silk Fibroin Nanofibrous Scaffold With Enhanced Biomimetic Potential for Bone Ti

    8/13

    342 B.N. Singh et al. / Carbohydrate Polymers 151 (2016) 335347

    Fig. 4. FESEM images of MSCs on gelatin (A), SF (B) and SFC2 (C) after 12h of culture. FESEM micrographs of cells cultured on gelatin (D), SF (E) and SFC2 (F) after 7days.

    FESEM images of cells cultured on gelatin (G), SF (H) and SFC2 (I) on day 14. (J) MTT assay ofMSCs cultured on gelatin, SF and SFC2. (K) Alkaline phosphatase (ALP) activity

    in MSCs on gelatin, SF and SFC2 in an osteogenic culture mediumovertime(n =3).

    3.4. Adhesion, proliferation and distribution of hMSCs on SFC

    scaffolds

    The bioactivity of the pure SF and SFC2 composite nanofibrous

    scaffoldswas evaluatedby examining cellularattachment,viability

    andproliferationof hMSCsculturedon thescaffolds. Apositivecon-

    trol was taken by culturing hMSCs on gelatin nanofiber. As can be

    seen from theFESEMimages(Fig.4AC), thehMSCsattachedto the

    scaffoldsattainedamoreor less elliptical shapeafter12h ofculture

    thereby demonstrating their initial signs of spreading. The aspect

    ratio for gelatin (2.230.46) and silk fibroin (2.080.04) scaf-

    folds arecomparable whereas a lower aspect ratio of 1.7250.091

    was shown by SFC2 scaffold. After 7days (Fig. 4DF), most cells

    appeared elongated and spindle like in morphology and a strong

    cell attachment to the scaffold was evident from filopodia pro-

    trusions from cell surface. On 14th day (Fig. 4GI), the cells were

    observedto beproliferatedandformationofamonolayerlike struc-

    turewas occurred over the surface of the scaffold.

    Thecell viabilitywas quantitativelyestimatedduring 14daysof

    culture byMTTassay. As can be seen fromFig. 4J, that onday 3 the

    optical density (OD) measured with MSCs seeded SFC2 is higher

    than pure SF and gelatin (p

  • 7/25/2019 Carboxymethyl Cellulose Enables Silk Fibroin Nanofibrous Scaffold With Enhanced Biomimetic Potential for Bone Ti

    9/13

    B.N. Singh et al./ Carbohydrate Polymers 151 (2016) 335347 343

    Fig. 5. CalceinAM andEthD-1 staining ofMSCs cultured for7 days onGelatin (A), SF (E)and SFC2 (I). Green signals indicate viablecells andred signalfor dead cells.3D laser

    scanning confocal imageswere observedwhile live/deadstaining(Z stacks) ofMSCs cultured for7 days (B,F andJ) on gelatin, SF andSFC2.Cell proliferation anddistribution

    are visualized by confocal microscopy on Gelatin (C), SF (G) andSFC2 (K)after culture for7 days, whereas Gelatin (D), SF (H) andSFC2 (L) after culture for 14days.Nuclei of

    the cells were stained with DAPI (blue)and actin filamentswith phalloidin (green) (for interpretation of thereferences to colour in this figure legend, thereader is referred

    to thewebversion of this article).

    ilar trendswithmore aggregated cellswith extra cellular secretory

    substances and lack of cell boundaries (interconnected cells)were

    noticed on day14.Thecell viabilityestimation of proliferatedcells

    over nanofibrous scaffoldsshows the trendof proliferation follows

    as SFC2> SF> gelatin.

    Thepenetration andproliferation of hMSCswithinthe scaffolds

    weredeterminedfromthe 3D-Z-stack images composedbyarrang-ing all Z-sections developed during the scanning of cell-seeded

    scaffoldsunder the confocalmicroscope. The images (Fig. 5B,F and

    J) indicate that cells were proliferated well over the scaffolds but

    withvaryingdepthofpenetrationofhMSCs colonization. Thehigh-

    estpenetrationoccurredin gelatinupto 35-40mandcomparableintensity of cell penetration up to 3035m was shown by SFC2scaffoldwhileSFshowsthe lowestpenetrationdepthof 1520m.Allthese takentogether, it hasbeen observedthatSFC2nanofibrous

    scaffold has the superior cellular activity than the other scaffold

    developed under study. The improved hydrophilicity, higher ten-

    sile strain (in wet state) and swelling property of SFC2, along with

    its higher standard deviation in fiber diameter in comparison to

    pure SF, contribute to increased penetration and proliferation of

    hMSCs towards the interior of the scaffold withoutmuch affecting

    cell attachment andproliferation on the surface.

