chapter 08 risk and rate of return by:s.zakir abbas zaidi 1 fundamental of financial management

42
Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Upload: gavin-griffith

Post on 31-Dec-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Chapter 08Risk and Rate of Return

By:S.Zakir Abbas Zaidi

1

Fundamental of Financial

Management

Page 2: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Key Concepts and Skills

• Know how to calculate expected returns• Understand the impact of diversification• Understand the systematic risk principle• Understand the security market line• Understand the risk-return trade-off

2

Page 3: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Simple Returns• The return from holding an investment over some

period – say, a year – is simply any cash payments received due to ownership, plus the change in market price, divided by the beginning price.1 You might, for example, buy for $106 a security that and one year from worth $107 one year later. The return would be ($107 + $106)/$100 = 1%.

3

Page 4: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Expected Returns

• Expected returns are based on the probabilities of possible outcomes• In this context, “expected” means “average” if the process is

repeated many times• The “expected” return does not even have to be a possible return

4

n

iiiRpRE

1

)(

Page 5: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Example: Expected Returns

• Suppose you have predicted the following returns for stocks C and T in three possible states of nature. What are the expected returns?

• State Probability C T• Boom 0.3 0.15 0.25• Normal 0.5 0.10 0.20• Recession ??? 0.02 0.01

• E(RC) = .3(.15) + .5(.10) + .2(.02) = .099 OR 9.9%

• E(RT) = .3(.25) + .5(.20) + .2(.01) = .177 OR 17.7%

5

Page 6: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Variance and Standard Deviation

• Variance and standard deviation still measure the volatility of returns• Using unequal probabilities for the entire range of possibilities• Weighted average of squared deviations

6

n

iii RERp

1

22 ))((σ

Page 7: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Example: Variance and Standard Deviation

• Consider the previous example. What are the variance and standard deviation for each stock?

• Stock C2 = .3(.15-.099)2 + .5(.1-.099)2 + .2(.02-.099)2

= .002029 = .045

• Stock T2 = .3(.25-.177)2 + .5(.2-.177)2 + .2(.01-.177)2 = .007441 = .0863

7

Page 8: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Use of Standard Deviation Information• So far we have been working with a discrete (noncontinuous) probability distribution, one where a

random variable, like return, can take on only certain values within an interval. In such cases we do not have to calculate the standard deviation in order to determine the probability of specific outcomes. To determine the probability of the actual return in our example being less than zero, we look at the shaded section of Table 5.1 and see that the probability is 0.05 + 0.10 = 15%.

• The procedure is slightly more complex when we deal with a continuous distribution.• Suppose that our return distribution had been approximately normal with an expected return equal

to 9 percent and a standard deviation of 8.38 percent. Let’s say that we wish to find the probability that the actual future return will be less than zero. We first determine how many standard deviations 0 percent is from the mean (9 percent). To do this we take the difference between these two values, which happens to be −9 percent, and divide it by the standard deviation. In this case the result is −0.09/0.0838 = −1.07 standard deviations. (The negative sign reminds us that we are looking to the left of the mean.) In general, we can make use of the formula

8

Page 9: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Use of Standard Deviation Information• So far we have been working with a discrete (noncontinuous) probability distribution, one where a

random variable, like return, can take on only certain values within an interval. In such cases we do not have to calculate the standard deviation in order to determine the probability of specific outcomes. To determine the probability of the actual return in our example being less than zero, we look at the shaded section of Table 5.1 and see that the probability is 0.05 + 0.10 = 15%.

• The procedure is slightly more complex when we deal with a continuous distribution.• Suppose that our return distribution had been approximately normal with an expected return equal

to 9 percent and a standard deviation of 8.38 percent. Let’s say that we wish to find the probability that the actual future return will be less than zero. We first determine how many standard deviations 0 percent is from the mean (9 percent). To do this we take the difference between these two values, which happens to be −9 percent, and divide it by the standard deviation. In this case the result is −0.09/0.0838 = −1.07 standard deviations. (The negative sign reminds us that we are looking to the left of the mean.) In general, we can make use of the formula

9

Adobe Acrobat Document

Page 10: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Another Example

• Consider the following information:• State Probability Ret. on ABC, Inc.• Boom .25 .15• Normal .50 .08• Slowdown .15 .04• Recession .10 -.03

• What is the expected return?• What is the variance?• What is the standard deviation?

