cascaded systems analysisbml.pusan.ac.kr/lectureframe/lecture/graduates/image... · 2020-03-17 ·...

19
Cascaded Systems Analysis Ho Kyung Kim [email protected] Pusan National University Medical Imaging Detectors Noise Transfer Image quality basically depends on # quanta interacting w/ an imaging system Information from the quanta detected by a detector should be expressed as a final image without any loss; but Complex transfer mechanism: the imaging system consists of multiple processes from detecting x‐ ray quanta to displaying the final image Inefficient transfer: un‐optimally designed system can include additional factors degrading image quality Cascaded‐systems analysis Represent the complex system as a cascade of elementary stages Quantum amplification Deterministic blurring Quantum scattering Use transfer theory to describe the transfer of signal/noise thru the system Predict system performance based on design parameters 2

Upload: others

Post on 10-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

Cascaded Systems Analysis

Ho Kyung [email protected]

Pusan National University

Medical Imaging Detectors

Noise Transfer

Image quality basically depends on # quanta interacting w/ an imaging system

Information from the quanta detected by a detector should be expressed as a final image without any loss; but

• Complex transfer mechanism: the imaging system consists of multiple processes from detecting x‐ray quanta to displaying the final image

• Inefficient transfer: un‐optimally designed system can include additional factors degrading image quality

Cascaded‐systems analysis

• Represent the complex system as a cascade of elementary stages

‒ Quantum amplification

‒ Deterministic blurring

‒ Quantum scattering

• Use transfer theory to describe the transfer of signal/noise thru the system

• Predict system performance based on design parameters

2

Page 2: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

Quantum amplification

Quantum gain or selection

Conversion of quanta from one form to another

• e.g. X‐ray quanta to optical quanta in a scintillator

• 𝑞 𝐫 𝑔𝑞 𝐫

‒ 𝑞 𝐫  = quantum image

‒ 𝑔 = gain; RV characterized by a mean 𝑔 & variance 𝜎

Mean number of quanta

• 𝑞 �̅�𝑞

NPS

• NPS 𝐤 �̅� NPS 𝐤 𝑞 𝜎

3

Binomial selection

Special case of the quantum amplification process (𝑔 1) Describe the quantum efficiency of a detector

• Each quantum is either detected (or transferred thru this selection stage w/ prob. �̅�) or not (w/ prob. 1 �̅�)

• 𝑔 = RV having a value of 1 or 0 only

• Variance 𝜎 �̅� 1 �̅�

Noise transfer

• NPS 𝐤 �̅� NPS 𝐤 𝑞 �̅� 1 �̅� �̅� NPS 𝐤 𝑞 𝑞 �̅�

‒ If NPS 𝐤 ≪ 𝑞 (significant correlated noise) ⇒ NPS 𝐤 𝑞 𝑔 1 𝑔‒ If NPS 𝐤 𝑞 (uncorrelated input quanta), ⇒ NPS 𝐤 𝑞 𝑔

4

Uncorrelated noiseCorrelated noise

Page 3: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

Deterministic blur

Blur resulting from a convolution (linear filtering) of the input w/ a PSF

Input signal redistribution w/ a weighting given by the PSF

• 𝑑 𝐫 𝑞 𝐫 ∗ psf 𝐫

Signal

• �̅� 𝑞‒ Analog output

Noise transfer

• NPS 𝐤 NPS 𝐤 MTF 𝐤

5

Quantum scatter

Random relocation of an input quantum to a new location w/ a prob. of PSF

Redistribution w/ probabilities

• Note that the deterministic blur is the redistribution of signal by weights

• 𝑞 𝐫 𝑞 𝐫 ∗ psf 𝐫

Signal

• 𝑞 𝑞

NPS

• NPS 𝐤 NPS 𝐤 𝑞 MTF 𝐤 𝑞

‒ NPS 𝐤 NPS 𝐤 MTF 𝐤 𝑞 1 MTF 𝐤

6

Uncorrelated noiseCorrelated noise

Deterministic blur Additional noise

Page 4: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

7Cunningham et al. IEEE EMBC & CMBEC (1995)

Cascade of elementary stages

Amplification + scattering

• e.g. Conversion of x‐ray photons to light quanta & their scatter w/i a scintillator

