chapter 1 structure and properties of metals and alloys 1995 studies in surface science and...

Upload: henrique-souza

Post on 03-Jun-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    1/66

    Ch a p te r 1

    S T R U C T U R E A N D P R O P E R T I E S O F M E T A L S A N D A L L O Y S

    1.1 A m icroscopic theory of so l ids

    1 .1 .1 Th e q u a n tu m th e o r y o f p u r e me ta l s

    I t i s imposs ib le to presen t in a s ing le chapte r an exac t theory of meta ls and a l loys ,

    o r o f p h e n o me n a , s u c h a s th o s e f o r min g th e b a s i s o f e l e c t r o n - s p e c t r o s c o p ie s , th a t a r e u s e d

    to s tudy and to es tab l ish the e lec t ron ic s t ruc ture of meta l l ic ca ta lys ts . However , i t i s f e l t

    th a t a b o o k o n c a ta ly s i s b y a l lo y s s h o u ld a t l e a s t in t r o d u c e s o me o f th e imp o r ta n t t e r ms

    (band s t ruc ture , dens i ty of s ta tes , photoemiss ion f rom the va lence band , e tc . ) on bas is o f

    s o me v e r y s imp le th e o r e t i c a l c o n s id e r a t io n s ; i t i s n o t o u r a mb i t io n to a c h ie v e mo r e th a n

    that.

    A l l mo d e r n b o o k s o n u n d e r g r a d u a te p h y s ic a l c h e mis t r y [ 1 - 3 ] o f f e r a n in t r o d u c t io n

    to q u a n tu m me c h a n ic s , wh ic h i s th e b a s i s o f th e c h e mic a l b o n d th e o r y . Th e r e a d e r i s th u s

    expec ted to be famil ia r wi th te rms such as the wave or s ta te func t ion (e .g . Z or ~ t ) , the

    Ha mi l to n ia n o r to ta l e n e r g y o p e r a to r I t / a n d th e Sc h r 6 d in g e r e q u a t io n :

    (/-~ - E) z = 0 (1)

    where E is the s teady s ta te to ta l energy of the sys tem, the s ta te o f which is descr ibed by

    func t ion Z . The to ta l energ y opera to r 121 can be sp l i t in to two par ts , the k ine t ic energ y

    opera tor T and the po ten t ia l energy opera tor V. Opera tor T is a di f f erent ia l o p e r a to r a n d

    thus equ a t ion 1 is a d i f fe ren t ia l equa t ion o f second order . The tex t book s [1-3] o f fe r a lso

    a n in t r o d u c t io n to th e f o r m o f f u n c t io n s Z f o r h y d r o g e n a to m, f o r th e h y d r o g e n - l ik e a to ms

    ( l i th ium, sod ium, po tass ium, e tc . ) and for func t ions (orb i ta ls ) o f some o ther a toms . With

    me ta l s a n d a l lo y s we a r e in te r e ste d in th e f o r m o f th e

    sol id

    o r

    crys tal orbi ta l s ~ .

    Le t u s

    summar ize some of the i r bas ic fea tures [4] .

    We sha l l mos t ly be in te res ted in meta ls o r a l loys in a c rys ta l l ine form. Such bodies

    d i s t in g u i s h th e ms e lv e s b y h a v in g a p e r io d ic p o te n t i a l V , s o i f we c o n s id e r a l in e a r o n e -

    d imens iona l sys tem of an in f in i te length and wi th a per iod ic i ty , i .e . la t t ice cons tan t , a , the

    e lec t ron dens i ty p , which is p ropor t iona l to the probabi l i ty o f f ind ing an e lec t ron in a un i t

    vo lu m e, i .e . g t*g t wh ere g t* is the com plex conju ga ted fo rm of ~ , wi l l be the sam e a t a l l

    p laces d i f fe r ing by a ; the re fore we s ta te tha t

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    2/66

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    3/66

    St ruc tu re and p rope r t i e s o f m e ta l s and a l l oys 9

    W e subs t i t u t e t he c rys t a l o rb i t a l by a l i nea r com bina t ion o f a tom ic o rb i t a l s I~ n

    n ind i ca t ing the i r p l ace

    w i t h

    Vrr = L.C.A.O. = n Cn *n (7)

    in t he Schr6d inge r equa t ion 1 and r ead i t a s :

    2 n C n ( f l - E) On -" 0 (8)

    To conve r t equa t ion 8 , w h ich i s a d i f f e r en t i a l equa t ion , i n to an a lgebra i c r e l a t i on be tw een

    num er i ca l va lues , w e m ul t i p ly i t by

    0*e and

    in tegra te ov er the space of N a to ms. In th is

    w ay , by w r i t i ng t7t i n an ex t ended fo rm ( the use fu lness o f it w i l l be seen im m edia t e ly ) , w e

    ob ta in t he r e l a t i on

    ]~n Cn { I **e (T "1- Vcrystal Uat- Uat) 0Pnd~ -

    g I

    **e *n

    d ' l : } = 0

    (9)