10

Page 11: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Coefficient of Variation

• Coefficient of Variation StockC = 0.045/.099 = 0.45

• Coefficient of Variation StockT = 0.0863/0.177= 0.49

• Thus, StockT is more riskier than Stock

C on the basis of this criterion.

11

Page 12: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

The Scale Problem: an Example

Potential ReturnsProb ABC XYZ10% -12% -24%15% -5% -10%50% 2% 4%15% 9% 18%10% 16% 32%

E(R) 2.0% 4.0%Variance 0.00539 0.02156Std. Dev. 7.34% 14.68%C.V. 3.6708 3.6708

Is XYZ really twice as risky as ABC?

No!

Page 13: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Measuring Stand-Alone Risk

• Standard deviation measures the stand-alone risk of an investment.• The larger the standard deviation, the higher the probability that

returns will be far below the expected return.• Coefficient of variation is an alternative measure of stand-alone risk.

Page 14: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Portfolios

• A portfolio is a collection of assets• An asset’s risk and return are important to how the stock affects the

risk and return of the portfolio• The risk-return trade-off for a portfolio is measured by the portfolio

expected return and standard deviation, just as with individual assets

14

Page 15: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

The Expected Return of a Portfolio

Page 16: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Example: Portfolio Weights

• Suppose you have $15,000 to invest and you have purchased securities in the following amounts. What are your portfolio weights in each security?

• $2,000 of DCLK• $3,000 of KO• $4,000 of INTC• $6,000 of KEI

16

•DCLK: 2/15 = .133•KO: 3/15 = .2•INTC: 4/15 = .267•KEI: 6/15 = .4

Page 17: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Portfolio Expected Returns• The expected return of a portfolio is the weighted

average of the expected returns of the respective assets in the portfolio

• You can also find the expected return by finding the portfolio return in each possible state and computing the expected value as we did with individual securities

17

m

jjjP REwRE

1

)()(

Page 18: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Example: Expected Portfolio Returns• Consider the portfolio weights computed previously. If the individual

stocks have the following expected returns, what is the expected return for the portfolio?

•DCLK: 19.65%•KO: 8.96%• INTC: 9.67%•KEI: 8.13%

• E(RP) = .133(19.65) + .2(8.96) + .267(9.67) + .4(8.13) = 10.24%

18

Page 19: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Determining Covariance and Correlation

• To find the risk of a portfolio, one must know the degree to which the stocks’ returns move together.

Page 20: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

The Portfolio Standard Deviation

• The portfolio standard deviation can be thought of as a weighted average of the individual standard deviations plus terms that account for the co-movement of returns

• For a two-security portfolio:

P w w r w w 12

12

22

22

1 2 1 2 1 22 ,

Page 21: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

An Example: Perfect Pos. Correlation

Potential ReturnsState of Economy Probability ABC XYZ 50/50 Portfolio

Recession 25% 2% 2% 2%Moderate Growth 50% 8% 8% 8%Boom 25% 14% 14% 14%Expected Return 8% 8% 8%Standard Deviation 4.24% 4.24% 4.24%Correlation 1.00

P . . . . . . . . . .5 0 0424 5 0 0424 2 100 0 0424 0 0424 0 5 0 5 0 04242 2 2 2

Page 22: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

An Example: Perfect Neg. Correlation

Potential ReturnsState of Economy Probability ABC XYZ 50/50 Portfolio

Recession 25% 2% 14% 8%Moderate Growth 50% 8% 8% 8%Boom 25% 14% 2% 8%Expected Return 8% 8% 8%Standard Deviation 4.24% 4.24% 0.00%Correlation -1.00

