ch14c-finite eelement modeling of structure-beam

Upload: jose-haro

Post on 04-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    1/19

    1

    Element Matrices in Global Coordinates:

    Coordinate Transformation

    Transformation Matrix of Axial Deformation and Bending of

    Beam on Plane

    Nodal Displacement in Global Coordinate System

    Nodal Displacement in Local Coordinate System

    3U

    2U

    i

    jY

    X

    4U

    x5

    U 6

    U

    1U

    2u

    5u

    i

    j

    y x 3u

    6u

    1u

    4u

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    2/19

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    3/19

    3

    }{}{

    }{}{

    654321

    654321

    UUUUUUU

    uuuuuuu

    T

    T

    66

    654321

    1.....

    ....

    ....

    ...1..

    ....

    ....

    ][

    -

    -=

    CS

    SC

    CS

    SC

    R

    UUUUUU

    (14.28)

    )()(222

    ijijYYXXL -

    L

    YY

    L

    XXijij

    -== sincos

    Note: If ][][,0 IR .Energy and Virtual Work in Global Coordinates

    ]][[][][ RkRK T= ]][[][][ RmRM T=

    }{][}{ pRP T

    For each element

    L

    YYS

    L

    XXC

    YYXXL

    ij

    ij

    ijije

    -=

    -=-

    sin

    cos

    )()(222

    ]][[][][ 66 eeT

    ee TkTK

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    4/19

    4

    ]][[][][66 ee

    T

    ee RmRM

    }{][}{ 16 eT

    e pRP

    }}{{

    }]{[}{2

    1

    }]{[}{2

    1

    , eeenc

    ee

    T

    ee

    ee

    T

    ee

    PUW

    UMUT

    UKUV

    &&

    Note: If 0 , then ][][ IR ][][ kK = ][][ mM = }{}{ pP = Energy and virtual wok of element in system displacements:

    Axial Deformation and Bending of Beam on Plane

    }]{[}{2

    1 )(UKUV

    eT

    e neeTenne LKLK 666)( ][][][][

    }]{[}{2

    1 )(

    UMUT

    eT

    e ]][[][][)(

    ee

    T

    enn

    e

    LMLM enc

    W,

    }{}{)(eT

    PU }{][}{ 1)(

    eT

    ene

    PLP :n system DOF

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    5/19

    5

    Total energy and virtual wok of system (structure)

    =

    =

    ==

    NE

    e

    eT

    NE

    e

    e

    UMU

    TT

    1

    )(

    1

    }]{[}{2

    1 &&

    }]{[}{2

    1 UMU

    T && =

    = NEe

    eMM1

    )( ][][

    =

    =

    ==

    NE

    e

    eT

    NE

    ee

    UKU

    VV

    1

    )(

    1

    }]{[}{

    2

    1

    }]{[}{2

    1UKU

    T =

    = NEe

    eKK

    1

    )(][][

    }{}{1

    , ext

    TNE

    eencnc

    PUWW =

    =NE

    eext

    eT PPU1

    )( }{}{}{

    }{}{ PU T }{}{}{1

    )( ext

    NE

    e

    e PPP = }{

    }{}{}{P

    U

    V

    U

    T

    U

    T

    dt

    d

    -

    & Lagrange Equations

    }{}]{[}]{[ PUKUM && System (Structural) Equations of Motion

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    6/19

    6

    Summary

    Potential Energy of Element (Beam Bending)

