c–h bond functionalization - home | princeton h bond functionalization/activation: this talk!...

69

Upload: hoangngoc

Post on 19-Mar-2018

220 views

Category:

Documents


1 download

TRANSCRIPT

C–H Bond Functionalization

Mark Vander WalMacMillan Group Meeting

March 9, 2010

What is C–H Bond Functionalization/Activation?

transition metal catalyst

! (C) is sp2 or sp3 carbon atom

! (C)–H bond is not a traditionally reactive bond (i.e. pka > 30-35)

! Selectivity is a large issue due to the ubiquitous presence of C–H bonds in all organic molecules

(C) H R X

R = C or heteroatomX = FG or H

(C) R

C–H Bond Functionalization/Activation: This Talk

! This talk serves as a very limited survey of the recent literature in C–H bond activation

! Carbene and nitrene chemistry has been ignored (see Brian Laforteza's talk)

! A great deal of very impressive chemistry has been left out due to the overwhelming amount of recent research in the field of C–H bond activation

! Selected research presented here is almost exclusively from 2007 and later

A non exhaustive list of recent review articles in the field of C–H bond functionalization

Thansandote, P.; Lautens, M. Chem. Eur. J. 2009, 15, 5874.Collet, F.; Dodd, R. H.; Dauban, P. Chem. Commuun. 2009, 5061.Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 48, 5094.Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.Yu, J.-Q.; Giri, R.; Chen, X. Org. Biomol. Chem. 2006, 4, 4041.Godula, K.; Sames, D. Science 2006, 312, 67.Joucla, L. Djakovitch, L. Adv. Synth. Catal. 2009, 351, 673.Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439.Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174.Hartwing, J. F. Nature 2008, 455, 314.West, N. M. Templeton, J. L. Can. J. Chem. 2008, 87, 288.Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069.Garralda, M. A. Dalton Trans. 2009, 3635.Li, B.-J.; Yang, S.-D.; Shi, Z.-J. Synlett 2008, 949.Daugulis, O.; Do, J.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.

Electrophilic Activation Mechanism for C–H Bond Insertion

Boutadla, Y.; Davies, D. L.; Macgregor, S. A.; Poblador-Bahamonde, A. I. Dalton Trans. 2009, 5820.Davies, D. L.; Donald, S. M. A., Macgregor, S. A. J. Am. Chem. Soc. 2005, 127, 13754.

Ryabov, A. D. Chem. Rev. 1990, 90, 403.Ryabov, A. D.; Sakodinskaya, I. K.; Yatsimirsky, A. K. J. Chem. Soc., Dalton Trans. 1985, 2629.

H

PdII(OAc)2

N Me

MeH

N Me

Me

PdII

OAc

OAc

H

N Me

Me

PdII

OAc

OAc

H

N Me

Me

PdII

O

OAc

O

Me

H

N Me

Me

PdII

O

OAc

O

Me–HOAc

N Me

Me

PdII

OAc

C–H Bond Arylation

C–H Activation: Arylation of C–H Bonds

! Reaction methodology mimicking traditional cross coupling reactions

Suzuki, Kumada, Stille, Negishi

! C–H bond activation strategy replaces one or two of the preactivation requirements

X M

X = Cl, Br, I, OTf M = Sn, B, Zn, Mg

C-H activation

X H

X = Cl, Br, I, OTf, B, Sn, H

Pd0

PdII

Directed Arylations: Pd0/PdII Pathway

Shi, Z.; Li, B.; Wan, X.; Cheng, J.; Fang, Z.; Cao, B.; Qin, C.; Wang, Y. Angew. Chem. Int. Ed. 2007, 46, 5554.

DG

H

PdII(OAc)2

pre-coordination

C–H activation

transmetalation

reductive elimination

reoxidation

DG

H

PdII(OAc)2

DGPdII(OAc)

–HOAcDGPdII(Ar)

Ar–B

DG

Pd0

Ar

Directed Arylations: Pd0/PdII Pathway

! Shi's arylation using amides as a directing group

Wang, D.-H.; Mei, T.-S.; Yi, J.-Q. J. Am. Chem. Soc. 2008, 130, 17676.

