catalogo de heliostatos

35
 T E C H N I C A L R E P O R T No. III - 1/00 Catalog of Solar Heliostats June, 2000 IEA-Solar Power and Chemical Energy Systems Task III: Solar Technology and Applications

Upload: scharolstomdittaherrera

Post on 02-Nov-2015

16 views

Category:

Documents


1 download

DESCRIPTION

catálogos de los heliostatos

TRANSCRIPT

 
T E C H N I C A L R E P O R T
No. III - 1/00
 
SolarPACES, Operating Agent TASK III Deutsches Zentrum für Luft- und Raumfahrt e.V.
Solare Energietechnik (DLR, EN-SE)
 
ii
-- ii --
FOREWORD
This document was prepared as part of the International Energy Agency’s Solar Power  and Chemical Energy Systems (IEA SolarPACES) Task III: Solar Technology  Applications. The principal participants in assembling this material were: Peter Heller, Scott Jones, Manuel Romero, and Tom Mancini.
There were only two requirements for having a heliostat included in the catalog:
1) it must be available for purchase today; and
2) the detailed information must be provided by the manufacturer of the heliostat.
The information presented in this catalog was prepared by the manufacturers of the heliostats and has not been edited or changed in any way. Many of these heliostats have been tested at Solar PACES’ member test facilities and test reports on their  performance may be available on request.
This document is for informational purposes only. The presence of a heliostat design in this catalog is not to be construed as an endorsement of the design or a validation of  the reported performance by SolarPACES or any of the member countries.
December 23, 1999
Foreword --------------------------------------------------------------------------------- ii
What are heliostats? ------------------------------------------------------------------ 1
What is the cost of a heliostat? --------------------------------------------------- 3
Guidance to readers of this catalog.--------------------------------------------- 3
Colon 70 Heliostat --------------------------------------------------------------------- 4
PSI 120 Heliostat ---------------------------------------------------------------------- 8
Sanlucar 90 Heliostat ---------------------------------------------------------------- 10
Hellas 01 Heliostat -------------------------------------------------------------------- 12
 ATS H100 Heliostat ------------------------------------------------------------------- 15
 ATS H150 Heliostat ------------------------------------------------------------------- 16
 ATM 150 Heliostat ---------------------------------------------------------------- 17
Fig. 2 Parts of a heliostat --------------------------------------------------- 2
Fig. 3 Front View of the Colon 70 Heliostat --------------------------- 5
Fig. 4 Back View of the Colon 70 Heliostat --------------------------- 5
Fig. 5 SAIC Faceted Stretched-Membrane Heliostat -------------- 7
Fig. 6 Front View of the PSI 120 Heliostat ---------------------------- 9
Fig. 7 Back View of the PSI 120 Heliostat ---------------------------- 9
Fig. 8 Finite Element Model of the Sanlucar Heliostat ------------ 11
Fig. 9 Front View of the Hellas 01 Heliostat -------------------------- 13
Fig. 10 Back View of the Hellas 01 Heliostat -------------------------- 13
Fig. 11 The ATS H150 Heliostat ------------------------------------------- 16
 
v
-- v --
The following instructions were prepared by the Task III Working Group and distributed to the heliostat manufacturers.
Instructions for completing the form
Line 1. Provide the name and model number of the heliostat. If you have more than one model, please complete a separate form for each model.
Lines 2 -- 7. List the heliostat manufacturer and contact information for the responsible person. Please provide name, address, telephone and FAX numbers, email addresses and any other information that you feel is appropriate.
Line 8. This section is for the physical data describing the heliostat.
Line 9. How many heliostats of this model have been built? How many are operating in the field today?
Line 10. What is the date of this design?
Line 11. What is the area of the heliostat? What are its critical dimensions – i.e., length, width, height, etc.
Line 12. How many facets are on the heliostat and what are their sizes?
Line 13. Please describe the construction of the facets. How are they made? What are the materials
Line 14. What is the size of glass lights used on the heliostat? What is its thickness and who is the glass manufacturer? If glass is not the reflective surface, please describe the reflective surface.
Line 15. What is the measured reflectivity of the glass (or other reflective surface)? What instrument was used to measure the reflectivity?
Lines 16 - 17. Please describe the azimuth and elevation drives. What kind of drives are they? i.e., worm, etc. Who makes the gear drives?
Line 18. What are the respective gear reduction ratios on the azimuth drive? On the elevation drive?
Line 19. Please describe your heliostat control ler and control system. What hardware is used in these systems? What functional control does the software provide? What information is passed back and forth between the master controller and the local controller? Who owns the software?
Line 20. What type of support is provided for your heliostat and drives? Please describe the type of support and its dimensions.
Line 21. What is the total weight of the heliostat excluding the foundation?
Line 22. Other Information – please provide any additional information that you feel is necessary to describe your heliostat.
Line 23. In this section, we are asking you to document any test results for the heliostat. If test reports are available, please provide a complete reference in this section.
Line 24. Where were tests performed and by whom?
Lines 25 - 29. Please provide detailed descriptions of the tests and the test results.
Line 30. What is the total heliostat error as characterized by the 1σ value of the slope error distribution?
Line 31. This section addresses the cost of the heliostat. This does not include shipping cost but should include consideration for installation.
Line 32. What fraction of the total heliostat cost can be attributed to the facets? To the facet supports? To the elevation drive? To the azimuth drive? To the pedestal? To the controller? To installation?
Line 33 - 38. This question addresses the cost of the heliostat based on the annual production. Please use production levels for which you have mad detailed calculations.
 39. Please provide an electronic photograph of your heliostat, if possible in color.
 