    }]{[)()()()(),(

    4

    3

    2

    1

    4321v

    v

    v

    v

    v

    xxxxtxv Y

    = y

    1441412

    2

    41

    4321

    }{)],([)]([),(

    }{)]([}{),(

    =-

    =-

    -

    -

    vyxBxx

    yx

    utx

    vx

    x

    yv

    xxxx

    y

    x

    vytxu

    x y

    yy

    BeamForEDvBD

    txEtxxx

    a][]{][][

    ),(),(

    144111

    e

    dVBDBk

    vkv

    vdVBDBv

    dVV

    V

    T

    T

    V

    TT

    xV

    T

    x

    ]][[][][

    }]{[}{2

    1

    }){]][[][(}{2

    1

    2

    1

    ==== s

    }{}{}{)]()[,(),(),(

    }]{[}{2

    1}{][][}{

    2

    1),(

    2

    1

    00

    0

    2

    0

    pvdxvxtxpdxtxvtxpW

    vmvvdxAvdxtxvAT

    TL TTL

    nc

    TL

    TL

    r

    ==

    &&&&&

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    7/19

    7

    Lagrange Equations

    (1) }]{[}{

    2

    1ee

    T

    ee ukuV

    ]][[][][}]{[}{2

    1}]{[}{)2(

    e

    T

    eeee

    T

    eeeee RkRKUKUVURu

    ]][[][][}]{][{2

    1}]{[}{)3( )()(

    ee

    T

    e

    eeT

    eee LKLKUKUVULU

    ][][}]{[}{2

    14(

    1

    )(

    1

    NEe eTNEe e KKUKUVV) V }{}{}{]{}{}{}{

    1

    )(

    ext1

    , ext

    NE

    e

    eT

    nc

    TNE

    eencnc PPPPUWPUWW =

    (5) }{}{}{}{

    PU

    V

    U

    T

    U

    T

    dt

    d

    -

    &

    }{]]{[}]{[ PUKUM && Principle of Virtual Work

    (1) }]{[}{ee

    T

    ee ukuV

    ]][[][][}]{[}{}]{[}{)2(e

    T

    eeee

    T

    eeeee TkTKUKUVURu

    ]][[][][}]{][{}]{[}{)3( )()(ee

    T

    e

    eeT

    eee LKLKUKUVULU

    ][][}]{[}{)4(1

    )(=

    = NEe

    eT KKUKUV (5) 0

    inertianc WVW

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    8/19

    8

    14.8 Finite Element Solutions for Natural Frequencies and Modes

    a. A hand-crank 2-DOF solution based on the finite elementmodel

    b. The effect of increasing the number of degrees-of-freedom in a

    finite element model based on a consistent mass matrix.

    c. The effect of reducing out freedoms by using the Guyan

    reduction method.

    d. The comparison of lumped mass models with consistent mass

    models

    Example14.7 Accuracy of 2-DOF Model

    a. One Element

    Element

    DOF SystemDOF1 Constrained

    2 Constrained

    3 1

    4 2

    =

    -

    -

    -

    -0

    0

    46

    612

    422

    22156

    4202

    1

    23

    2

    1

    2 U

    U

    LL

    L

    L

    EI

    U

    U

    LL

    LAL (1)

    ),v( tx

    1U

    2U

    L

    3 4 1 2

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    9/19

    9

    b. Natural Frequencies

    0}]{[}]{[ uKuM && (2)ttU wcos)( = (3)

    }0{}]{[ fMK EI

    AL

    240

    42rm = (4)0]det[ MK m

    - --- - 00422 2215646 612det 21

    22 ffm LL LLL L (5)

    0)226()44)(15612( 222 mLLLL (6)

    88457.2

    1097147.2

    2

    2

    1 -

    mm

    =

    =4

    2

    2

    4

    2

    1

    52.1211

    4802.12

    AL

    EI

    AL

    EI

    rwrw

    2/1

    42

    2/1

    41

    81.34

    533.3

    =

    =

    AL

    EI

    AL

    EI

    rw

    rw

    2/1

    42

    2/1

    41

    03.22

    516.3

    =

    =

    AL

    EI

    AL

    EI

    exact

    exact

    rw

    rw (7)

    FE Model Continuum Model

    Comment:

    exactFEM)()(

    11 w>

    exactFEM)()(

    22 w>

    Why? The FEM model is a constrained model. Therefore it is stiffer

    than a real structure.

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    10/19

    10

    Example 14.10 Comparison of Consistent Mass Finite Element Models

    of a Uniform Cantilever Beam with Continuum Model

    1ILAE r

    Figure 14.1. Finite element model of uniform cantilever beam.