    T + Uat i s H ~ the Ha mil to nian of a f ree a to m o f the e le men t o f the chain and d 'c the

    elem ent of the space . Sub st i tu t ing th is exp ress ion for H ~ and ca l l ing Vcryst- Uat "- A V , w e

    ob ta in

    ]~n Cn {I 0*e

    ( H~

    AV ) *n d'l~- g I 0*e On

    d'c} = 0

    (10)

    W e n o w a s s u m e t h a t t h e o v e r l a p b e t w e e n

    *n

    and **e i s zero wh en n i s not equa l to e (n

    and e deno te d i f f e ren t pos i t i ons o f a tom s) , bu t i s un i ty w hen e equa l s n . Thus

    I 0*e *n d'c = o and I **n *n d'c = 1 (11 )

    Fur the r , i n ou r approx im a t ion w e keep on ly t he fo l low ing t e rm s o f equa t ion 10

    -- Eat (e=n) =

    I I ~ e H ~ Cn d1: (1 2)

    = 0 (ee:n)

    = 13 (e=n_+l)

    I *e m v *n =

    0 (e=n) (13)

    = 0 (e>n_+l)

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    4/66

    10 chapte r 1

    The second te rm (e=n) is ze ro because of the def in i t ion of the ' ze ro ' po ten t ia l energy . I f

    we choose n , somewhere in the cha in , we a re then le f t wi th a genera l equa t ion for Cn:

    (14)

    s ince a l l o ther te rms vanish in our approximat ion def ined by equa t ions 11 to 13 . Then

    a n + 1 + a n _ 1

    E = a + [3 (15)

    Cn

    Th e B lo c h th e o r e m c a n b e f u l f i l l e d b y t a k in g

    C,, = exp ( ik x) (16)

    s ince

    ~kx,, ikx -x

    0 = ~ e g O , ,= e . ~ e r e x g O ( x -x ,, ) (17)

    Th e t e r m r e p r e s e n te d b y th e s u mma t io n h a s th e p r o p e r t i e s o f th e f u n c t io n U( x ) . By

    subs t i tu t ing the express ion for Cn in equa t ion 15 the energy E is

    E ( k ) = a

    + [3 (e -~ + e +U'a)=a +213 co ska (18)

    Severa l f ea tures of th is equa t ion a re very in te res t ing . There a re N d if fe ren t va lues of k ,

    thus there a re N d if fe ren t c rys ta l o rb i ta ls ~k and N d if fe ren t energy leve ls . The leve ls E(k)

    form, for a la rge Ns , a quas i -cont inuous band of energ ies be tween

    Emax

    and

    Emin,

    a n d f r o m

    equa t ion 18 the band wid th is

    Emax-Em~n=4p

    (19)

    In o ther words , the band wid th is p ropor t iona l to the over lap or hopping in tegra l B . The

    (n-1)d orb i ta ls (n be ing the pr inc ipa l quantum number of va lence e lec t rons ) over lap less

    than do the ns orb i ta ls . In the rough approximat ion which we have cons idered , the bands

    are separa ted and the (n- l ) d -band is nar row and the (n) s -band is b road . The d-band has

    then 5N leve ls , bu t the s -band on ly N leve ls . The dens i ty of s ta tes be tween E and E+dE is

    as a consequence h igher in the d-band than in the s -band . These a re the main p ieces of

    informat ion which one needs in order to unders tand chapte r s 2 and 3 .

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    5/66

    Struc ture and proper t ies o f meta ls and a l loys 11

    E ( k )

    l

    - l ' t 0

    O

    k !

    O

    > N ( E )

    > N ( E )

    f i g u r e 1

    l ef t: E n e r g y a s a f u n c t i o n o f t h e w a v e - v e c t o r k, f o r a h y p o th e t i c a l o n e - d i m e n s i o n a l

    c r y s t a l ( a c h a i n o f a t o m s ) w i t h a la t t ic e c o n s t a n t a .

    r i g h t: D e n s i t y o f s t a t e s c u r v e , c o r r e s p o n d i n g t o E ( k ) s h o w n i n t h e le f t p a r t .

    The func t ion cos (k a ) i s de f ined over the in te rva l k f rom - r t /a to +r t /a and in f igure

    1 6 has a nega t ive va lue , an d tx is taken as the a rb i t ra ry ze ro . W here the s lope of the

    func t ion is s teep , the re a re on ly a few s ta tes ( i .e . few k ' s ) in a g iven range of energy , bu t

    wh e r e th e s lo p e i s lo w, a s in th e n e ig h b o u r h o o d o f g /a , th e r e a r e ma n y . I n o th e r wo r d s ,

    the d ens i ty of s ta tes N(E ) is a func t ion wh ich increases wi th (dE/dk) -1, as i s seen in f igure

    2 . We s h a l l me e t th e t e r m

    d e n s i t y o f s t a t e s

    a t many p laces in th is book .