    3.5. Osteogenic differentiation

    The osteogenic differentiation of hMSCs on Gelatin, pure SF

    and SFC2 composite nanofibrous scaffoldswere determined qual-itatively and quantitatively through a series of biochemical and

    microscopic investigations. The characteristic marker of early

    osteoblastic differentiation is attributed to the cellular secre-

    tion of ALP. ALP enzymes catalyse the hydrolysis of extracellular

    pyrophosphates and increase the local concentration of inorganic

    phosphates which facilitate biomineralization (Allori, Sailon &

    Warren, 2008). The ALP activity (Fig. 4K) for all scaffolds reached

    themaximum by day 14 indicating the osteogenic differentiation

    ofhMSCs. Ascompared toGelatin and SF,hMSCsshowsignificantly

    higher ALP activities on SFC2 on 14thday (p< 0.05). Hence, SFC2 is

    confirmed to provide a better supportive platform for osteogenic

    differentiation of cells. Further validation of osteogenic differen-

    tiation was carried out by estimating RUNX2 transcription factor,

    osteocalcin and type1 collagen expression by the cells. The hMSCs

  • 7/25/2019 Carboxymethyl Cellulose Enables Silk Fibroin Nanofibrous Scaffold With Enhanced Biomimetic Potential for Bone Ti

    10/13

    344 B.N. Singh et al. / Carbohydrate Polymers 151 (2016) 335347

    Fig. 6. Immunocytochemistry for RunX2 and osteocalcin on MSCs cultured on scaffolds. (A) Confocal images showing RunX2 expressions of MSCs on day 7 and day 14 (B)

    Confocal images for osteocalcin expressions were observed in MSCs on day 7 and day 14 in the osteogenic culture medium. Integrated density evaluation for RunX2 and

    osteocalcinwere shownin graphs(C) and(D) respectively. Scale bar= 25m. Alizarin Red S stainingassayfor quantitative evaluationof MSCsmineralizationon nanofibrousscaffoldsafter 14daysof culture (E).The osteoblastic differentiationof MSCson nanofibrous scaffoldswas assessedby measuringthemRNAexpression of Runx2,osteocalcin

    and type1 collagen (F).

    seeded on the nanofibrous scaffolds tend to aggregate and form

    committedosteoprogenitor cells.Withtime, theydifferentiate into

    pre-osteoblasts, early osteoblasts and mature osteoblasts. RUNX2

    is thekey regulator for early osteoblastic differentiationof hMSCs.

    It binds specific DNA sequences and regulates the transcription

    of various genes to orchestrate the osteogenic differentiation. The

    immunocytochemistry for RUNX2 transcription factor expression

    inhMSCson the three scaffolds atday7 (Fig.6A)andday14(Fig.6B)

    is presented through the confocal images. As co-localization of

    Runx2 and DAPI immunostainning shows that the expression of

    Runx2waslocalized to thecell nuclei. From Integrated density (ID)

    evaluation itwasobserved that the expression of RunX2 transcrip-

    tion factor at higher level on day 7 (Fig. 6C) as compared to day

    14. RUNX2 is pro-terminal marker of osteogenesis and its level of

  • 7/25/2019 Carboxymethyl Cellulose Enables Silk Fibroin Nanofibrous Scaffold With Enhanced Biomimetic Potential for Bone Ti

    11/13

    B.N. Singh et al./ Carbohydrate Polymers 151 (2016) 335347 345

    Fig. 7. Alizarin red S staining of Gelatin, SFand SFC2 culturedfor day 7 and day 14. FESEM imagesand EDX spectra ofmineral depositionof SFand SFC2 cultured for 7days.

    expression onSFC2was the highest onday7 andthendecreasedby

    day14as osteogenesis enhancedthereby,exhibiting theadvantageof using SFC2 composite scaffolds. The osteocalcin expression is a

    late stagemarker for osteogenic cell differentiationand the confo-

    cal images revealed that hMSCs demonstrate the highest level of

    osteocalcin expression on SFC2 on 14th day. Moreover, the inte-

    grated density quantification of osteocalcin (Fig. 6D) confirms that

    the SFC2 showssignificantly (p< 0.05) higher level of expression in

    comparisonto otherscaffoldsatday7 andday14.Onday14,RT-PCR

    analysis shows significantly (p< 0.05) higher level of expression of

    OCNandCol1onSFC2thanSF(Fig.6F),whereasadecreaseinRunx2

    expression was observed on SFC2 on day 14 (Fig. 6F) with no sig-

    nificant difference at this point. Since osteocalcin is an abundant

    calcium binding protein and adsorbs Ca/P, SFC2 facilitates higher

    degree of Ca/P nucleation sites and growth over the nanofibrous

    structure and cause the activation of calcium sensing receptor sig-nallingleadingtoa higherlevelof osteocalcinexpression inhMSCs.