WHAT AR E HE LIOSTATS?  
Heliostats provide the fuel for a power tower (sometimes referred to as a central receiver) power plant. Heliostats are named helio for sun and stat for the fact that the reflected solar image is maintained at a fixed position over the course of the day. They are nearly flat mirrors (some curvature is required to focus the sun’s image) that collect and concentrate the solar energy on a tower-mounted receiver located 100 to 1000 meters distant. Figure 1 is a photograph of the power tower at Solar Two in Barstow, CA.
Figure 1. The Solar Power Tower at Barstow, CA
To maintain the sun’s image on the solar receiver, heliostats must at all times track a point in the sky that is midway between the sun and the receiver. The solar energy is collected at the receiver and delivered to a storage system or used directly to generate steam and power a conventional turbine generator. In Figure 1, the receiver is the small cylinder at the top of the tower. On top of the receiver is a crane used for its installation and maintenance. The bright white areas immediately above and below the receiver are the insulated headers, and the large trapezoidal areas below the receiver  are targets that are used to align the glass facets of the heliostats. The light areas in the sky on either side of the receiver are the stand-by positions where heliostats are focused before tracking onto the receiver. The structures on the ground around the tower are the heliostats.
Studies have shown that a 100 MW power tower would require nearly one million square meters of glass heliostats, corresponding to approximately 10,000, 100-m2
 
2
-- 2 --
must be relatively low cost in order for cost of power from the plant to compete with that of fossil fuels.
WHAT ARE THE C OMPONENT PAR TS OF A HELIOSTAT? 
The major components of a heliostat are shown in Figure 2 and described briefly below. These components are the mirror assemblies (typically glass and metal), the support structure, the pedestal and foundation, the tracking control system, and the drives.
The mirror surfaces of state-of-the-art heliostats are made with thin silvered glass, which may or may not have a low iron content for enhanced reflection.  Aluminum and silver polymer films have been under development for solar  applications for some time, but these materials have not yet demonstrated the ability to survive the 20 to 25 years required for power plant applications. In order to provide the proper contour for the optical surface and for attachment to the support structure, the glass may be bonded or otherwise attached to a metal, honeycomb or slumped-glass substrate that has been “shaped” to the proper  curvature.
The optical element support structure positions the mirrors accurately and carries the weight of the structure and wind loads through the drives to ground. For a heliostat, it is important that the mirror facets be located relative to one another so that each of their images is focused on the receiver at the top of the tower. The major  issues that the heliostat designer must confront are the two requirements, e.g. maintaining mirror alignment and providing structural strength to carry wind loads through the structure to ground.
By far the most common type of ground support for solar concentrators is the poured- in-place tubular pedestal. This is not the only type of tracking structure that has been used for heliostats, however. Alidade-type structures with pintel bearings and polar  tracking structures have also been used (refer to the ASM 150 m2 heliostat design.
Tracking controls are the electronics and control algorithms that are used to provide the signals to the drive motors for maintaining the position of the concentrator relative to the sun. Heliostats must always track a point in the sky that is located midway between the receiver and the sun in order to reflect their images onto the receiver.
 
What is the cos t of a helios tat? 
Power towers must have low capital and operations and maintenance costs in order to compete with the relatively low cost electrical power produced from the combustion of  fossil fuels. The heliostats currently represent 40 – 50% of the capital cost of a
central receiver power plant.. The relative fraction of the total cost of a heliostat of its major components is shown in Table 1. below.
Table 1. Concentrator Costs
In mass production, the cost of a 100 m2  heliostat or dish is projected to be from $12,000 to $15,000.
Guidance to readers of this catalog .
The heliostat designs presented in this document are at various stages of development. Most of them are prototypes and, as such, have been tested but have not been deployed and operated for long periods of time. Also, designs and costs change quickly, so if you are interested in the most up to date information, we strongly recommend that you contact the manufacturers.
Component % of Cost
 
2. Manufacturer   Inabensa, Instalaciones Abengoa, S.A.
3. Contact Rafael Osuna Gonzalez-Aguilar 
4. Address C/ Manuel Velasco Pando 7
5. 41007 Sevilla
6. SPAIN
7. Telephone 34 954 93 60 00 FAX 34 954 93 60 15 Email   [email protected]
8. Physical Data
10. Date of current design 1997
11. Area (h, w) in meters H7.82m x W9.04m
12. Facet (size, number) Facets = H1.1m x W3m = 3.3 m2 Nº Facets = H7 x W3 =21 Reflective Surface = 21 x 3.3 m2= 69.3 m2
13. Facet Construction Mirror fixed to steel frame with steel nails on a facets jig table
14. Glass (size of lights) H1.1m x W3m x 4mm Pilkington / Cristaleria Española
15. Reflectivity 0.93 / 0.92 measured with a bidirectional reflectometer 
16. Azimuth drive Winsmith, worm-gear 
17. Elevation drive Winsmith, worm-gear 
18. Drive ratios (AZ/EL)  Az 1:18000 & El 1:18000
19. Controller Type CIEMAT hardware/software & master/local controllers
20. Pedestal Type Steel tube 0.5 m∅
21. Weight (w/o fndat) kg 4000 kg without foundations
22. Other Information
23. Performance
24. Where were tests done? Wind Tunnel. Test Facility Installation at Plataforma Solar de Almeria
25. Types of tests? Mechanical & Optical
26. Descriptions Simulations in Wind Tunnel. Real performance at Test Facility during two years
27. Wind perform Ok
28. Elev/Az perform Ok
29. Other test results Ok
30. Heliost slope error (mr) 2.8 mrad (beam) 1.4 mrad (normal)
31. Heliostat costs
 etc.) in %
Mirror 5% Frame 10% Structure 25% Drives 50% Pedestal 5% Control system 5%
33. Heliostat costs (build)
35. 100/yr   220 $/m2
36. 1000/yr   130 $/m2
37. /yr  
38. /yr  
39. Photograph of heliostat Please provide an electronic photograph of your heliostat.
40. Critical Cost Issues
5
-- 5 --
Figure 3. Front View of the Colon 70 Heliostat on test at the PSA in Almeria, Spain
 
