ho kyung kim, ph.d. [email protected] school of mechanical...

16
LINEAR SYSTEMS THEORY Ho Kyung Kim, Ph.D. [email protected] School of Mechanical Engineering Pusan National University Introduction to Medical Engineering Even / odd / periodic functions 2 Think about cosine & sine functions! Even if s(-x) = s(x); Odd if s(-x) = -s(x); Can write any signal as the sum of an even and an odd part: Periodic if s(x + X) = s(x) - = 0 ) ( 2 ) ( dx x s dx x s e e 0 ) ( = - dx x s o ) ( ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( ) ( x s x s x s x s x s x s x s o e + = - - + - + =

Upload: others

Post on 16-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • LINEAR SYSTEMS THEORY

    Ho Kyung Kim, [email protected]

    School of Mechanical EngineeringPusan National University

    Introduction to Medical Engineering

    Even / odd / periodic functions

    2

    • Think about cosine & sine functions!

    • Even if s(-x) = s(x);

    • Odd if s(-x) = -s(x);

    • Can write any signal as the sum of an even and an odd part:

    • Periodic if s(x + X) = s(x)

    ∫∫∞∞

    ∞−=

    0)(2)( dxxsdxxs ee

    0)( =∫∞

    ∞−dxxso

    )()(

    2

    )(

    2

    )(

    2

    )(

    2

    )()(

    xsxs

    xsxsxsxsxs

    oe +=

    −−+

    −+=

  • • In Cartesian representation

    • In polar representation

    ),(),(),( 22 yxvyxuyxs +=

    Complex function

    3

    φ

    |s(x, y)|

    s(x, y)

    ),(),(),( yxivyxuyxs +=

    ),(),(),( yxieyxsyxs φ=

    ),(

    ),(arctan),(

    yxu

    yxvyx =φ

    Real axis

    Imaginary axis

    u

    v

    where

    modulus or amplitude

    argument or phase

    Important signal functions

    4

    • Exponential axeax =)exp(

    • Complex exponential or sinusoid

    [ ])2sin()2cos()2( φ+π+φ+π=φ+π kxikxAAe kxiA = amplitudek = spatial frequencyφ = phase

  • 5

    • Rectangular function (width = 2L)

    • Step function (or Heaviside’s function)

    Lx

    Lx

    LxL

    x

    >=

    ==

    =

    ==

  • 7

    • Sinc function

    x

    xx

    )sin()(sinc =

    • Dirac impulse

    00 for 0)( xxxx ≠=−δ

    1)( 0 =−δ∫∞

    ∞−dxxx

    )()()( 00 xsdxxxxs =−δ∫∞

    ∞−

    AdxxxA =−δ∫∞

    ∞−)( 0

    shifting

    scaling xx0

    Linear systems

    8

    Modeling: the process of finding a mathematical relationship btwn input & output signal

    Lsi soinput signal(excitation)

    output signal(response)

    e.g., an amplifier with gain A;

    { }io sLs =

    { } )()()( tAstsLts iio ==

    Linear system if the superposition principle holds; { } { } { }22112211 sLcsLcscscL +=+

    L

    s1

    so+

    s2

    Ls1

    so+

    s2 L

    { }

    { } { }22112211

    22112211

    )()(

    )(

    sLcsLc

    sAcsAc

    scscAscscL

    +=+=

    +=+

    e.g., amplifiers with gain A;

    Nonlinear system; { }2

    222

    11

    222112211

    )()(

    )(

    scsc

    scscscscL

    +≠

    +=+

  • Shift-invariant system

    9

    • Shift-invariant system if its properties do not change with spatial position;

    { })()( XxsLXxs io −=−

    shift shift

    shift invariant(no change)

    shift variant(changes with position)

    • LSI systems = linear & shift-invariant systems

    Lx x

    • Impulse response, h(x), to a Dirac impulse

    For an arbitrary signal; ∫∞

    ∞−ξξ−δξ= dxsxs ii )()()(

    Then, the response of an LSI system;

