chapter 1 part 2.1-noise v2

Upload: jun-jun

Post on 05-Jul-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    1/48

    CHAPTER 1 (cont…)CHAPTER 1 (cont…)Part 2.1Part 2.1 NoiseNoise

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    2/48

    Objectives

    • To differentiate the types of noise

    • To cac!ate the ther"a noise

    #enerated by a resistor• To cac!ate the si#na$to$noise ratio

    (%&R) and noise fi#!re for an

    a"pifier

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    3/48

    'ect!re overvie

    • Types of noise

    • Ther"a noise• %i#na$to$noise ration (%&R) and

    noise fi#!re

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    4/48

    Introduction

      Noise can be defined as 

    • undesired random variations that interface with the

    desired signal and inhibit communication.

     Where does noise originate in a communication

    system?

    • Channel @ transmission medium

    • Devices @ Equiments 

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    5/48

    Contd***

    Noise Effect• !ne of the main limiting factor in

    obtaining high erformance of a

    communication system.• Decrease the quality of the receiving

    signal.

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    6/48

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    7/48

    Contd***

    • &oise+ interference and distortion, Noise

    • Refers to rando" and !npredictabeeectrica si#nas prod!ced by nat!raprocess*

    • %!peri"posed on infor"ation bearin#si#na+ the "essa#e partiay corr!pted ortotay erased*

    • Can be red!ced by fiterin# b!t canttotay ei"inated*

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    8/48

    Contd***

    , Interference

    • A conta"ination by e-traneo!s si#nas

    fro" h!"an so!rces (e*#* fro" otherT-+ poer ines+ "achineries)

    • Often occ!rred in radio syste" hoseR- antenna intercept severa si#nas

    at the sa"e ti"e*

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    9/48

    Contd***

    , Distortion

    • The si#na pert!rbation ca!sed byi"perfect response of the syste" to the

    desired si#na*• .isappear hen the si#na is t!rned$off*

    • Can be corrected by the e/!ai0ers*

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    10/48

    &oise Re"edies

    RE.2CE 3A&.45.TH

    5&CREA%E TRA&%65TTER% PO4ER

    'O4 &O5%E A6P'575ER%

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    11/48

    " # $ C % E & N ! $ ' E

    ( t u b e s

    ' ) ! * N ! $ ' E

    ( e l e c t r o n i c s y s t e m( e q u i m e n t

    * ) E & + , # N ! $ ' E

    ( t r a n s i s t o r  ( d i o d e

    ( r e s i s t o r s

    $ N * E & N , #

    , * + ! ' - ) E & $ C N ! $ ' E

    ( N o i s e b l a n . i n g

    ( l i g h t i n g

    ' - , C E N ! $ ' E

    ( s o l a r n o i s e( s . y n o i s e

    + , N + , D E N ! $ ' E

    ( a u t o m o b i l e e n g i n e( e l e c t r i c m o t o r  

    ( c o m u t e r  

    E / * E & N , #

    N ! $ ' E

    y!es of N"ISE

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    12/48

    Contd***

    , &oise #enerated o!tside the eectronice/!ip"ent !sed*

    , %o!rce can be terrestria ore-traterrestria (E*#* the earth+ the "oon+the s!n+ the #aa-ies)*

    , .o not effect the entire co""!nication

    fre/!ency spectr!" b!t affect certainfre/!encies at certain ti"es and ocations*, Types8 6an "ade noise+ space noise+

    at"ospheric noise*

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    13/48

    Contd***

    a* 6an "ade noiseo Produced by mankind

    o Source : Spark-producing mechanisms

    oImpulsive in nature & contains a widerange of frequencies propagatedthrough space.

    o Sometimes called industrial noise

    metropolitan & industrial area!.

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    14/48

    Contd***

    b* %pace noiseo "he sun is a powerful source of

    radiation.

    oStars also radiate noise calledcosmic# stellar or sky noise.

    o Important at higher frequencies$% and above! because

    atmospheric noise dominates atlower frequencies.

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    15/48

    Contd***

    c* At"ospheric noiseo "he principle source is lightning

    a static electricity discharge.

    o'an propagate for a long distancesthrough space.

    o"he lightning energy relatively lowfrequency up to several (%)!.

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    16/48

    Contd***

    $ Eectronic noise #enerated by thepassive and active co"ponentsincorporated in the desi#ns of

    co""!nications e/!ip"ent*$ Types 8 %hot noise+ fic9er noise+

    ther"a noise*

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    17/48

    Contd***

    • %hot &oiseo Ca!sed by a rando" arriva of carriers

    (hoes and eectrons) at the o!tp!t of aneectronic devices*

    o Rando"y varyin# : s!peri"posed ontoany si#na present*

    o %o"eti"es caed transistor noise*

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    18/48

    Contd***

    • 7ic9er noise

    o *+cess noise that related to dc

    current ,ow through imperfectconductors.

    o "he real nature of ,icker noise not yet fully understood.

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    19/48

     Thermal Noise

    • "his type of noise arise due to therandom motion of free electrons in theconducting medium such as resistor.