    3.6. Biomineralization of hMSCs seeded nanofibrous scaffold

    The mineralization and formation of bioactive Ca/P like nod-

    ule structure throughout the surface of nanofibrous scaffold was

    our prime target to provide time dependent improved osteogenic

    environment for cultured hMSCs. In comperission to SF, the uni-

    form distribution of Ca/P over SFC2 nanofibrous scaffold surface

    may promote better cell growth and differentiation as bone tis-

    sues exhibit orderly distributionof Ca/P over nanofibrous collagen

    matrix(Akao, Sakatsume, Aoki, Takagi & Sasaki, 1993; Liu, Smith,

    Hu & Ma, 2009). As can be seen from the FESEM images (Fig. 7B),

    the degree of biomineralization on day 7 is higher on SFC2 than

    on SF. Further EDX analysis further showed that hMSCs on pure SFformed a mineral phase with Ca/P ratio: 0.81.2 whereas on SFC2,

    the Ca/P ratio was 1.41.5 which is similar to the mineral phase of

    the bone that consists mostly of Ca and P in the ratio 1.41.7(Lai,

    Shalumon& Chen,2015). Thequantificationof ECMmineralization

    wasperformed throughARSwhere it bindswith calciumandforms

    ARS-calcium complex in a chelation process. It can be observed

    from the inverted phase contrastmicroscopic images (Fig. 7A) that

    on day 7; the ARS-calcium complex (red colour) covered a greater

    percentage of SFC2 than the other twoscaffolds. However, on 14th

    dayof culture allscaffolds hadhigherformation of the ARS-calcium

    complex than that onday7 butheretoo, the intensitywas thehigh-

    est in case of SFC2. Also SFC2, on day 14 (Fig. 6E), showed greater

    OD as compared to gelatin and SF (p< 0.05). This suggests that the

    degree of ECM mineralization depends both on culture durationandthe scaffoldmaterial.The analysisof EDX and alizarinred assay

    results demonstrate its ability to mimic the osteogenic environ-

    ment and hence found substantial superiority of SFC2 nanofibrous

    scaffold for bone tissue engineering application.

    4. Conclusion

    Thisis thefirst reportonthedevelopmentof electrospunnanofi-

    brous SF/CMC composite materials with significant improvement

    in physicochemical, mechanical and biological properties in com-

    parison to the gelatin and pure SF nanofibrous scaffolds. SFC2 has

    shown enhanced cell attachment and proliferation and strongly

    assisted the differentiation of the attached hMSCs as evidenced

  • 7/25/2019 Carboxymethyl Cellulose Enables Silk Fibroin Nanofibrous Scaffold With Enhanced Biomimetic Potential for Bone Ti

    12/13

    http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0235http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0230http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0225http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0220http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0215http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0215http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0215http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0215http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0215http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0215http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0215http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0215http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0215http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0215http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0215http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0215http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0215http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0215http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0215http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0210http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0210http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0210http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0210http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0210http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0210http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0210http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0210http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0210http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0210http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0210http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0210http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0210http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0210http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0205http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0200http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0195http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0195http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0195http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0195http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0195http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0195http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0195http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0195http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0195http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0195http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0195http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0195http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0195http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0190http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0185http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0185http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0185http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0185http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0185http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0185http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0185http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0185http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0185http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0185http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0185http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0185http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0180http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0175http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0170http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0165http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0165http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0165http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0165http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0165http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0165http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0165http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0165http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0165http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0165http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0165http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0165http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0165http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0165http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0165http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0160http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0155http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0155http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0155http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0155http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0155http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0155http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0155http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0155http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0155http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0155http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0155http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0155http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0150http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0150http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0150http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0150http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0150http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0150http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0150http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0150http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0150http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0150http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0150http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0150http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0150http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0150http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0150http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0150http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0145http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0140http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0135http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0130http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0130http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0130http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0130http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0130http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0130http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0130http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0130http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0130http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0130http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0130http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0130http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0130http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0130http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0125http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0120http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0115http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0110http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0105http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0100http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0100http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0100http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0100http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0100http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0100http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0100http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0100http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0100http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0100http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0100http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0100http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0100http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0100http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0100http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0100http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0095http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0090http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0085http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0085http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0085http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0085http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0085http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0085http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0085http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0085http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0085http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0085http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0085http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0085http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0085http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0080http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0075http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0075http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0075http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0075http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0075http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0075http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0075http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0075http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0075http://refhub.elsevier.com/S0144-8617(16)30622-1/sbref0075http://refhub.elsevier.com/S0144-8617(16)30622-1/sbre