    { } { } ∫∫∞

    ∞−

    ∞−ξξ−ξ=ξξ−δξ== dxhsdxLsxsLxs iiio )()()()()()(

    convolution; hss io ∗=

    PSF(Point spread function)

    Convolution

    10

    )()()()()()()()( 12212121 xsxsdxssdsxsxsxs ∗=−=−=∗ ∫∫∞

    ∞−

    ∞−ξξξξξξ

    • Procedure– mirroring s2 about ξ = 0 by changing ξ to –ξ– translating the mirrored s2 by ξ = x– multiplying s1 to the shifted & mirrored s2– integrating the resulting signal (represented by area)– repeating the previous steps for each value of x

  • 11

    • Convolution for digital signals

    0 1

    1

    0-2 3

    2

    0.5

    0-2 4

    3

    1.51

    0.5

    4

    ∗ =

    12

    • Convolution for multidimensional signals;

    – the convolution values are represented by volumes.

    • Properties– commutativity:

    – associativity:

    – distributivity:

    ∫∞

    ∞−ζξζξζ−ξ−=∗ ddsyxsyxsyxs ),(),(),(),( 2121

    1221 ssss ∗=∗

    )()( 321321 ssssss ∗∗=∗∗

    3121321 )( sssssss ∗+∗=+∗

  • Response of an LSI system

    13

    ikxi Aexs

    π= 2)(

    { }

    )()()(

    )(

    )(

    )()()()(

    2

    22

    )(2

    kHxskHAe

    dheAe

    dhAe

    dhxsxsLxs

    iikx

    ikikx

    xik

    iio

    ==

    ξξ=

    ξξ=

    ξξξ−==

    π

    ∞−

    ξπ−π

    ∞−

    ξ−π

    ∞−

    ∫∞

    ∞−

    ξπ− ξξ= dhekH ik )()( 2

    ∫∞

    ∞−

    π= dkekSxs ikxii2)()(

    { })()()()()( 2 kHkSdkekHkSxs iikxio 1FT−∞

    ∞−== ∫

    π

    For an input signal (sinusoid);

    The response of an LSI system;

    where = Fourier transform of the PSF h(x)= transfer function (or filter)

    Inverse Fourier transform;

    Then, we have;

    Discuss; )()()( xhxsxs io ∗= )()()( kHkSkS io =in x domain vs. in k domain

    Any input signal can be written as an integral of weighted sinusoids with different spatial frequencies

    { } { }[ ])()()( kHkSxs io 1FTFTFT −=

    Frequency

    14

    • Recall

    0.0 0.2 0.4 0.6 0.8 1.0

    -1

    0

    1

    k = 4

    k = 2

    No

    rma

    lize

    d A

    mp

    litu

    de

    x

    k = 1

    )2sin()2cos(2 φ+π+φ+π=π kxikxe ikx

    – as k increases, so does the frequency of the oscillation– the higher k, the higher the signal resolution, that is, one can represent smaller signal

    details (signal that varies more quickly)

  • Signal synthesis

    15

    • Any periodic signal can be created by a combination of weighted and shifted sinusoids at different frequencies.

    ( )

    ∞−

    π

    ∞−

    πφ

    ∞−

    φ+π

    ∞−

    =

    =

    =

    φ+π+φ+π=

    dkekS

    dkeeA

    dkeA

    dkkxikxAxs

    ikxi

    ikxik

    kxik

    kkko

    k

    k

    2

    2

    )2(

    )(

    )2sin()2cos()(

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    box sin(x) 1/3 sin(3x) sum1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    box sin(x) 1/3 sin(3x) 1/5 sin(5x) sum2

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    box sin(x) 1/3 sin(3x) 1/5 sin(5x) 1/7 sin(7x)

    1/9 sin(9x) 1/11 sin(11x) 1/13 sin(13x) 1/15 sin(15x) sumf

    Inverse FT!!!