1. Name/Model Number of the Heliostat Multi-Facet Stretched Membrane Heliostat
2. Manufacturer   SAIC Energy Products Division
3. Contact Barry Butler 
7. Telephone (858)826-6004 FAX (858)826-6335 Email   [email protected]
8. Physical Data
10. Date of current design September 1998
11. Area (h, w) in meters 19.3m wide x 13.0m high; Reflective area: 170.72 sq.m
12. Facet (size, number) 22 round mirror facets, each 3.2 m in diameter 
13. Facet Construction Stretched membrane: stainless steel rings with welded s.s. membranes; mirrors adhesively applied to membranes
14. Glass (size of lights) Standard is 3/32” float glass, back-silvered; largest tile ~1.2mx1.5m; Optionally, (about $4000 additional cost) 1 mm low-iron glass with 95.3% reflectance
15. Reflectivity 89.6% new
16. Azimuth drive Flenders (worm drive with spur gear reduction)
17. Elevation drive Flenders (worm drive with spur gear reduction)
18. Drive ratios (AZ/EL) 18615:1 in drive, 5.5:1 input motor speed reducer; overall: 102382.5:1
19. Controller Type Microprocessor controller, RS-485 network, on/off AC motor control
20. Pedestal Type Flanged 30” diameter steel pipe attached at foundation with bolts; heliostat structure consists of a horizontal torque tube with vertical trusses to which facets are attached at 3 points each.
21. Weight (w/o fndat) kg 10,000 kg (22,000 lb)
22. Other Information Mirrors may be focused for short focal-length applications; Structure can be partially populated with facets to create a smaller system (e.g., 14 facets or 18 facets, instead of 22).
23. Performance
24. Where were tests done? NREL and Sandia National Labs
25. Types of tests? Tracking, Optics, Wind Effects, Reliability 26. Descriptions Beam Characterization System tests over multiple days; Evaluation of 
tracking errors vs. time; Evaluation of tracking errors due to wind
27. Wind perform Operate up to 15 mph; survive 90 mph in stow, 50 mph gust while tracking
28. Elev/Az perform 0.03-0.04 degree std. Deviation from desired tracking point over time
29. Other test results  Achieved over 2100 hours of automated operation on two systems with overall availability >90%; Demonstrated operation of two networked systems with ~1000 m communication distance to central computer; test results in NREL/SR-550-25837 and
30. Heliost slope error (mr) 1.5 31. Heliostat costs
32. Cost by component
 etc.) in %
One unit: Facets 41%, Supports 40%, Drive System 11%, Pedestal 5.7%, Controls 2.3% 2000 Units/year: Facets 26%, Supports 46%, Drive System 20%, Pedestal 6.6%, Controls 1.4%
33. Heliostat costs (build)
34. i.e 1/yr   $137,000 total -- $100,000 Materials + $27,000 Installation + $10,000 engineering (1998 US$)
35. 100/yr  
37. /yr  
38. /yr  
39. Photograph of heliostat
40. Critical Cost Issues Drive systems are expensive and not easily available
 
2. Manufacturer   Inabensa, Instalaciones Abengoa, S.A.
3. Contact Rafael Osuna Gonzalez-Aguilar 
4. Address C/ Manuel Velasco Pando 7
5. 41007 Sevilla
6. SPAIN
7. Telephone +34 954 93 60 00 FAX +34 954 93 60 15 Email   [email protected]
8. Physical Data
10. Date of current design 1996
11. Area (h, w) in meters H10.06m x W12.08m
12. Facet (size, number) Facets = H1.1m x W3m = 3.3 m2 Nº Facets = (H9 x W4) +1 =37 Reflective Surface = 37 x 3.3 m2= 122.1 m2
13. Facet Construction Mirror fixed to steel frame with steel nails on a facets jig table
14. Glass (size of lights) H1.1m x W3m x 4mm Pilkington / Cristalería Española
15. Reflectivity 0.93 / 0.92 measured with a reflectometer 
16. Azimuth drive Pujol Muntalá, worm-gear 
17. Elevation drive Pujol Muntalá, worm-gear 
18. Drive ratios (AZ/EL)  Az 1:36000 & El 1:36000
19. Controller Type Paul Scherrer Institut hardware/software & master/local controllers
20. Pedestal Type Steel tube 0.6 m∅
21. Weight (w/o fndat) kg 6500 kg without foundation
22. Other Information
24. Where were tests done? Wind Tunnel & Test Facility installation
25. Types of tests? Mechanical & Optical
26. Descriptions Simulations in Wind Tunnel. Real performance at PSITest Facility during two years
27. Wind perform Ok
28. Elev/Az perform Ok
30. Heliost slope error (mr) 3.0 mrad beam (flat facets)
31. Heliostat costs
 etc.) in %
Mirror 5% Frame 10% Structure 25% Drives 50% Pedestal 5% Control system 5%
33. Heliostat costs (build)
35. 100/yr   230 $/m2
36. 1000/yr   150 $/m2
37. /yr  
38. /yr  
39. Photograph of heliostat Please provide an electronic photograph of your heliostat.
40. Critical Cost Issues
 