5 mol% Pd(OAc)2 1 equiv Cu(OTf)2, 1 equiv Ag2O

toluene, 120 °C, 24 h

X

B(OH)2

24 examples 31-92% yield

Y

NAc

AcN

Y

X

Shi, Z.; Li, B.; Wan, X.; Cheng, J.; Fang, Z.; Cao, B.; Qin, C.; Wang, Y. Angew. Chem. Int. Ed. 2007, 46, 5554.

! Yu's arylation using carboxylic acids as the directing group

10 mol% Pd(OAc)2

0.5 equiv BQ, 1.5 equiv K2HPO4

20 atm O2, tBuOH, 110 °C, 48 h

X

BF3K

24 examples 31-92% yield

Y

Y

XCO2H

0-1

CO2H

0-1

Directed Arylations: PdII/PdIV Pathway

Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.

DG

H

PdII(OAc)2

pre-coordination

C–H activation

oxidative addition

reductive elimination

anion exchange

DG

H

PdII(OAc)2

DGPdII(OAc)

–HOAcDGPdIV(OAc)

Ar–X

DG

Ar

X

Ar

PdII(OAc)I

AgOAc

AgI

Directed Arylations: PdII/PdIV Pathway

! Daugulis has published similar reactions using a variety of directing groups

Pd(OAc)2 AgOAc, Acid

high temperatures (>100 °C)

R1

X

R2

DG

DG

R2

R1

HN R

O

NH

iPr

O

OH

O

NHR

N

! Generally high yielding (>70% yield)! Diarylation observed if no ortho or meta substituent is present

Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. and references therein

S

N

H H H

H

H

H

Directed Arylations: PdII/PdIV Pathway

! Examples from anilide arylation

5 mol% Pd(OAc)2 AgOAc, CF3CO2H

120 °C, 8 h

IHN Me

OMeMe

NH

Me

MeMe

MeO

74% yield

5 mol% Pd(OAc)2 AgOAc, CF3CO2H

120 °C, 8 h

IHN tBu

O

NH

83% yield

I

I

O

tBu

5 mol% Pd(OAc)2 AgOAc, CF3CO2H

120 °C, 8 h

IHN Me

O

NH

82% yield

O

Me

Me

Me

OMe

Me

MeMeO

Shabashov, D.; Daugulis, O. J. Org. Chem. 2007, 72, 7720.

Directed Arylations: Cross-Coupling of C–H Substrates

H

PdII(OAc)2

pre-coordination

C–H activation

C–H activation

reductive elimination

reoxidation

–HOAc

Ar–H

Ar

Pd0

L

H

LPdII(OAc)2

L

PdII(OAc)

–HOAc

L

PdIIAr

L

Directed Arylations: Cross-Coupling of C–H Substrates

! An early example using acetate protected indoles

10-20 mol% Pd(TFA)23 equiv Cu(OAc)2, CsOPiv, PivOH,

140 °C, microwave, 5 h

H

Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172.

R

30 equiv 9 examples 42–84% yield

NAc

R

NAc

R

R

NAc

NAc N

Ac

NAc

MeO Cl

MeO2C

Me

Me

84% 63% 54% 45%

Directed Arylations: Cross-Coupling of C–H Substrates

! Two recent examples

10 mol% Pd(OAc)22 equiv Ag2CO3, 4 equiv DMSO,

130 °C 12 h

H

Li, B.-J.; Tian, S.-L.; Fang, Z.; Shi, Z.-J. Angew. Chem. Int. Ed. 2008, 47, 1115.

N

H

R

65-100 equiv

N

R

11 examples 49% to 93% yield

Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904.

10 mol% Pd(OAc)2Cu(OTf)2 0.1 equiv

EtCO2H, O2 1 atm, 120 °C

H

R

cosolvent8 examples 43% to 78% yield

N

MeOH

N

Ac

R

Matt Gaunt's Meta Selective C–H Arylation

Cu(I)OTf

oxidative addition

Friedel-Craftsrearomatization

reductiveelimination

[Ph–I–Ph]OTf

PhI

PhCuIII(OTf)2

NH

R

O

NH

R

O

H

CuIII(OTf)2H

Ph

–HOTf

NH

R

O

CuIII(OTf)

Ph

Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593.