8

Page 5: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

9

Hypothetical detector

Incident x‐ray quanta

• 𝑞• NPS 𝑢 𝑞

1) Selection of interacting x rays

• 𝑞 𝑞 𝛼• NPS 𝑢 𝑞 𝛼

2) Conversion from x rays to light

• 𝑞 𝑞 𝛼𝑚

• NPS 𝑢 𝑞 𝛼𝑚 1

3) Spatial spreading of light

• 𝑞 𝑞 𝛼𝑚

• NPS 𝑢 𝑞 𝛼𝑚 1 MTF 𝑢 𝑞 𝛼𝑚

4) Selection of light quanta

• 𝑞 𝑞 𝛼𝑚𝛽

• NPS 𝑢 𝑞 𝛼𝑚 𝛽 1 MTF 𝑢 𝑞 𝛼𝑚𝛽

10

Page 6: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

Quantum‐Sink Analysis

DQE of a detector system w/ 𝑀 Poisson gain stages

• e.g. Photo‐multiplier tube

• DQE 𝑢⋯

⋯⋯

‒ P ∏ 𝑔

‒ P = # quanta at the 𝑗th stage normalized to # input quanta

‒ Called the "particle‐based analysis"

• DQE degrades if  1 or P 1

‒ System w/ a "quantum sink" at the 𝑗th stage‒ P = quantum efficiency of the detector

‒ P 1 always; called the "primary quantum sink"

• To avoid a secondary quantum sink, P 10‒ Not predict a secondary quantum sink at non‐zero spatial frequencies

11

Quantum‐accounting diagram

Plot P as a function of the stage number 𝑗

12

Page 7: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

Fourier‐based analysis

• 2nd‐order statistics

• DQE 𝑢⋯

⋯ ⋯

• Poisson excess: 𝜀 1

‒ Poisson amplification (𝜎 𝑔 ): 𝜀 0

‒ Deterministic gain (a gain w/ no random variability, 𝜎 0): 𝜀 1

• Each stage either be an amplification or a scattering (not both)

‒ Amplification stage: MTF 𝑢 1 (gain w/ no blur)

‒ Scattering stage: 𝑔 1 & 𝜀 1 (blur w/ no gain)

13

If 𝜀 ≪ 1;

• DQE 𝑢⋯

⋯ ⋯⋯

• P 𝑢 ∏ �̅� MTF 𝑢‒ P 𝑢 ≲ 1 degrades the DQE

‒ P 𝑢 1 has no effect on the DQE

To avoid a secondary quantum sink, P 𝑢 10 & P 0 100• Assumption: MTF 𝑢 0.33, where 𝑢 = max. freq. of interest

14

Page 8: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

15

𝛼 0.5

�̅� 10

𝛽 0.02

Minor 2ndary q sink

Dominant 2ndary q sink

1.0 1.1 1.25 1.4 1.7

2.0 2.5 3.3 5.0 10.0

Digital Metrics

Digital detector = an array of (discrete) detector elements

Detector element ('del' or 'pixel')

• Produce a signal proportional to # quanta interacting in the element

• Regarded as a spatial integrator of image quanta

‒ Integration of quanta in a detector element is represented as a convolution integral

• (1‐D) 𝑑 𝑘 𝑞 𝑥 d𝑥/

/

• 𝑑 𝑘 𝑞 𝑥 ∏ d𝑥

• 𝑑 𝑘𝑞 𝑥 ∗ ∏ 𝑑 𝑥 |

𝑑 𝑥 = presampling detector signal

• Analog (continuous) sample function

• Detector signal for all possible detector‐element positions

• Evaluation at 𝑥 𝑛𝑥 , or 𝑑 𝑥 | gives the detector signal

• 𝑑 𝑥 𝑘𝑞 𝑥 ∗ ∏ 𝑥/𝑎 ⇔ 𝐷 𝑢 𝑄 𝑥 T 𝑢

• Aperture MTF MTF 𝑢 sinc 𝜋𝑎 𝑢

16

Page 9: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

17

Digital MTF

Sampling

• The process of evaluating a function

‒ 𝑑 𝑘𝑞 𝑥 ∗ ∏ 𝑑 𝑥 |

Evaluating 𝑑 𝑥 at  𝑥 𝑛𝑥 for all 𝑛:• 𝑑 𝑥 𝑑 𝑥 ∑ 𝛿 𝑥 𝑛𝑥 ∑ 𝑑 𝛿 𝑥 𝑛𝑥

‒ Infinite train of 𝛿 functions scaled by the detector values 𝑑

• ℱ 𝑑 𝑥 𝐷 𝑢 ∗ ∑ 𝛿 𝑢

‒ Aliases of 𝐷 𝑢 at spacings of 𝑢 1/𝑥‒ Aliasing (overlap of aliases): distortion of the image signal at 𝑢 𝑢 1/ 2𝑥

Effect of the digital detector

• Attenuate spatial frequencies by the presampling MTF, MTF 𝑢‒ If 𝛾 1 (𝑎 𝑥 ), MTF 𝑢 sinc 𝜋𝑥 𝑢 ; the 1st zero at 𝑢 1/2𝑥