2. Manufacturer   Inabensa, Instalaciones Abengoa, S.A.
3. Contact Rafael Osuna Gonzalez-Aguilar 
4. Address C/ Manuel Velasco Pando 7
5. 41007 Sevilla
6. SPAIN
7. Telephone +34 954 93 60 00 FAX +34 954 93 60 15 Email   [email protected]
8. Physical Data
9. Number heliostats built Prototype in Construction (Expected by October 1999)
10. Date of current design 1999
11. Area (h, w) in meters H9.57m x W9.67m
12. Facet (size, number) Facets = H1.35m x W3.21m = 4.33 m2 Nº Facets = H7 x W3 =21 Reflective Surface = 21 x 4.33 m2= 91.0 m2
13. Facet Construction Mirror fixed to steel frame with steel nails on a facets jig table
14. Glass (size of lights) H1.35m x W3.21m x 3mm Cristaleria Española
15. Reflectivity  0.92 measured with a reflectometer 
16. Azimuth drive Winsmith, worm-gear / hydraulic
17. Elevation drive Winsmith, worm-gear / hydraulic
18. Drive ratios (AZ/EL)  Az 1:18000 & El 1:18000
19. Controller Type CIEMAT hardware/software & master/local controllers
20. Pedestal Type Concrete 0.5 m∅
21. Weight (w/o fndat) kg 3500 kg without foundations
22. Other Information
23. Performance
24. Where were tests done? Planned in Wind Tunnel & in Test Facility Installation
25. Types of tests? Mechanical & Optical
26. Descriptions Simulations in Wind Tunnel. Real performance at Test Facility
27. Wind perform
28. Elev/Az perform
30. Heliost slope error (mr) Expected lower than 2.8 mrad
31. Heliostat costs
 etc.) in %
Mirror 5% Frame 10% Structure 25% Drives 50% Pedestal 5% Control system 5%
33. Heliostat costs (build)
35. 100/yr   210 $/m2
36. 1000/yr   130 $/m2
37. /yr  
38. /yr  
39. Photograph of heliostat Please provide an electronic photograph of your heliostat.
40. Critical Cost Issues
 
2. Manufacturer   GHER S. A
3. Contact MR. PEDRO GRIMALDI
4. Address  AV. DEL PUERTO 1-6-E
5. 1006 CADIZ
8. Physical Data
10. Date of current design 1999
11. Area (h, w) in meters 3,2 X 6 m (19,2 m²)
12. Facet (size, number) 3,2 X 2 (9,4 m²) ; 3
13. Facet Construction GLAS MIRROR OVER FRAME
14. Glass (size of lights) 3,2 X 2 m
15. Reflectivity 94 %
18. Drive ratios (AZ/EL) N/A / N/A
19. Controller Type MICROPROCESSOR, SELF-SUFFICIENT
20. Pedestal Type CONCRETE PILLAR, INTEGRATED WITH FOUNDATION.
21. Weight (w/o fndat) kg 790 Kg.
22. Other Information
26. Descriptions BEAM QUALITY AND TRACKING CHARACTERISATION.
27. Wind perform O.K
28. Elev/Az perform O.K
29. Other test results
31. Heliostat costs
 etc.) in %
33. Heliostat costs (build) We are presently working on the reduction & determination of final costs.
34. i.e 1/yr  
35. 100/yr  
36. /yr  
37. /yr  
38. /yr  
39. Photograph of heliostat Please provide an electronic photograph of your heliostat.
40. Critical Cost Issues STRUCTURE.
 
 
2. Manufacturer    Advanced Thermal Systems, Inc.
3. Contact David Gorman
5. Larkspur, CO 80118
8. Physical Data
9. Number heliostats built 2 Heliostats 756 Mirror Enhanced PV Trackers
10. Date of current design 1983
11. Area (h, w) in meters 95
12. Facet (size, number) 4ft x 16ft, 16
13. Facet Construction Silvered glass second surface mirrors bonded to formed sheet metal back
14. Glass (size of lights) 4ft x 4ft
15. Reflectivity 0.94
18. Drive ratios (AZ/EL) 18,400/18,400 Optional: 16,560/
19. Controller Type Open-loop, by central computer with individual microprocessor packages
20. Pedestal Type 24 inch diameter flanged pipe
21. Weight (w/o fndat) kg 3500
22. Other Information
23. Performance
24. Where were tests done? Taft, CA USA by Arco Solar Inc.
25. Types of tests? Structural loading (by Arco)
26. Descriptions Structural: Using hydraulic cylinders to obtain az, el and cross-el loadings
27. Wind perform Tracking capability up to 27 mph, survivable up to 90 mph
28. Elev/Az perform Should be similar to H150
29. Other test results
30. Heliost slope error (mr) Should be similar to H150
31. Heliostat costs
 etc.) in %
  Mirror modules: 25%   Gear-drive assy: 30%   Support Structure: 15%   Controls: 5%   Other: 5%   G&A & profit: 20%
33. Heliostat costs (build)
34. 1,000/yr   $18,300 each
35. /yr  
36. /yr  
37. /yr  
38. /yr  
39. Photograph of heliostat Please provide an electronic photograph of your heliostat.
40. Critical Cost Issues Gear drive assembly, glass
 