NH

R

O

Ph

Matt Gaunt's Meta Selective C–H Arylation

! Reaction and substrate scope

10 mol% Cu(OTf)2Ph2I(OTf), DCE, 70 °C, 24-48 h

18 examples11-93% yield

79% yield 55% yield 67% yield 31% yield

NH

tBu

O

X

NH

tBu

O

X

Ph

Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593.

NH

tBu

O

Ph

NH

tBu

O

Ph

NH

tBu

O

Ph

NH

tBu

O

Ph

Me F

Me EtO2C

Matt Gaunt's Meta Selective C–H Arylation

! Reaction and substrate scope

10 mol% Cu(OTf)2DCE, 70 °C, 24-48 h

8 examples44-82% yield

82% yield 60% yield 70% yield 44% yield

NH

tBu

O NH

tBu

O

Ar

Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593.

NH

tBu

O NH

tBu

O NH

tBu

O NH

tBu

O

Me Me

Me Me

[Mes–I–Ar]OTf

Me Me

Me NO2

CF3

Me

C–H Bond Olefination

C–H Activation: Olefination of C–H Bonds

! Reaction methodology mimicking traditional Heck reaction

Heck reaction

! C–H bond activation strategy replaces halogen functional group

X

X = Cl, Br, I, OTf

Pd0

R1

R2 R2

R1

C-H activation

H

R1

R2 R2

R1

PdII

Olefination Reactions via Aryl C–H Activation

H

PdII(OAc)2

C–H activation

Olefin coordination

Olefin insertion

!-hydride elimination

deprotonationreoxidation –HOAc

PdII(OAc)H

X

PdII(OAc)

X L

R

PdII(OAc)

X L

R

X PdII(OAc)

R

L

XR

Olefination Reactions via Aryl C–H Activation

! Olefination via carboxylic acid directing group

5 mol% Pd(OAc)25 mol% BQ, 2 equiv. KHCO3

t-AmylOH, 85 °C, 1 atm O2, 48 h

Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010, 327, 315.

2 equiv

20 examples 73% to 98% yield

CO2H

R1 R2

R3

H

CO2R4 CO2H

R1 R2

R3

CO2R4

! Amino acid ligands enable selectivity for unsymmetrical aryl substrates

CO2H

HA

HB

Me

OMe

CO2H

HA

HB

i-PrO

OMe

MeO

CO2H

HA

HB

F CO2H

HA

HB

Me

Cl

Formyl-Ile ligand75% yield 20:1 A:B

Boc-Ile ligand86% yield 23:1 A:B

Formyl-Ile ligand77% yield 3.5:1 A:B

Formyl-Ile ligand50% yield 4.7:1 A:B

Olefination Reactions via Aryl C–H Activation

! Olefination without a directing group shows selectivity for meta functionalization relative to EWG's

10 mol% Pd(OAc)220 mol% ligand, 1 equiv Ac2O

1 atm O2, arene solvent, 90 °C, 24 h

Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 5072.

10 examples 52 to 77% yieldfor two EWG completely selective

for one EWG 4 : 1 meta : para

EWG

H

EWG

X

X = EWG or H

EWG

X EWG

N

Bu Et BuEt

CO2Me

CF3

F3C

CF3

Me

CO2Et

CO2Et

CO2Et

CF3

CO2Me

62% yield 68% yield 70% yield4:1 m : p

71% yield4:1 m : p

Allylic C–H Bond Functionalization

C–H Activation: !-Allyl Type Functionalization

! Reaction methodology mimicking traditional "-allyl reaction

Tsuji-Trost

! C–H bond activation strategy replaces functional group

X = OH, OCOR, OCO2R etc.

Pd0

NuR X R Nu

C-H activationNuR H R Nu

PdII

Christina White's Allylic Functionalizations

PdIIL(OAc)2precoordination

C–H activation

nucleophilic attack

!-hydride elimination

deprotonationreoxidation

–HOAc

PdII(H)L

L = SS O

R

O

R

R

H

! Intermolecular amination and alkylation

R

PdL(OAc)

R Nu

PdIIL

R

Reed, S. A.; Mazzotti, A. R.; White, M. C. J. Am. Chem. Soc. 2009, 131, 11701.