‒ If 𝛾 1 (𝑎 𝑥 ), MTF 𝑢 sinc 𝜋𝑎 𝑢 ; increasing bandwidth & more aliasing

• Introduce aliasing 

18

Page 10: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

19

AliasesAliasing

Digital NPS

Discrete values 𝑑 : neither WSS nor WSCS random processes

Presampling detector signal 𝑑 𝑥 : WSS random process

Sampled signal 𝑑 𝑥 (an array of 𝛿‐functions scaled by 𝑑 ): WSCS random process

• NPS 𝑢 NPS 𝑢 ∗ ∑ 𝛿 𝑢 NPS 𝑢 ∑ NPS 𝑢

• Note again that the sampling theorem states that frequencies above the cut‐off frequency 𝑢1/ 2𝑥 cannot be represented w/ sample obtained w/ a uniform sampling frequency of 𝑢1/𝑥

Truncation to the cut‐off freq. range (= convolution w/ a sinc fnt = sinc interpolation)

• Estimate of 𝑑 𝑥 : 𝑑 𝑥 ∑ 𝑑 sinc 𝜋 𝑑 𝑥 ∗ sinc 𝜋𝑥 𝑢

• NPS 𝑢 NPS 𝑢 𝑥 ∏ 𝑥 𝑢

• 𝑑 𝑥 𝑑 𝑥 only if there is no aliasing of the presampling NPS

20

Aliases centered at 𝑢 𝑛/𝑥

Fundamental presampling NPS

Page 11: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

21

Digital NPS

• NPS 𝑢/

E DFT ∆𝑑

‒ ∆𝑑 𝑑 E 𝑑‒ Numerical estimate of the NPS of 𝑑 𝑥

• NPS 𝑢 NPS 𝑢 𝑥 NPS 𝑢 NPS 𝑢 ∑ NPS 𝑢

‒ For 𝑢 𝑚/𝑁𝑥 &  𝑚 1

2‐D digital NPS

• NPS 𝑢, 𝑣 E DFT ∆𝑑 ,

1‐D NPS of 2‐D noise process represented by a digital image

• NPS 𝑢 E DFT ∑ ∆𝑑 ,

22

Undesirable aliases

Page 12: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

Noise variance from NPS

• 𝜎 NPS 𝑢 d𝑢 𝑥 NPS 𝑢 d𝑢/

/

• 𝜎 NPS 𝑢 ∑ NPS 𝑢 d𝑢/

/

Pixel variance

• 𝜎 ∑ ∆𝑑

23

Digital NEQ & DQE

Digital NEQ is defined only for 𝑢 𝑢 1/ 2𝑥

• NEQ 𝑞, 𝑢

‒ For 𝑢 𝑚/𝑁𝑥 &  𝑚 1

‒ Note that MTF 𝑢 includes the "aperture" MTF

For linear digital systems

• NEQ 𝑞, 𝑢/

• NEQ 𝑞, 𝑢∑

24

Page 13: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

Digital DQE

• DQE 𝑞, 𝑢,

Signal aliasing

• Viewed as a form of image noise, hence resulting in additional artifacts & image degradation

• Not included in NEQ & DQE because being neither WSS nor WSCS

25

Cascaded Model for A Hypothetical FPD

26

E 𝑞 𝑞

𝑊 𝐤 𝑞

Page 14: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

Stage 1 [mm‐2]: selection of x‐ray quanta that interact in phosphor

• Quantum selection stage

‒ 𝛼 = RV having 0 & 1 only w/ an expected value 𝛼 (known as quantum efficiency)

• Quantum image: 𝑞 𝑥, 𝑦 𝑞 𝑥, 𝑦 𝛼• Expected value: 𝑞 𝛼𝑞• NPS: 𝑊 𝑢, 𝑣 𝛼𝑞

Stage 2 [mm‐2]: conversion to optical quanta in screen [mm‐2]

• 𝑚 optical quanta per interaction w/ a variance 𝜎‒ 𝜎 accounts for all variations in the conversion gain, incl. Swank noise & a polychromatic x‐ray beam

• 𝑞 𝑥, 𝑦 𝑞 𝑥, 𝑦 𝛼𝑚• 𝑞 𝛼𝑚𝑞

• 𝑊 𝑢, 𝑣 𝛼𝑚 𝑞 1 𝛼𝑚𝑞

27

Stage 3 [mm‐2]: scattering of optical quanta in phosphor

• Optical quanta scatter w/ the same (normalized) psf 𝑥, 𝑦‒ Neglecting variable interacting depths