2. Manufacturer    Advanced Thermal Systems, Inc .
3. Contact David Gorman
5. Larkspur, CO 80118
8. Physical Data
9. Number heliostats built 2 Heliostats 44 PV Trackers (No mirrors)
10. Date of current design 1984
11. Area (h, w) in meters 148
12. Facet (size, number) 4ft x 20ft, 20
13. Facet Construction Silvered glass second surface mirrors bonded to formed sheet metal back 14. Glass (size of lights) 4ft x 4ft
15. Reflectivity 0.94
16. Azimuth drive Two-stage worm Optional: Eccentric planetary 17. Elevation drive Two-stage worm Optional: Combination worm/ballscrew
18. Drive ratios (AZ/EL) 18,400/18,400 Optional: 16,560/
19. Controller Type Open-loop, by central computer with individual microprocessor packages
20. Pedestal Type 24 inch diameter flanged pipe
21. Weight (w/o fndat) kg 5000
22. Other Information
23. Performance
24. Where were tests done? Taft, CA USA by Arco Solar Inc., and Albuqureque, NM USA by Sandia Labs
25. Types of tests? Structural loading (by Arco), Tracking & beam quality (by Sandia)
26. Descriptions Structural: Using hydraulic cylinders to obtain az, el and cross-el loadings Tracking Performance: Using video BCS to obtain tracking error  data Beam Quality: Using BCS to obtain beam flux distribution data
27. Wind perform Tracking capability up to 27 mph, survivable up to 90 mph
28. Elev/Az perform See Sandia Report SAND92-1381
29. Other test results See Sandia Report SAND92-1381
30. Heliost slope error (mr) See Sandia Report SAND92-1381
31. Heliostat costs
 etc.) in %
  Mirror modules: 25%   Gear-drive assy: 30%   Support structure: 15%   Controls: 5%   Other: 5%   G&A & profit.: 20%
33. Heliostat costs (build)
37. /yr  
38. /yr  
39. Photograph of heliostat Please provide an electronic photograph of your heliostat.
40. Critical Cost Issues Gear drive assembly, glass
 
16
-- 16 --
 
2. Manufacturer   Babcock Borsig Power Environment
3. Contact Mr. Manfred Schmitz-Goeb
4. Address D 51641 Gummersbach 5.
6. Germany
8. Physical Data
9. Number heliostats built 1 built, 1 operated 10. Date of current design 1995
11. Area (h, w) in meters Circular heliostat ( r ≅7m, A=150m² )
12. Facet (size, number) Single element
13. Facet Construction Metal stretched membrane
14. Glass (size of lights) Thin glass mirror 0.9mm
15. Reflectivity 0.94 16. Azimuth drive Electric driven turn table with absolute position encoder 
17. Elevation drive Electric driven spoke wheel with absolute position encoder 
18. Drive ratios (AZ/EL) (AZ) 270° / (EL) 180° 19. Controller Type Pulse-width modulated 4-quadrant servo controller using measured sun
vector as input; resolution of 40000 increments/360° per axis
20. Pedestal Type Platform or concrete ring and central core 21. Weight (w/o fndat) kg <22kg/m²
22. Other Information Focal length adjustable from 100-600m
23. Performance
24. Where were tests done? Plataforma Solar de Almeria (PSA)
25. Types of tests? Extensive performance test program 26. Descriptions  Analysis of beam quality, tracking accuracy, flux distribution, parasitic
losses
27. Wind perform Norm. operation: ≤18km/h, red. operation: ≤60km/h, stow pos.: ≤145km/h
28. Elev/Az perform Tracking quality: 0.6 mrad
29. Other test results Ptot=126.5kW, φpeak=8.3kW/², 90%-radius = 2.59m, concentration factor = 8.3, typical daily electric power consumption (8h tracking day ): 650 Wh/d
30. Heliost slope error (mr) Symmetrical circular beam quality σBQ=1.72 ± 0.1mrad
31. Heliostat costs
SSPS TR-1/79 - Martin Marietta Corp.; Heliostat Field and Data Acquisition Subsystem for CRS, December 1979
SSPS TR-2/79 - McDonnell Douglas Corp.; CRS-Heliostat Field, Interface Control and Data Acquisition System, December 1979
SSPS TR-1/80 - Sandia and DFVLR; Collector Qualification Tests for the IEA 500 kWe Distributed Collector System, July 1980
SSPS TR-2/80 - Belgonucleaire; Analysis of Special Hydraulical Effects in the SHTS Piping System, November 1980
SSPS TR-3/80 - Interatom; Redesign of the CRS - Almeria Receiver Aperture and Comparison of Interatom and MMC Reference Heliostat Field Performance Calculations, November 1980
SSPS TR-1/81 - Belgonucleaire; Tabernas Meteo Data Analysis Based on Evaluated Data Prepared by the SSPS-O.A., June 1981
SSPS TR-2/81 - Belgonucleaire; DCS Instrumentation Review, June 1981
SSPS TR-3/81 - Belgonucleaire; CRS Instrumentation Review, June 1981
SSPS TR-4/81 - A. F. Baker, Sandia; IEA Small Solar Power Systems (SSPS), Project Review (January 1981), July 1981
SSPS TR-5/81 - DFVLR; Device for the Measurement of Heat Flux Distributions (HFD) near the Receiver Aperture Plane of the Almeria CRS Solar Power Stations, November 1981
SSPS TR-6/81 - DFVLR; Determination of the Spectral Reflectivity and the Bidirectional Reflectance Characteristics of Some White Surfaces, December 1981
 