R

H

PdII(OAc)L

Nu

Christina White's Allylic Functionalizations

! Intermolecular amination reaction and scope

10 mol% LPd(OAc)2DIPEA (6 mol%), 2 equiv BQ,

TBME, 45 °C, 72 h

10 examples, 48% to 89% yield

61% yield

79% yield

76% yield

48% yield

Reed, S. A.; Mazzotti, A. R.; White, M. C. J. Am. Chem. Soc. 2009, 131, 11701.

L = SS O

R

O

R

R

H

Ts

HN

O

OMe RTsN OMe

O

TsN OMe

O

TsN OMe

O

TsN OMe

O

TsN OMe

O

MeO2C

NC

O

O

O

OBn

Christina White's Allylic Functionalizations

! Intermolecular alkylation reaction and scope

10 mol% LPd(OAc)21.5 equiv BQ, 0.5 equiv AcOH

dioxane/DMSO (4:1), 45 °C, 24 h

25 examples, 42% to 70% yieldlinear to branched from 3 : 1 to >20 : 1

Young, A. J.; White, M. C. J. Am. Chem. Soc. 2008, 130, 14090.

L = SS O

R

O

R

R

O2N CO2Me

1 equiv 3 equiv

R

CO2Me

NO2

CO2Me

NO2

CO2Me

NO2

CO2Me

NO2

CO2Me

NO2

O

CO2Me

NO2

CO2Me

NO2

Me MeO2C

MeO

CF3

O

O

O

61% yield, 3 : 1 L : B 61% yield, 10 : 1 L : B 58% yield, 5 : 1 L : B

70% yield, 15 : 1 L : B 56% yield, 3 : 1 L : B 59% yield, >20 : 1 L : B

Unactivated C–H Bond Oxidation

Christina White's Iron Catalyzed Oxidations of Unactivated sp3 C-H Bonds

! Tertiary methyne protons are preferentially oxidized to the corresponding alcohols

Chen, M. S.; White, M. C. Science 2007, 318, 783.Chen, M. S.; White, M. C. Science 2010, 327, 566.

Optimized Conditions3 consequative additions at ten minute intervals:

[1.2 equiv H2O2, 5 mol% Fe, 0.5 equiv AcOH]

CH3CN, R.T., 30 minutes totalPivO

Me

H

PivO

Me

OH

51% yield, single diastereomer

Fe

N

N

N

N NCCH3

NCCH3

(SbF6)2

Christina White's Iron Catalyzed Oxidations of Unactivated sp3 C-H Bonds

! Remote functionality tolerated but has effect on reaction efficiency

Br OH

Me Me

AcO OH

Me Me

MeO2C OH

Me Me

NH

OH

Me MeMe

F3C

O

AcO OH

Me MeMe O

46% (26% rsm) 53% (43% rsm) 60% (18% rsm)

43% (33% rsm) 52% (21% rsm) 92% (GC yield)

! EWG promote selectivity for the more remote tertiary C-H bond

Me Br

MeHO

Me

MeBr

MeHO

Me

MeOMe

MeHO

Me

O

39% (32% rsm) 9:1 regioselectivity 48% (17% rsm) 20:1 regioselectivity 56% (32% rsm) >99:1 regioselectivity

Christina White's Iron Catalyzed Oxidations of Unactivated sp3 C-H Bonds

! Methylene oxidation occurs when methyne C-H bond activation is disfavored or not present

MeMe

MeMe

MeMe

1.1 : 1, 56% yield

Optimized ConditionsMe

2.3 : 1, 72% yield

MeO

O

MeMeO

O

MeMeO

OO

O

Optimized Conditions

3.6 : 1.3 : 1, 83% yield

MeO

O

Me

MeMeO

O

2 MeMeO

O

2MeMeO

O

2

O

O

O

O

O

Optimized Conditions

Optimized ConditionsMe

4.8 : 1.6 : 1, 66% yield

MeO

O

MeMeO

O

MeMeO

O

MeMeO

OO

O

Me Me Me Me OH

Christina White's Iron Catalyzed Oxidations of Unactivated sp3 C-H Bonds

! Complex substrates do show some selectivity

O

Me

O

H

Me

H

Me

Me

O

Me

O

H

Me

H

Me

Me

O

Me

O

H

Me

H

Me

Me

O

O

Optimized Conditions

1.9 : 1, 81% yield

H

H

Me

H

Me

Me

O

Me

Optimized Conditions

H

Me

H

Me

Me

O

MeO

80% yield (19% rsm)

