cd2_lect3_2-10-2011

Upload: xiomara-a-ordonez

Post on 08-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 CD2_Lect3_2-10-2011

    1/24

    e n orce oncre e es gne n orce oncre e es gn

    Dr. Nader Okasha

    Lecture 3

    Calculation of the depth of two wayslabs

  • 8/19/2019 CD2_Lect3_2-10-2011

    2/24

  • 8/19/2019 CD2_Lect3_2-10-2011

    3/24

    Methods of limiting deflections in two way slabs:

    Two methods are given by the ACI for controlling deflections:ACI 9.5.3.4

    1) by calculating the deflection and comparing it with code

    specified values given in ACI Table 9.5(b).y prov ng m n mum va ues or e mem er c ness as

    give in the next slides.

  • 8/19/2019 CD2_Lect3_2-10-2011

    4/24

    Minimum thickness of two wa slabs to control deflection

    Limiting thickness

    (mm)

    Deflection control

    method

    Case

    125*Table 9.5(c) No INTERIOR 

    Beams 0.0mα    =a e . c

    125ACI Eq 9-12

    0.2mα    ≤

    0.2 2α < ≤

    90ACI Eq 9-132 mα <

    * 100 mm for slabs with drop panelsACI 9.5.3

  • 8/19/2019 CD2_Lect3_2-10-2011

    5/24

    Minimum thickness of two wa slabs to control deflection

    ACI 9.5.3

  • 8/19/2019 CD2_Lect3_2-10-2011

    6/24

    Minimum thickness of two wa slabs to control deflection

    Definition of  β and l n 

    longer clear span

    shorter clear span β   =

    l n = Clear span of the panel considered in the long direction measured face to face of support.

  • 8/19/2019 CD2_Lect3_2-10-2011

    7/24

  • 8/19/2019 CD2_Lect3_2-10-2011

    8/24

    Minimum thickness of two wa slabs to control deflection

    Definition of α fm 

    b b

    s s E I α  =

    α 4

    α1

    α 2

    o u us o e as c y o eam

     bE Modulus of elasticity of slabs

    =

    =α3

    s

    I Moment of inertia for beam b

    I Moment of inertia for slab

    =

    =

    1 2 3 4α α α α  α   + + +

    =

  • 8/19/2019 CD2_Lect3_2-10-2011

    9/24

    Minimum thickness of two wa slabs to control deflection

    Definition of I b

    and I s 

  • 8/19/2019 CD2_Lect3_2-10-2011

    10/24

    Minimum thickness of two wa slabs to control deflection

    Definition of the equivalent beam:

    be = b w +X 

    ACI 13.2.4

    be = b w +2X 

    X= min(hb, 4 hf  )

     

  • 8/19/2019 CD2_Lect3_2-10-2011

    11/24

    Minimum thickness of two wa slabs to control deflection

    Definition of the standard drop panel:

    ACI 13.2.5

     

  • 8/19/2019 CD2_Lect3_2-10-2011

    12/24

    Minimum thickness of two wa slabs to control deflection

    ACI 9.5.3ge eam requ remen :

     

  • 8/19/2019 CD2_Lect3_2-10-2011

    13/24

    Example 1

    Solution:

    n

    n

    l 760 45.7 714.3

    l 714.3

    cm= − =

    min . .

    30 30Use h = 24 cm

    = = =

  • 8/19/2019 CD2_Lect3_2-10-2011

    14/24

    Example 2

    Determine the minimum thickness for the slab shown to satisfy ACI

    deflection requirements for panels A and B. All columns are

    . .

    6.8 m

    6.5 m  A B

    6.8 m

    6.2 m 6.0 m 6.2 m

  • 8/19/2019 CD2_Lect3_2-10-2011

    15/24

    Solution:

    1- Determine initial depth of slab:

    An initial value can be assumed. Assume slab is not su orted

    with interior beams and use Table 9.5(c):

    nl 680 30 650cm= − =n 650 19.7

    33 33

    Try h = 18 cm

    inh cm= = =

    2- Determine initial depth of beam:

    Use Table 9.5(a):

    68036.8

    18.5 18.5in

    lh m m= = =

     

    3- Determine dimensions of equivalent beam

    =

    94 cm

    b, f    - ,

    be = b w +2X = 30 + 2(32) =94 cm18 cm

     cm

    30 cm

  • 8/19/2019 CD2_Lect3_2-10-2011

    16/24

    Solution:

    4- Determine the centroid of the T-section beam:

    30 32 32 / 2 94 18 32 18 / 2 A y   + +.