SSPS TR-1/83 - A. Kalt and J. G. Martin (editors); DCS-Midterm Workshop Proceedings (December 9+10, 1982), February 1983
SSPS TR-2/83 - G. Lensch, K. Brudi and P. Lippert, Fachhochschule Wedel; FH-PTL Wedel Reflectometer, Type 02-1 No. 3, Final Report and Report on the Test Program, March 1983
SSPS TR-3/83 - AGIP Nucleare and FRANCO TOSI; The Advanced Sodium Receiver  (ASR) - Topic Reports, May 1983
SSPS TR-4/83 - M. Becker, DFVLR (editor); SSPS-CRS Midterm Workshop, Tabernas, April 19+20, 1983, June 1983
SSPS TR-5/83 - W. Bucher, DFVLR (editor); Investigations and Findings Concerning the Sodium Tank Leakages, July 1983
SSPS TR-6/83 - Th. van Steenberghe, ITET; First Year Average Performance of the SSPS-DCS Plant, July 1983
SSPS TR-7/83 - H. Jacobs, ITET; Thermal Losses of the Sodium Storage Vessels of  the Central Receiver System, November 1983
SSPS TR-1/84 - C. S. Selvage (ITET); Executive Summary - IEA SSPS-CRS Workshop (April 1983), March 1984
SSPS TR-2/84 - C. S. Selvage and J. G. Martin, (ITET); SSPS-DCS Proceedings of  the International Workshop "The First Term", Tabernas, December 6-8, 1983, May 1984
SSPS TR-3/84 - J. P. Fabry, H. Richel, H. Lamotte, M. Vereb and P. Brusselaers; SESAM-DCS, A Computer Code for Solar System Modelling, March 1984
Part 1: Analysis Report Part 2: How to use
SSPS TR-4/84 - R. Carmona and J. G. Martin; The Control of Large Collector Arrays: The SSPS Experience, June 1984
SSPS TR-5/84 - P. Wattiez, J. G. Martin and M. Andersson; SSPS-DCS Plant Performance "The Stair Step", June 1984
 
SSPS TR-1/85 - M. Becker, DFVLR (editor); Proceedings of the IEA-SSPS Experts Meeting on High Temperature Technology and Application, Atlanta, USA (June 18-21, 1985), June 1985
SSPS TR-2/85 - G. Lemperle, DFVLR; ASR-Thermodynamics, Results of a Numerical Simulation and Surface Temperature Measurements, October 1985
SSPS TR-1/86 - M. Sanchez, R. Carmona and E. Zarza; Behavior of DCS Fields in a Wide Temperature Range. Present Status of Test Campaigns and Preliminary Results, May 1986
SSPS TR-2/86 - M. Geyer, DFVLR (editor); Proceedings of the First IEA-SSPS Task IV Status Meeting on High Temperature Thermal Storage, Tabernas, July 3-4, 1986, Sept. 1986
SSPS TR-3/86 - R. Carmona, F. Rosa, H. Jacobs and M. Sanchez; Evaluation of   Advanced Sodium Receiver Losses During Operation, December 1986
SSPS TR-1/87 - M. Sanchez, R. Carmona, E. Zarza; Behavior of DCS Fields in a Wide Temperature Range, March 1987
SSPS TR-2/87 - M. Becker, M. Böhmer, DFVLR (editors); Proceedings of the Third Meeting of SSPS - TASK III - Working Group on "High Temperature Receiver - Technology", Albuquerque, N.M., USA, March 3+4, 1987, June 1987
SSPS TR-3/87 - Motor Columbus Consulting Engineers Inc., Baden, Switzerland; Lessons from the SSPS-CRS Sodium Fire Incident; June 1987
SSPS TR-4/87 - Proceedings of the 2nd IEA-SSPS TASK IV Status Meeting on "High Temperature Thermal Storage", at SERI, August 24/25, 1987 (edited by M. Geyer), Nov. 1987
SSPS TR-5/87 - M. Geyer, K. Werner, F. Dinter; Evaluation of the Dual Medium Storage Tank (DMST) at the IEA-SSPS Project in Almeria (Spain), November 1987
SSPS TR-1/88 - M. Becker, M. Böhmer, DLR (editors) Proceedings of the Fourth Meeting of SSPS - TASK III - Working Group on "High Temperature Receiver - Technology", Denver, Co., USA, June 20, 1988, September 1988
SSPS TR-1/89 - F. Rosa, A. Valverde, J.M. Aranda, J. Aranda; Solar Furnace at the CESA-1 Tower: Construction and Applications to the HERMES Tests, March 1989
 
SSPS TR-3/89 - M. Becker, M. Böhmer (DLR) (editors); W. Meinecke, E. v. Unger  (Interatom) (authors); Volumetric Receiver Evaluation, Preparatory Material and Evaluation Report of Experts Meeting, in Cologne, January 1989, December 1989
SSPS TR-1/90 - M. Becker, M. Böhmer (DLR) (editors); Volumetric Metal Foil Receiver CATREC, Development and Tests, December 1990
SSPS TR-2/90 - M. Becker, M. Böhmer, W. Meinecke (editors); Proceedings of the Fifth Meeting of SSPS TASK III Working Group on "High Temperature Receiver  Technology", Davos/CH, September 3rd-4th, 1990, December 1990
SSPS TR-3/90 - M. Böhmer, W. Meinecke (editors); Proceedings of the First Meeting of SSPS TASK VIII Working Group on "Concentrator/Generator Systems for Small Solar  Thermal Power Units", Davos/CH, September 3rd, 1990, December 1990
SSPS TR-1/91 - M. Becker, M. Böhmer, S. Cordes (editors); DLR/CeramTec Volumetric Ceramic Foil Receiver, June 1991
SSPS TR-2/91 - M. Böhmer, W. Meinecke (editors); Proceedings of the Volumetric Receiver Workshop, February 13 -15, 1991, Köln, March 1991
SSPS TR-3/91 - M. Böhmer, U. Langnickel (editors); Proceedings of the Workshop on Methane Reforming, June 11 -13, 1991, Köln, September 1991
SSPS TR-4/91 - M. Becker, M. Böhmer (editors); Proceedings of the Sixth Meeting of  SSPS Task III Working Group on "High Temperature Receiver Technology" and the Third Meeting of SSPS Task IV Working Group on "High Temperature Thermal Storage", August 16th, 1991, Denver, CO/USA, November 1991
SSPS TR-5/91 - M. Böhmer, M. Becker (editors); Proceedings of the Second Meeting of SSPS TASK VIII Working Group on "Concentrator/Generator Systems for Small Solar  Thermal Power Units", August 16th, 1991, Denver, CO/USA, November 1991
SSPS TR-6/91 - R. Tamme, M. Geyer (editors); IEA - SSPS Task IV Report on High Temperature Thermal Storage, Activities 1988 - 1990, October 1991
 