Me

OMe

Me

Me

OMe

Me

Optimized Conditions

45% yield (5% rsm)

O

Christina White's Iron Catalyzed Oxidations of Unactivated sp3 C-H Bonds

! Literature evidence supports iron(V) mechanism similar to iron heme complexes

Chen, K.; Costas, M.; Que, L. J. Chem. Soc., Dalton Trans. 2002, 672.England, J.; Britovsek, J. P.; Rabadia, N.; White, A. J. P. Inorg. Chem. 2007, 46, 3752.

Bassan, A.; Blomberg, M. R. A.; Siegbahn, P. E. M.; Que, L. Chem. Eur. J., 2005, 11, 692.

Fe

N

N

N

N NCCH3

NCCH3

(SbF6)2

LFeIII

OOH

OH2

LFeV

O

OHLFeIV

OH

OH

LFeIII

OH

OH

R

LFeIII OH

0.5 equiv H2O2

1 equiv H2O2

H2O

R–H

R•

R–OH

Oxidation of Arenes Using Molecular Oxygen

! Jin-Quan Yu's carboxylic acid directed hydroxylation of arenes

Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 14654.

10 mol% Pd(OAc)2 2.0 equiv KOAc, 1.0 equiv BQ

1 atm O2, DMA, 115 °C, 15 h

X

CO2H

X

CO2H

OH

20 examples 35-82% yield

CO2H

OH

CO2H

OHMe

CO2H

OH

MeO CO2H

OHF

Me

CO2H

OH

CO2H

OH

CO2H

OH

CO2H

OH

Cl F3C

Me

O

O2N

74% yield 82% yield

52% yield 95% (5 atm O2)

73% yield 72% yield

48% yield93% (5 atm O2)

51% yield63% (5 atm O2)

54% yield91% (5 atm O2)

Directed Functionalization of Arenes with CF3 Groups

! Nitrogen heterocycles act as directing groups

Wang, X.; Truesdale, L; Yu, J.-Q. J. Am. Chem. Soc. 2010, ASAP.

10 mol% Pd(OAc)2 1 equiv Cu(OAc)2, 10 equiv TFA

DCE, 110 °C, 48 h

X

Het

20 examples, 53-88% yield

CF3CF3 CF3

CF3

MeO

82% yield 54% yield 88% yield 74% yield

H

X

Het

CF3

S

CF3

BF4

1.5 equiv

N N N

N

N

SMeMe Me

Directed Functionalization of Arenes with CF3 Groups

! Possible mechanisms

Wang, X.; Truesdale, L; Yu, J.-Q. J. Am. Chem. Soc. 2010, ASAP.

Ar–PdIILn

CF3+ oxidation

Ar–PdIVLn

CF3

nucleophilic attack on CF3+

Ar–CF3

PdIILnreductive

elimination

! TFA is necessary for reactivity

! Cu(OAc)2 is not necessary for reactivity, however it provides a 30% bump in yield

! Cu(OAc)2 could be a scavenger for the dibenzothiophene byproduct as a Lewis Acid

! Dibenzothiophene byproduct could also reduce PdII to Pd0 and Cu(OAc)2 could act as a reoxidant

Enantioselective C–H Bond Activation

Enantioselective C-H Activation: Recent Developments

! Jin-Quan Yu has published two recent examples of desymmetrizing aryl functionalization

Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2008, 47, 4882.

DGH H R–B(OH)2 or olefin

PdII catalyst/ chiral amino acid ligand

DGH R

! First example involved alkylation using boronic acids

NMeMe

10 mol% Pd(OAc)23 equiv, BuB(OH)2

1 equiv Ag2O, 0.5 equiv BQTHF, 60 °C, 20 h

CO2H

HN O

O-(–)-Menthyl

20 mol%

NMeMe

Bu

91% yield, 87% ee11 examples from 43-96% yield

and from 54-95% ee

Enantioselective C-H Activation: Recent Developments

! Stereochemical model for desymmetrizing alkylation reaction

Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2008, 47, 4882.