    • *ach free electron inside a resistor isin motion due to its thermal energy.

    • "he path of electron motion is randomand )ig-)ag due to collision with thelattice structure.

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    20/48

    Contd***

    • "he net eect of the motion of allelectrons constitutes an electriccurrent ,owing through the resistor .

    • It causes the rate of arrival of electronat either end of a resistor to varyrandomly and thereby varies theresistors potential dierence. "hat is

    the direction of current ,ow is randomand has a )ero mean value.

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    21/48

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    22/48

    • Thermal noise also known as Johnson noise or white noise.

    • In 1928, J.B. Johnson founded that Noise Power is directproportionall with temperature and !andwidth.

    • Noise spectrum densit is constant for all "alue of

    fre#uenc to 1$12 Hz .

    •  

    %here

     P n  & noise power 'Watt (

    k   & Bolt)man constant '1.*8 + 1$2*  J  - K (

    T   & conductor temperature ' K ( /dd 20* to

     B  & Bandwidth of sstem ' Hz (

    Pn =k

    T B

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    23/48

    • #rom the stu$y of circuit theory% therelationshi! &et'een source resistor an$matche$ loa$ un$er maximum !o'er transfer

    is 'hen( 

    n  )( 

    *  .

    • he total of noise source !o'er is P n .

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    24/48

    kTBRV  

    kTBRV  

    kTB R

    V  

    kTB P  P 

     R

    V  

     R

    V  

     R

    V   P 

    V  

    V   R R

     R

    V  

    n

    n

    n

     Ln

    n

    n

     L

     L

    n

    n

     Ln

     L

     L

    4

    4

    4

    therefore

     and4

    2,VatPower

    2

    2

    2

    2

    2

    2

    L

    =

    =

    =

    ==

    =   

      

    ==

    =+=

    3nown as 4n & 45 & 4,

    Therefore "olta6e at 45  is 

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    25/48

    E-a"pe 1

    • A receiver has a BW of 10 kHz

    with the 4.14 x 10-17 W noise

     power. A resistor that matches thereceiver input impedance is

    connected across its antenna

    terminals. Calculate the resistor’s

    temperature in Celsius.

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    26/48

    E-a"pe ;

    • A 1 kΩ resistor is connected across

    1 kΩ antenna input of a television

    receiver. The BW of the receiver is 5MHz and the resistor at the room

    temperature 293 K. Calculate the

    noise power and noise voltage

    applied to the receiver input.

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    27/48

    +o' to ,uantifying the Noise-

    • The presence of noise de#rades theperfor"ance of anao# and di#itaco""!nication*

    • The e-tent to hich noise affects theperfor"ance of co""!nication syste"s is"eas!red by the o!tp!t si#na to noise poerratio or %&R (for anao# co""!nication

    syste"s) and probabiity of error (for di#itaco""!nication syste"s)*

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    28/48

    Contd***

    • The si#na /!aity at the inp!t of the receiver ischaracteri0ed by the inp!t si#na to noise ratio*3eca!se of the noise so!rces ithin the receiver+hich is introd!ced d!rin# the fiterin# anda"pification processes+ the %&R at the o!tp!t of

    the receiver i be oer than at the inp!t of thereceiver*

    • This de#radation in the si#na /!aity ischaracteri0ed in ter"s of noise e/!ivaentbandidth+ & 