SolarPACES TR-III-1/94 - M. Sánchez (editor); Proceedings of the Task III, Sector 2 (Supporting Tools and Test Facilities) "Heliostat Field Operation Workshop", September 7 - 9, 1993, Almería/Spain
SolarPACES TR-III-2/94 - A. Neumann; Flux Densities in the Focal Region of the PSA Solar Furnace (Report of a Measurement Campaign Performed from March 7 - 25, 1994)
SolarPACES TR-III-3/94 - M. Becker, M. Böhmer, R. Pitz-Paal (editors), Minutes of the Third Task-III-Meeting within IEA-SolarPACES on "Solar Technology and Applications", June 22 and 23 1994, Köln
SolarPACES TR-III-4/94 - S. Cordes, M. Böhmer, R. Monterreal Espinosa, Test and Evaluation of the Schlaich, Bergermann und Partner Heliostat Prototype Concentrator, Final Report
SolarPACES TR-III-5/94 - M. Becker, M, Böhmer, A. Neumann (editors), Proceedings of the Fourth Task-III-Meeting within IEA-SolarPACES on "Solar Technology and  Applications", Moscow, September 24th, 1994-
SolarPACES TR-III-1/95 - W. Meinecke, M. Becker, M. Böhmer (editors), Proceedings of the Fifth Meeting within SolarPACES - Task III - Working Group on "Solar Technology and Applications", PSI, Villigen, March 8th, 1995
SolarPACES TR-III-2/95 - A. Neumann (editor), Proceedings of the High Flux and Temperature Measurement Workshop, DLR, Cologne, March 2 - 3, 1995
SolarPACES TR-III-3/95 - M. Sánchez, E. Zarza, A Guide to Computer Programs Developed for Solar Thermal Technologies, Plataforma Solar de Almería, June 1995
SolarPACES TR-III-4/95 - G. García Navajas, Technical Development of a New Stand-  Alone Heliostat Field Control, Plataforma Solar de Almería, June 1995
SolarPACES TR-III-5/95 - M. Sánchez (editor), The Solar Thermal Test Facilities Report (in preparation)
SolarPACES TR-III-6/95 - W. Meinecke, M. Böhmer, M. Becker (editors), Proceedings of the Sixth Meeting within SolarPACES Task III - Working Group Meeting on "Solar  Technology and Applications", Golden (USA), September 28th, 1995 and Stuttgart (D), October 10th, 1995
 
SolarPACES TR-III-1/96 - W. Meinecke, M. Böhmer, M. Becker (editors), Proceedings of the Seventh Meeting within SolarPACES Task III - Working Group Meeting on "Solar  Technology and Applications", PSA, Almería (E), April 15th, 1996
SolarPACES TR-III-2/96 - R. Pitz-Paal, Evaluation of the Catrec II Receiver Test, May, 1996
SolarPACES TR-III-3/96 - V. Scheglov et al, Investigation of the Action of Concentrated Solar Radiation on Material Surface Properties Using Polarization Measurements, October 1996
SolarPACES TR-III-4/96 - R. Pitz-Paal, B. Hoffschmidt, M. Böhmer, M. Becker (editors) Proceedings of the Eighth Task III-Meeting within IEA SolarPACES on "Solar  Technology and Applications", Köln, October 15th, 1996
SolarPACES TR-III-5/96 - A. Neumann (editor), Proceedings of the 3rd High Flux and Temperature Measurement Workshop, DLR, Cologne, October 16th, 1996
SolarPACES TR-III-1/97 - W. Meinecke, M. Becker, M. Böhmer (editors), Proceedings of the Ninth Task III-Meeting within IEA SolarPACES on "Solar Technology and  Applications", CNRS-IMP, Odeillo, April 8th and 9th, 1997
SolarPACES TR-III-2/97 - A. Neumann, U. Groer (editors), Proceedings of the 4th High Flux and Temperature Measurement Workshop, Odeillo, April 11, 1997
SolarPACES TR-III-3/97 - A. Roy (chief editor), W. Meinecke and M. Blanco Muriel (co- editors), Introductory Guidelines for Preparing Reports on Solar Thermal Power  Systems, DLR, Cologne, July 1997
SolarPACES TR-III-4/97 - M. Böhmer (editor) SolarPACES Task III, Solar Technology and Applications, Project Plans, September 1997
SolarPACES TR-III-5/97 - Klaus Hennecke (editor), Advanced Hybrid Plant Concepts, DLR, Cologne, 1997
SolarPACES TR-III-6/97 - M. Becker, K. Hennecke (editors) - Proceedings of the 10th
Task III Meeting within IEA SolarPACES on "Solar Technology and Applications", Sandia, Albuquerque, September 15, 1997
SolarPACES TR-III-1/98 - M. Becker, R. Pitz-Paal (editors) - Proceedings of the 11th
Task III Meeting within IEA SolarPACES on "Solar Technology and Applications",  Aguadulce, March 4th, 1998
 