PdN

o-Tol (large)

H (small)

Me

H

OAc

O

N

HO

H

O(–)-Menthyl-O

PdN

H (small)

o-Tol (large)

Me

H

OAc

O

N

HO

H

O(–)-Menthyl-O

Favored Disfavored

PdN

o-Tol (large)

H (small)

Me

O

N

HO

H

O(–)-Menthyl-O

BuB(OH)2 Pd0N

MeMe

Bu

Enantioselective C-H Activation: Recent Developments

! Jin-Quan Yu has published two recent examples of desymmetrizing aryl functionalization

Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460.

DGH H R–B(OH)2 or olefin

PdII catalyst/ chiral amino acid ligand

DGH R

! Second example involved olefination

CO2Na

5 mol% Pd(OAc)2styrene (unknown equiv)

0.5 equiv KHCO3, 0.05 equiv BQt-amyl alcohol, 1 atm O2, 90 °C, 48 h

Me CO2H

HNBoc

10 mol%

CO2H

73% yield, 97% ee19 examples from 35-74% yield

and from 58-97% ee

MeMe

Me

Ph

Enantioselective C-H Activation: Recent Developments

! Bergman and Ellman have published a few examples of enantioselective intramolecular cyclizations

Thalji, R. K.; Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc. 2004, 126, 7192.Harada, J.; Thalji, R. K.; Bergman, R. G.; Ellman, J. A. J. Org. Chem. 2008, 73, 6772.

5 mol% [RhCl(coe)2]2,15 mol% chiral ligandtoluene 50 °C to reflux

X

BnN R1

R2

R3

X = CH2, O, N

X

R3

R2

R1BnN

O

OP NR2

numerous examplesgenerally high yields and ee's

40-96% yield, 70-96% eeonly syn diastereomer observed

Ph

MeBnN

O

Me

MeBnN

N

Me

BnNMe

O

Me

MeBnN

Me

80% yield, 91% ee90% yield, 70% ee99% yield, 96% ee98% yield, 90% ee

Enantioselective C-H Activation: Recent Developments

Harada, J.; Thalji, R. K.; Bergman, R. G.; Ellman, J. A. J. Org. Chem. 2008, 73, 6772.

R1 NBn

H

X R2

R3

R1 N

H

X R2

R3

Bn

RhI

X R2

R3RhIII

BnR1H

XR2

R3RhIII

BnR1

H

X

RhIII

BnR1

H

R2

R3

X

R3

R2

R1BnN

HRhI

pre-coordination

oxidativeinsertion

olefin coordination

migratory insertion

reductiveelimination

Enantioselective C-H Activation: Recent Developments

! Bergman and Ellman have published a few examples of enantioselective intramolecular cyclizations

Thalji, R. K.; Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc. 2004, 126, 7192.Harada, J.; Thalji, R. K.; Bergman, R. G.; Ellman, J. A. J. Org. Chem. 2008, 73, 6772.

5 mol% [RhCl(coe)2]2,15 mol% chiral ligandtoluene 50 °C to reflux

X

BnN R1

R2

R3

X = CH2, O, N

X

R3

R2

R1BnN

O

OP NR2

numerous examplesgenerally high yields and ee's

40-96% yield, 70-96% eeonly syn diastereomer observed

Ph

MeBnN

O

Me

MeBnN

N

Me

BnNMe

O

Me

MeBnN

Me

80% yield, 91% ee90% yield, 70% ee99% yield, 96% ee98% yield, 90% ee

Enantioselective C-H Activation: Recent Developments

! A similar example using benzimidazoles

Tsai, A. S.; Wilson, R. M.; Harada, H.; Bergman, R. G.; Ellman, J. A. Chem. Commun. 2009, 3910.

10 mol% [RhCl(coe)2]2,19 mol% chiral ligandTHF 135 or 175 °C

10 examples71-92% yield, 53-98% ee

80% yield, 91% ee83% yield, 53% ee91% yield, 97% ee89% yield, 98% ee

N

N

R3

R1

R2N

NR1

R2

R3

P P

H

H

tBu tBu

N

N

Me

N

N

Ph

N

N

Me

N

NPh

Ph

Me

F3C