• 𝑞 𝑥, 𝑦 𝑞 𝑥, 𝑦 𝛼𝑚 ∗ psf 𝑥, 𝑦• 𝑞 𝛼𝑚𝑞

• 𝑊 𝑢, 𝑣 𝛼𝑚 𝑞 1 T 𝑢, 𝑣 𝛼𝑚𝑞

Stage 4 [mm‐2]: selection of optical quanta that interact

• A fraction 𝛽 of all optical quanta interacts somewhere in the photodiode array

‒ Including the coupling efficiency & quantum efficiency

• 𝑞 𝑥, 𝑦 𝑞 𝑥, 𝑦 𝛼𝑚 ∗ psf 𝑥, 𝑦 𝛽• 𝑞 𝛼𝑚𝛽𝑞

• 𝑊 𝑢, 𝑣 𝛼𝑚 𝛽 𝑞 1 T 𝑢, 𝑣 𝛼𝑚𝛽𝑞

28

Page 15: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

Stage 5 [mm2]: spatial integration of interacting optical quanta in elements

• Deterministic blur stage

‒ Integral of 𝑞 𝑥, 𝑦 over 𝑎 & 𝑎 ⇒ detector presampling signal

‒ 𝑘 = scaling factor relating 𝑞 & 𝑑

• 𝑑 𝑥, 𝑦 𝑘 𝑞 𝑥, 𝑦 𝛼𝑚 ∗ psf 𝑥, 𝑦 𝛽 ∗ ∏ ,

• �̅� 𝑘𝑎 𝑎 𝛼𝑚𝛽𝑞

• 𝑊 𝑢, 𝑣 𝑘 𝑎 𝑎 𝛼𝑚 𝛽 𝑞 1 T 𝑢, 𝑣 𝛼𝑚𝛽𝑞 sinc 𝜋𝑎 𝑢 sinc 𝜋𝑎 𝑣

29

Stage 6 [mm2]: output from discrete detector elements

• Sampling stage w/ pitches of 𝑥 & 𝑦

• 𝑑 𝑥, 𝑦 𝑘 𝑞 𝑥, 𝑦 𝛼𝑚 ∗ psf 𝑥, 𝑦 𝛽 ∗ ∏ , ∑ ∑ 𝛿 𝑥 𝑛 𝑥 , 𝑦 𝑛 𝑦

• E 𝑑 𝑥, 𝑦 E 𝑑 , 𝑘𝑎 𝑎 𝛼𝑚𝛽𝑞

• 𝑊 𝑢, 𝑣 𝑊 𝑢, 𝑣 ∑ ∑ 𝑊 𝑢 , 𝑣

• 𝑊 𝑢, 𝑣 𝑊 𝑢, 𝑣 ∑ ∑ 𝑊 𝑢 , 𝑣

1D NPS [mm2]

• 𝑊 𝑢 𝑊 𝑢, 𝑣 𝑊 𝑢, 𝑣 ∑ 𝑊 𝑢

30

Page 16: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

31

DQE

• DQE 𝑢∑

‒ MTF 𝑢 𝑇 𝑢 sinc 𝜋𝑎 𝑢

‒ 𝐹 𝑢 1 T 𝑢, 𝑣 sinc 𝜋𝑎 𝑢

• Assumptions

‒ 𝑚𝛽 100 ⇒ 𝑚𝛽 ≪ MTF 𝑢

‒ Poisson conversion gain from x rays to light quanta ⇒ 𝜀 /𝑚 ≪ 1

• DQE 𝑢∑

‒ No noise aliasing if MTF 𝑢 ≪ 1 for  𝑢 𝑢 1/2𝑥

32

Page 17: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

Low‐resolution scintillator

• Correlated quantum noise on detector array

‒ System MTF is limited by psf 𝑥 or T 𝑢 not by the detector element size 𝑎‒ T 𝑢 causes the quantum noise in the optical image incident on the photodiode array to be correlated, 

which reduces the noise bandwidth

• DQE 𝑢∑

• If T 𝑢 ≪ 1; DQE 𝑢 𝛼

33

High‐resolution photoconductor

• Uncorrelated quantum noise on detector array

‒ System MTF is limited by the detector‐array aperture function not by the photoconductor

‒ T 𝑢 is approximately constant over frequencies passed by sinc 𝜋𝑎 𝑢

• DQE 𝑢∑

‒ Note that ∑ sinc 𝜋𝑎 𝑢

• 𝛾 = detector fill factor in the 𝑥 direction

• DQE 𝑢 𝛼𝛾 𝛾 sinc 𝜋𝑎 𝑢

34

𝛼 1 𝛾 1.0

0.75

0.5

0.25

Page 18: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

Video‐based portal imaging system

35Bissonnette et al. MP (1997)

a‐Si FPD

36Siewerdsen et al. MP (1997)

Non‐linear response near detector saturation

Image blur

Lag

Zero‐freq. counting statistics

Page 19: Cascaded Systems Analysisbml.pusan.ac.kr/LectureFrame/Lecture/Graduates/Image... · 2020-03-17 · Cascaded Systems Analysis Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University

a‐Se FPD

37Zhao et al. MP (1997); Zhao & Rowlands, MP (1997)