SolarPACES TR-III-3/98 - R. Pitz-Paal (editor), E. E. Shpilrain, O. S. Popel S. E. Frid,  Advanced Solarized Cycles - A Hybrid Solar/Fossil Thermal Power Plant Simulation Using the TRNSYS Software', IVTAN, October, 1998
SolarPACES TR-III-4/98 - R. Pitz-Paal, S. Jones, A TRNSYS Model Library for Solar  Thermal Electric Components (STEC) - A Reference Manual, Release 1.0, 10/15/1998, DLR, October, 1998.
SolarPACES TR-III-1/99 – M. Becker, R. Pitz-Paal, Proceedings of the 12th  Task III Meeting within IEA SolarPACES on “Solar Technology and Applications”, Cuernavaca, Mexico, October 29th, 1998
SolarPACES TR-III-2/99 – M. Becker, J. Kaluza, Proceedings of the 13th  Task III Meeting within IEA SolarPACES on “Solar Technology and Applications”, Kibbutz Shefayim, Israel, July 3rd, 1999
SolarPACES TR-III-1/00 – T. Mancini, Catalog of Solar Heliostats, June 2000
 
Distribution List
 AUS St. Kaneff, ANU, Canberra K. Lovegrove, ANU, Canberra W. Meike, NTU, Darwin W. Stein, Pacific Power Service, Sydney
BRA R. Brito, National Dept. of Energy Development, Brasilia E.S. Camêlo Cavalcanti, CEPEL, Rio de Janeiro
CH H. W. Fricker, Rickenbach P. Haueter, PSI, Villigen P. Kesselring, Urdorf  
 A. Steinfeld, PSI, Villigen
D M. Abele, DLR, Stuttgart H. Bastek, KFA-BEO, Jülich M. Becker, DLR, Köln R. Buck, DLR, Stuttgart F.-D. Doenitz, Schott-Rohrglas, Mitterteich G. Eisenbeiß, DLR, Köln Th. Fend, DLR, Köln K.-H. Funken, DLR, Köln M. Geyer, DLR, Almería W. Grasse, SolarPACES, Gifhorn K. Hennecke, DLR, Köln P. Heller, DLR, Almería B. Hoffschmidt, DLR, Köln J. Kaluza, DLR, Köln R. Kistner, DLR, Almería H. Müller-Steinhagen, DLR, Stuttgart P. Nava, Flabeg Solar, Köln
 A. Neumann, DLR, Köln R. Pitz-Paal, DLR, Köln J. Rheinländer, ZSW, Stuttgart M. Schmitz-Goeb, Steinmüller, Gummersbach R. Tamme, DLR, Stuttgart
E M. Blanco Muriel, PSA, Almería M.-L. Delgado, CIEMAT-IER, Madrid R. Monterreal Espinosa, PSA, Almeria R. Osuna, Inabensa, Sevilla M. Romero Álvarez, CIEMAT-IER, Madrid M. Sánchez González, CIEMAT-IER, Madrid
 A. Valverde Cantón, PSA, Almería E. Zarza Moya, PSA, Almería (PSA Reference Room (3 x) PSA, Almería (A. Sarre)
ET M. Abdel Rahman, NREA, Cairo  A. El-Zalabany, NREA, Cairo  A M. Fayek, NREA, Cairo S. Zannoun, NREA, Cairo
 
- 2 -
F A. Ferrière, IMP-CNRS, Odeillo G. Flamant, IMP-CNRS, Odeillo G. Olalde, IMP-CNRS, Odeillo O. Suzanne, IMP-CNRS, Odeillo
IEA H.-J. Neef, IEA, Paris J. Tilley, IEA, Paris
IL M. Epstein, WIS, Rehovot D. Faiman, Ben-Gurion Univ., Beer-Sheva J. Karni, WIS, Rehovot
 A. Kribus, WIS, Rehovot D. Liebermann, WIS, Rehovot
 A. Roy, Ben-Gurion Univ., Beer-Sheva D. Sagie, ROTEM, Beer-Sheva
 A. Yogev WIS, Rehovot
MEX R. Almanza, UNAM, Mexico C. Estrada, Centro de Investigacion en Energia,
Temixco, Morelos M. Huacuz Villamar, Instituto de Investicaciones Electricas,
Cuernavaca, Moreles C. Ramos, Instituto de Investicaciones Electricas,
Cuernavaca, Moreles
RUS V.I. Iampolski, SPA Astrophysica, Moscow Y. Loktionov, INPW, Obninsk S. Malyshenko, IVTAN, Moscow O. Popel, IVTAN, Moscow E. Shpilrain, IVTAN, Moscow E. Tverianovich, VIESH, Moscow
UK A. Gaye, Solargen, Cambridge R. Judd, British Gas Technology, Leicestershire N. Ranzetta, British Gas Technology, Leicestershire
USA G. Burch, DOE, Washington R. Davenport, SAIC, San Diego S.D. Frier, KJC, Boron S. Jones, Sandia, Albuquerque G. Jorgensen, NREL, Denver  D. Kearney, Kearney and Associates, Del Mar   G. Kolb, Sandia, Albuquerque
 A. Lewandowski, NREL, Denver  T. Mancini, Sandia, Albuquerque H. Price, NREL, Denver   C. Tyner, Sandia, Albuquerque T.A. Williams, NREL, Denver  
ZA L. van Heerden, ESKOM, South Africa