    Fourier transform

    16

    • Forward transform

    { } ∫∞

    ∞−

    π−=ℑ= drersrskS irk2)()()(

    { } ∫∞

    ∞−

    π− =ℑ= dkekSkSrs irk21 )()()(

    { } ∫∞

    ∞−

    ⋅π−=ℑ= rdersrskS krirrrr

    rr2)()()(

    { } ∫∞∞− ⋅π− =ℑ= kdekSkSrs krirrr

    rr21 )()()(

    • Inverse transform

    • Conjugate variables− if r is time dimension "seconds", k is temporal frequency with dimension "hertz"− if r is spatial position with dimension "mm", k is spatial frequency with dimension "mm-1"

  • FT{rect}

    17

    • A finite signal in the x-domain creates an infinite signal in the k-domain.– the same is true vice versa

    )2(sinc2

    )2sin(22

    )(2

    22

    22

    2

    2

    kLAL

    kLk

    Aee

    ik

    A

    dxAe

    dxeL

    xA

    L

    xA

    ikLikL

    L

    L

    ikx

    ikx

    π=

    ππ

    =−π

    −=

    =

    ∏=

    ∏ℑ

    ππ−

    π−

    ∞−

    π−

    2AL

    A 2AL

    k

    k = 1/2L

    k = 1/L

    FT{step × exp}

    18

    – real part:

    – imaginary part:

    – modulus:

    – phase:

    { }

    222222

    0

    )2(

    2

    4

    2

    4

    2

    1

    )()(

    ka

    ki

    ka

    aika

    dxe

    dxeexuexu

    xika

    ikxaxax

    π+π−

    π+=

    π+=

    =

    =ℑ

    ∫∞ π+−

    ∞−

    π−−−

    222 4 ka

    a

    π+

    222 4

    2

    ka

    k

    π+π−

    222 4

    1

    ka π+

    π−a

    k2arctan

  • FT{Dirac impulse}

    19

    { }02

    200 )()(

    ikx

    ikx

    e

    dxexxxx

    π−

    ∞−

    π−

    =

    −δ=−δℑ ∫

    xx0 k

    1

    FT{cosine}

    20

    • The spectrum consists of two impulses at spatial frequencies k0 and –k0.• A periodic function has a discrete spectrum (i.e., not all spatial frequencies are present).• An aperiodic function has a continuous spectrum.

    { }

    )(2

    1)(

    2

    12

    1

    2

    12

    )2cos()2cos(

    00

    )(2)(2

    222

    200

    00

    00

    kkkk

    dxedxe

    dxeee

    dxexkxk

    xkkixkki

    ikxxikxik

    ikx

    +δ+−δ=

    +=

    −=

    π=πℑ

    ∫∫

    ∞−

    +π−∞

    ∞−

    −π−

    ∞−

    π−π−π

    ∞−

    π−

  • Fourier transform pairs

    21

    • Image space • Fourier space

    )(kδ

    )(xδ

    )2cos( 0xkπ ( ))()(2

    100 kkkk −δ++δ

    )2sin( 0xkπ ( ))()(2

    100 kkkk −δ−+δ

    ∏L

    x

    2)2(sinc2 LkL π

    ΛL

    x

    2)(sinc2 LkL π

    )(xGn2222 σπ− ke

    1

    1

    Properties

    22

    • Linearity:

    • Scaling:

    • Translation:

    • Convolution:

    • Parseval's theorem:

    • Separability:

    22112211 ScScscsc +↔+

    ↔a

    kS

    aaxs

    1)(

    )()( 020 kSexxskixπ−↔−

    2121 SSss ⋅↔∗ 2121 SSss ∗↔⋅

    ∫∫∞

    ∞−

    ∞−= dkkSdxxs 22 )()(

    { } { } { })(sinc)(sinc)(sinc)(sinc yxyx ℑℑ=ℑ

    modifying only its “phase” spectrum

  • 23

    • In imaging, the FT of the PSF is known as the optical transfer function (OTF).