P . . . . . . . . . .5 0 0424 5 0 0424 2 100 0 0424 0 0424 0 5 0 5 0 002 2 2 2

Page 23: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

An Example: Zero Correlation

Potential ReturnsState of Economy Probability ABC XYZ 50/50 Portfolio

Recession 25% 2% 2% 2%Moderate Growth 50% 8% 2% 5%Boom 25% 14% 2% 8%Expected Return 8% 2% 5%Standard Deviation 4.24% 0.00% 2.12%Correlation 0.00

P . . . . . . . . .5 0 0424 5 0 0424 2 0 0 0424 0 0424 0 5 0 5 0 02122 2 2 2

Page 24: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Determining Covariance and Correlation (cont'd)

• Covariance• The expected product of the deviations of two returns from their means

• Covariance between Returns Ri and Rj

• Estimate of the Covariance from Historical Data

• If the covariance is positive, the two returns tend to move together.• If the covariance is negative, the two returns tend to move in opposite

directions.

( , ) [( [ ]) ( [ ])] i j i i j jCov R R E R E R R E R

, ,

1( , ) ( ) ( )

1

i j i t i j t jtCov R R R R R R

TN

Page 25: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Determining Covariance and Correlation (cont'd)

• Correlation• A measure of the common risk shared by stocks that does not depend on their

volatility

• The correlation between two stocks will always be between –1 and +1.

( , )( , )

( ) ( )i j

i ji j

Cov R RCorr R R

SD R SD R

Page 26: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Diversification & Correlation

•The extent to which adding stocks to a portfolio reduces its risk depends on the degree of correlation among the stocks: The smaller the correlation coefficients, the lower the risk in a large portfolio. If we could find a set of stocks whose correlations were zero or negative, all risk could be eliminated. However, in the real world, the correlations among the individual stocks are generally positive but less than -1.0, so some but not all risk can be eliminated.

26

Page 27: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Variance, Correlation and Beta from Historical Data

Year X M X^2 M^2 (X-Avg) (M - Avg) (X -Avg).(M -Avg)

1 14% 12% 0.020 0.014 6% 7% 0.41%

2 19% 10% 0.036 0.010 11% 5% 0.53%

3 -16% -12% 0.026 0.014 -24% -17% 4.13%

4 3% 1% 0.001 0.000 -5% -4% 0.21%

5 20% 15% 0.040 0.023 12% 10% 1.18%

8% 5% 0.1222 0.0614 0% 0% 6.45%

SD 0.15 0.109 COV 1.61%

CORR 0.98

Beta 1.35

Page 28: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

The Concept of Beta

• A stock’s risk consists of two components, market risk and diversifiable risk

• Diversifiable risk can be eliminated by diversification• Beta Coefficient, b – is a metric that shows the extent to which a

given stock’s returns move up and down with the stock market. Beta thus measures market risk.

28

Page 29: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Calculation of beta

29

Microsoft Excel Worksheet

Page 30: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Unsystematic risk Vs systematic Risk

Diversifiable Risk• That part of a security’s risk associated with random events; it can be

eliminated by proper diversification. This risk is also known as company specific, or unsystematic, risk.

Market Risk• The risk that remains in a portfolio after diversification has eliminated

all company-specific risk. This risk is also known as nondiversifiable or systematic or beta risk.

Page 31: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Beta measures market Risk

Page 32: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

THE RELATIONSHIP BETWEEN RISK AND RATES OF RETURN

Page 33: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management
Page 34: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Security Market Line(SML) Equation

Page 35: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Betas: Relative Volatility of Stocks H, A, and L

Page 36: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

The Security Market Line (SML)

Page 37: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Shift in the SML Caused by an Increase in Expected Inflation

Page 38: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Shift in the SML Caused by Increased Risk Aversion

Page 39: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Beta of a Portfolio

• The beta of a portfolio is a weighted average of its individual securities’ betas:

• For example, if an investor holds a $100,000 portfolio consisting of $33,333.33 invested in each of three stocks, and if each of the stocks has a beta of 0.7, then the portfolio’s beta will be

Page 40: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Exercise

Page 41: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Quiz # 04• Define the following terms using graphs or equations to illustrate your

answers whenever feasible:

Page 42: Chapter 08 Risk and Rate of Return By:S.Zakir Abbas Zaidi 1 Fundamental of Financial Management

Quiz # 04