    Table 14.1 Comparison of Consistent Mass Finite Element Models of a

    Uniform Cantilever Beam with Continuum Model

    Ne

    Mode

    No. 1 2 3 4 5

    Exact

    (Reference 14.1)

    1 3.53273 3.51772 3.51637 3.51613 3.51606 3.51602

    2 34.8069 22.2215 22.1069 22.0602 22.0455 22.0345

    3 75.1571 62.4659 62.1749 61.9188 61.6972

    4 218.138 140.671 122.657 122.320 120.903

    5 264.743 228.137 203.020 199.860

    6 527.796 366.390 337.273 298.566

    7 580.849 493.264 416.991

    8 953.051 715.341 555.165

    9 1016.20 713.079

    10 1494.88 890.732

    12

    3

    4 1

    2 5 6

    Element coordinates

    System coordinates

    )1( )1( -e

    N )( eN

    1L

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    11/19

    11

    Example 14.11 Cantilever Beam

    DOF condensed out: 3, 4

    Table 14.2 Frequencies Obtained by Using Guyan Reduction to Reduce

    out Rotations of Uniform Cantilever Beams

    Ne

    Mode

    No. 1 2 3 4 5

    Exact

    (Reference 14.1)

    1 3.56753 3.52198 3.51699 3.51628 3.51611 3.51602

    2 22.2790 22.2362 22.0946 22.0573 22.0345

    3 62.6685 62.9703 62.2180 61.6972

    4 123.545 124.725 120.903

    5 205.277 199.860

    Comment

    -exactFEM

    l> - as the number of elements increases, the error becomes smaller- the higher modes have larger errors

    4 12 3 5

    5.01

    =L 5.02

    =L

    5

    5

    5 5

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    12/19

    12

    Lumped Mass Models

    Table 14.3 Frequencies of a Uniform Cantilever Beam Based onLumped Mass Models\

    Ne

    Mode

    No. 1 2 3 4 5

    Exact

    (Reference 14.1)

    1 2.44949 3.15623 3.34568 3.41804 3.45266 3.51602

    2 16.2580 18.8859 20.0904 20.7335 22.0345

    3 47.0284 53.2017 55.9529 61.6972

    4 92.7302 104.436 120.9035 153.017 199.860

    Comments

    -exactlumped

    l orexactlumped

    l- as the number of elements increases, the error becomes smaller- the higher modes have larger errors

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    13/19

    13

    Finite Element ProgramsGeneral Purpose Programs

    ADINA: Prof. K-J Bathe, MIT

    SAP- 4, 6, 8, 2000: Prof. E. L. Wilson, UC. Berkeley

    NASTRAN: NASA

    ANSYS, ABAQUS, COSMOS

    Special Purpose Programs

    STRUDL: Structural AnalysisNEABS: Nonlnear Earthquake Analysis Bridge System

    SHAKE: Prof. Schnable, EERC, U.C., Berkeley

    TAB/SAP86, ALGOR, GIFTS, IMAGES-3D, MSC/PAL, RM

    *MIDAS: Korea

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    14/19

    14

    Comments

    (1) The displacement functions for truss and beam elements are

    derived from the equation of motion under free load, but those for

    other elements are assumed.

    ((11))The static analysis of a structure consisted of truss or beamelements by the FEM gives the exact solution.

    The dynamic analysis does not.

    (2)Numbering nodes(3)Storage methods

    Controls all sub-programs- half-bandwidth method: Building- skyline method: Bridge(2-Bay)

    (4)Structural analysis programs compute ]det[aa

    K the stiffness

    matrix after the boundary conditions are imposed, to check the

    input data.

    Numerical (Approximate) Solution of Boundary Value Problem

    BCce)stress(forSon0

    BCntdisplacemeSon0

    EquationalDifferentidomainin][

    2

    u1

    s

    ==

    B

    B

    fuL

    :L Linear Differential Operator

    Methods

    Finite Element Method (FEM):Physical approximation in domain

    Boundary Element Method (BEM):

    Physical approximation on boundary

    Efficient for problems in infinite domain

    Finite Difference Method (FDM):

    Mathematical approximation in domain

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    15/19

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    16/19

    16

    AApppplliiccaattiioonnssoofftthheeFFiinniitteeEElleemmeennttMMeetthhoodd

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    17/19

    17

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    18/19

    18

  • 8/13/2019 Ch14C-Finite Eelement Modeling of Structure-Beam

    19/19