    – the modulus of the OTF is the modulation transfer function (MTF)

    • The PSF (mm) and OTF (mm-1 or lp/mm) characterize the resolution of the system.

    )()( kHxh ↔

    • Transfer function and impulse response (or PSF) are an FT pair

    Note

    24

    • If the signal is discrete but infinite, then the frequency spectrum is continuous but is periodic (has aliases).

    • If the signal is discrete and finite (N samples), then the frequency spectrum is discreteand periodic in N.

  • FT in polar coordinates

    25

    • Forward transform

    ∫ ∫

    ∫ ∫

    ∫ ∫

    π ∞

    ∞−

    θ+θπ−

    π ∞ θ+θπ−

    ∞−

    ∞−

    +π−

    θθ=

    θθ=

    =

    0

    )sincos(2

    2

    0 0

    )sincos(2

    )(2

    ),(

    ),(

    ),(),(

    drdrers

    rdrders

    dxdyeyxskkS

    rkrki

    rkrki

    ykxkiyx

    yx

    yx

    yx

    rrr

    ry

    r

    y

    x

    r

    x

    J =θ+θ=θθθ−θ

    =

    θ∂∂

    ∂∂

    θ∂∂

    ∂∂

    ≡ )sin(coscossin

    sincos 22

    ∫ ∫π ∞

    ∞−

    φ+φπ φφ=0

    )sincos(2),(),( dkdkeksyxs ykxki

    • Inverse transform

    Note:

    Sampling

    26

    • Sampled signal:– comb function or impulse train– ∆x = sampling distance– information may be lost by sampling– can we recover a continuous signal completely from its samples?

    )()()()()( xxsxnsxsxs s III⋅=∆=→

    • Sampling theorem (Nyquist criterion)− if the FT of a given signal is band-limited and if the sampling frequency is larger than twice the

    max. spatial frequency present in the signal, then the samples uniquely define the signal

    )( definesuniquely )()(then

    21

    0)( If

    max

    max

    xsxnsxs

    kx

    kkkS

    s ∆=

    >∆

    >∀=

    ∑∞

    −∞=∆−δ=

    n

    xnxx )()(III

    { })()()( xkSkSs IIIℑ∗= { } ∑∞

    −∞=−δ=ℑ

    l

    lKkKx )()(IIIx

    K∆

    = 1& with

    Hence, ( )L+++−+++−+= )2()2()()()()( KkSKkSKkSKkSkSKkS s

    2 0)(

    KkkS ≥∀=

    ∏=K

    kkSkKS s )()(Note that because

  • Infinite spatial extent – it’s a band-limited FT

    27

    Finite spatial extent – it’s a not-band-limited FT

    28

    • If the signal S(k) is not band limited, or if it is band limited but 1/∆x ≤ 2kmax, the shifted replicas of S(k) will overlap.

    • Therefore, the spectrum of S(k) cannot be recovered by multiplication with a rectangular pulse.

    • Known as aliasing and unavoidable if the original signal s(x) is not band limited.

    – “Patients” always have a limited spatial extent!

  • Aliasing: A commonly observed phenomenon

    29

    Taken from Dr. K. Mueller’s Slides

    Anti-aliasing

    30

    Taken from Dr. K. Mueller’s Slides

  • Discrete FT

    31

    • Forward transform

    • Inverse transform

    • Fast Fourier transform (FFT)– for the number of samples in a power of two– nlogn flops in 1D– n2logn flops in 2D

    ∑∑−

    =

    =

    +π−∆∆=∆∆

    1

    0

    1

    0

    2

    ),(),(N

    q

    M

    p

    N

    nq

    M

    mpi

    yx eyqxpsknkmS

    ∑∑−

    =

    =

    +π∆∆=∆∆

    1

    0

    1

    0

    2

    ),(),(N

    n

    M

    m

    N

    nq

    M

    mpi

    yx eknkmSyqxps