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    29/48

    Noise Calculation

    • %&R is ratio of si#na poer+ %  to noise poer+ & *

    • &oise 7actor+ 7 

    • &oise 7i#!re+ &7 

    dB N 

    S SNR   log10=

    oo

    ii

     N S 

     N S  F  =

    )(log10

    log10

    dB N S 

     N S 

     F  NF 

    oo

    ii=

    =

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    30/48

    &oise Cac!ation 5n A"pifier

    o To types of "ode

    $ &oise a"pifier 6ode*

    $ &oiseess a"pifier "ode* 

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    31/48

    nalysis of Noise m!lifier /o$el

    )()(

    and 

    0

    0

    aii

    a

    iai

    i

     N  N GG N  N G N GN  N 

    GS S 

    +=+=+=

    =

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    32/48

    nalysis of Noiseless m!lifier /o$el

    )(and 

    0

    0

    aii

    i

     N  N G N 

    GS S 

    +=

    =

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    33/48

    i

    ai

    i

    aii

    aii

    i

    i

    i

    i

     N 

     N 

     N 

     N  N 

     N  N G

    GS 

     N 

    SNR

    SNR F    +=+=

    +

    == 1

    )(0

    7N4$  7N4i

      /s known as  BkT  N  BkT  N eaiii

      ==  and 

    i

    e

    i

    e

    i

    ai

     BkT 

     BkT 

     N 

     N  F 

      +=+=+= 111Noise actor,

    Noise Temperature, ie  T  F T  )1(   −=

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    34/48

    nalysis of Casca$e Stages

    • Consi$er three t'o !orts in casca$e

    G3

    S o

     N o

    G1   F 2 , G2 , T e2

    antenna

    re(amlifier  demodulator amlifier  

     F 1, T 

    e1  F 

    3, T 

    e3

    S i

     N i

    T i 

     N ai1

      N ai2

      N ai3

    S 1

     N 1

    S 2

     N 2

      7ta6e 1 7ta6e 2 7ta6e *

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    35/48

    )(

    )(

    )(Power, Noise

     Power,Signal

    11

    11

    111

    11

    ei

    ei

    aii

    i

    T T kBG

     BkT  BkT G

     N  N G N 

    S GS 

    +=+=

    +==

    7ta6e 1

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    36/48

     BkT GT T kBGG

     N G N G

     N  N G N 

    S GGS GS 

    eei

    ai

    ai

    i

    22112

    2212

    2122

    12122

    )(

    )(Power, Noise

     Power,Signal

    ++=+=

    +===

    7ta6e 2

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    37/48

     BkT G BkT GGT T kBGGG

     N G N G

     N  N G N 

    S GGGS GS 

    eeei

    ai

    ai

    i

    332231123

    3323

    3230

    123230

    )(

    )(Power, Noise

     Power,Signal

    +++=

    +=

    +=

    ==

    7ta6e *

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    38/48

    Noise #actor% #

    i

    e

    i

    e

    i

    ei

    i

    eeei

    kBT GkBT GGT T kBGGGS GGG

     BkT S 

     N S 

     N 

    O

    itotal 

    T GG

    T G

    T T 

    kBT GGG

    kBT GkBT GGT T kBGGG

    SNRSNR F 

    eeei

    i

    i

    i

    O

    O

    i

    i

    12

    3

    1

    21

    123

    332231123

    )(

    )(

    332231123

    123

    +++

    =

    +++=

    =

    ==

    +++

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    39/48

    21

    3

    1

    2

    1

    0

    0

    21

    3

    1

    21

    21

    3

    1

    21

    )1()1(

    )1( therefore

    290 and 1If 

    1

    G G 

     F 

     F  F  F 

    T  F T 

     K T T T 

     F 

    T G G 

    T G 

    T  F 

    T G G 

    T G 

    T  F 

    TOTAL

    e

    i

    i

    e

    i

    e

    i

    e

    i

    e

    TOTAL

    i

    e

    i

    e

    i

    e

    i

    i

    TOTAL

    −+

    −+=∴

    −=

    °==+=

    +++=

    +++=

    3nown as the o"erall noise factor, T:T/5

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    40/48

    21

    3

    1

    21

    021

    3

    01

    2

    0

    1

    0

    21

    0

    3

    1

    0

    2

    0

    1

    0

    21

    3

    1

    2

    1

    1111

    11

    )1()1(

    GG

    G

    T T T 

    T GG

    T G

    GG

    G

    GG

     F 

    G

     F  F  F 

    ee

    eeTOTAL

    eeeeTOTAL

    ee

    eeTOTAL

    TOTAL

    ++=

    ++=

       

      

     −+

    +

       

      

     −+

    ++=+

    −+

    −+=

    /nd we can calculate noise temperature, T e

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    41/48

    12121

    3

    1

    21

    ...

    )1(...

    )1()1(

    −++

    −+

    −+=

    n

    n

    GGG

     F 

    GG

     F 

    G

     F  F  F 

    It can also !e shown that the o"erall noise fi6ure, F  

    and the effecti"e noise temperature, T e of n networks

    in cascade is 6i"en !;

    12121

    3

    1

    21

    ......

    ++++=n

    enee

    eeGGG

    GG

    G

    T T T 

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    42/48

    ransmission *oss% ttenuator

    • Every trans"ission "edi!" i prod!ce poeross*

    P o!t  = P in *

    Poer oss or atten!ated is #iven by thefooin# e/!ation8

    G P 

     P  L

    out 

    in  1==

    dB

    out 

    in

    dB  G P 

     P  L   −=  

     

      

     =   10log10

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    43/48

    Contd***

    4e aso can cac!ate by !sin# thisfooin# e/!ation>

    α =dB

     L

    %here

      ℓ & transmission medium len6th  α & attenuated constant

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    44/48

    E-a"pe ?

    Determine:

    a. Noise Figure for an equivalent

    temperature of 75 K (use 290 K for the reference temperature).

    b. Equivalent noise temperature

     for a Noise Figure of 6 dB.

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    45/48

    E-a"pe @

     For three cascaded amplifier stages,

    each with noise figure of 3dB and

     power gain of 10 dB, determine the

    total noise figure.

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    46/48

    E-a"pe

     An amplifier consists of three identical

    stages in tandem. Each stage having

    equal input and output impedances. For

    each stages, the power gain is 8 dB whencorrectly matched and the noise figure is

    6dB. Calculate the overall power gain and

    noise figure of the amplifier.

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    47/48

    t the en$ of this

    cha!ter% you shou$ &ea&le• To differentiate the types of noise

    • To cac!ate the ther"a noise#enerated by a resistor

    • To cac!ate the si#na$to$noise ratio

    (%&R) and noise fi#!re for ana"pifier

  • 8/16/2019 Chapter 1 Part 2.1-Noise v2

    48/48