    30(32) 94(18)cm

     A= = =

    +∑

    94 cm

    18 cm

    50 cm Y 

    30 cm

    5- Determine the moment of inertia of the T-section beam:

    3 21 (30)(32) (30)(32)(32 / 2 31.95)12

     I   = + −

    3 2

    4

    1(94)(18) (94)(18)(32 18 / 2 31.95)

    12

    510409.4cm

    + + + −

    =

  • 8/19/2019 CD2_Lect3_2-10-2011

    17/24

    Solution:

    6- Determine the moment of inertia of the slab:

    In direction 1:

    Direction 1

    6.8 m2

    (600 620)610

    2l cm

    += =

    3 41 (610)(18) 29646012

     I cm= =

    . m

    In direction 2:

    Direction 2

    6.8 m2

    3 4

    6652

    1

    (665)(18) 323190

    l cm

     I cm

    = =

    = =

    6.2 m 6.0 m 6.2 m

  • 8/19/2019 CD2_Lect3_2-10-2011

    18/24

    Solution:

    7- Determine αfm:

    Due to s mmetr α = α   α = α

    6.8 m1 510409.4 1.72α   = =

    2

    510409.41.57

    323190α    = =   α

     2

    . m

    1 2 1.652 fm

    α α α 

      += =

      α3

    α 4

    α1

    6.8 m

    longer clear span=

    8- Determine  β :

    6.2 m 6.0 m 6.2 m

    shorter clear span

    650 301.0877

    600 30 β 

      −= =

  • 8/19/2019 CD2_Lect3_2-10-2011

    19/24

    Solution:

    9- Determine hmim:

    ACI Eq 9-120.2 2mα < ≤

    y

    n

    420

    0.8 (650 30) 0.81400 1400

     f 

    l

      ⎛ ⎞   ⎛ ⎞

    +   − +⎜ ⎟   ⎜ ⎟

    ( ) ( )m. .

    36 5 0.2 36 5 1.0877 1.65 0.2cm cm

     β α = = = >

    + − + × −

    Try 16 and repeat solution:

    1 2

    517955 5179552.49 2.28

    208213.3 226986.7α α = = = =

    1 2 2.42

     fm

    α α α 

      += =

    y

    n

    4200.8 650 30 0.8

     f l

      ⎛ ⎞   ⎛ ⎞+   − +

      q -mα    >

    14.9 936 9 36 9(1.0877)

    h cm cm β 

    = = = >+ +

      hmin

    = 15 cm

  • 8/19/2019 CD2_Lect3_2-10-2011

    20/24

    Solution:

    1- Determine initial depth of slab:

    Tr h = 15 cm as found from Panel A

     

    2- Determine initial depth of beam:

    Try h = 50 cm as before

    -

    X=min(hb, 4 hf  ) = min(50-15=35 , 4(15)=60)=3565 cm

     Y 

    e =  w +X = 30 + 3 =6 cm

    15 cm

    50 cm

    30 cm- - 

    30(35)(35) / 2 65(15)(35 15 / 2)29.54

    30 35 65 15

     A yY cm

     A

    + += = =

    +

  • 8/19/2019 CD2_Lect3_2-10-2011

    21/24

    Solution:

    5- Determine the moment of inertia of the L-section beam:

    3 2

    3 2

    1(30)(35) (30)(35)(35 / 2 29.54)

    12

    1

     I   = + −

    65 cm

    4

    .12

    441441cm=15 cm

    50 cm

    Since h = 15 cm, the moment of inertia for the interior beams is found in a manner

    similar to slide 16:

    4521342 I cm=

    15 cm30 cm

  • 8/19/2019 CD2_Lect3_2-10-2011

    22/24

    Solution:

    6- Determine the moment of inertia of the slab:

    In direction 1:

    Direction 1

    6.8 m(600 620)

    Interior side:

    += =2

    3 4

    2

    1(610)(15) 171563

    12 I cm= =

    . m

    2

    620 30325

    2 2

    Exterior side:

    l cm= + =Direction 2

    6.8 m3 41 (325)(15) 91406

    12 I cm= =

    6.2 m 6.0 m 6.2 m

    2

    (650 680)665l cm

    += =

    In direction 2:

    3 41(665)(15) 18703112 I cm= =

  • 8/19/2019 CD2_Lect3_2-10-2011

    23/24

    Solution:

    7- Determine αfm:

    Due to s mmetr α = α .

    1

    5213423.04

    171563

    α   = =

    6.8 m2 2.79

    187031

    4414414.83

    α 

    α 

    = =

    = =

    6.5 m1 2 3

    91406

    23.36

    4 fm

    α α α α 

      + += =

    α1

    α 4

    α3

    6.8 m8- Determine  β :

    6.2 m 6.0 m 6.2 m

    longer clear span

    shorter clear span β   =

    −1.051

    620 30

     β   = =−

  • 8/19/2019 CD2_Lect3_2-10-2011

    24/24

    Solution:

    9- Determine hmim:

    y 4200.8  f l   ⎛ ⎞   ⎛ ⎞+   −

    ACI Eq 9-133.36 2mα    = >

    n .1400 1400

    15 936 9 36 9(1.051)

    h cm cm β 

    ⎝ ⎠ ⎝ ⎠= = = >+ +

      hmin = 15 cm