    In the f ree e lec t ron approximat ion and for an one d imens iona l so l id cha in , ~k is

    equa l to A e ikx and the S chr6d inger equa t ion is used w i th V equa l to ze ro . I t r eads

    d2 ~ k 8 n 2m

    + ~ E q ~ k = 0

    d ~ h

    (20)

    Su b s t i tu t io n o f ~ k b y th e f u n c t io n o f f r e e e l e c t r o n s in th e Sc h r 6 d in g e r e q u a t io n p r o d u c e s

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    6/66

    12 chap te r 1

    k Z h 2

    E - (21)

    8~;2m

    w hich can be com pared w i th t he N ew ton ian r e l a t i on w h ich says t ha t E equa l s pZ /2m , w i th

    p be ing the m om entu m . Indeed , fo r f ree e l ec t rons t he m o m e ntu m p equa l s h k o r i n o the r

    w ords , k i s a m om en tum in un i t s o f h .

    E l k )

    - n k 0 k n

    G t3

    a 2 - 2r~ 1

    a 2

    a 2 + 2 1 3 2

    a l - 2 ~ 1

    a l + 2

    [31

    f i g u r e 2

    E k ) , d i s p e r s i o n f u n c t i o n s , f o r a

    h y p o t h e t i c a l o n e d i m e n s i o n a l

    c r y s t a l a t o m i c c h a in ) w i th tw o

    o r b i ta l s , c o r r e s p o n d i n g t o t h e

    e n e r g i e s z 1 a n d z2 o n e a c h

    a t o m .

    j 3 1 , j 3 2 < O ; I ~ 1 1 < I j% l

    The in t e rva l

    - n / a

    to

    n / a

    fo rm s a k - space in to w h ich a l l poss ib l e non-equ iva l en t k ' s

    a re p l aced ; i t i s ca l l ed t he f i r s t Br i l l ou in zone . W e have seen th rough our d i scuss ion o f t he

    Bloch theorem tha t k equa l s 2ng /N a , o r i n o the r w ords k i s r e l a t ed to t he r ec ip roca l l a t t i ce

    con stan t , a -1. Th e interv al

    - n / a

    to

    n / a

    i s t hus r ec ip roca l w i th r e spec t t o r ea l space . Because

    p equa l s hk , t h i s i n t e rva l i s a l so a m om entum space , i n to w h ich a l l poss ib l e s t a t e s , each

    c h a r a c t e r i z e d b y i t s e n e r g y a n d k - n u m b e r o r m o m e n t u m , a r e p l a c e d .

    In h ighe r approx im a t ions t han tha t co r r e spond ing to t he f r ee e l ec t ron m ode l , t he

    m om entum i s no t equa l t o hk . H ow ever , w i th r ega rd to va r ious fo rces F , hk s t i l l behaves

    l ike a m om entum , s ince F i s a lw ays equa l t o hk ' . The re fo re , k can be ca l l ed a pseudo-m o-

    m e n tum , i n un it s o f h . Th i s i s an im por t an t po in t fo r unde r s t an d ing the an g le - r e so lve d

    va lence -band pho toem iss ion , w h ich i s d i scussed in chap te r s 2 and 3 .

    Le t u s now m ake the s t ep f rom cha ins o f a tom s to tw o-d im ens iona l f l a t a r r ays .

    N ow , fo r a squa re l a t t i ce

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    7/66

    Struc ture and proper t ies o f meta ls and a l loys

    13

    ~ ,

    = P C r , ~ ~ , . , ~ (22 )

    r , s

    wi th

    O r , s

    = e X p

    i k r X r + i k s Y s ) (23)

    and the energy is

    E k ) = a +

    213(cosk~a + coskya )

    (24)

    and it forms a plane in the E(kx, ky) space (see f igure 3, under a) on the lef t)

    The f i r s t Br i l lou in zone shown under b) in f ig .3 is now two d imens iona l , a s i s a lso

    the whole k- space . I t i s o f ten usefu l to show the func t ion E(k) in a more s imple way .

    The n E(k) is ca lcu la ted for se lec ted va lues of k , fo r exam ple a long certa in l ines in the

    Br i l lou in zone , such as , f rom the po in t k (0 ,0) to the po in t k0 t /a ; 0 ) , e tc . , a s i s shown in

    f igure 3 le f t under c ) . The dens i ty of s ta tes cor responding to the energ ies be tween ~ + 413

    and o t - 4g is shown in the lower r igh t comer [4] .

    In th ree d im ens ions , wi th E (k x, k y , k z ) the p ic tures a re s l igh t ly more complica ted

    but no t conceptua l ly very d i f fe ren t .

    The mathemat ica l theory of g roups teaches us tha t in each space hav ing t rans la t i -

    o n a l s y mme t r y a n d in wh ic h Bo r n - Ka r ma n c o n d i t io n s h o ld , th e r e a r e a lwa y s 1 4 d i f f e r e n t

    Brava is la t t ices . Both the rea l and the rec iproca l o r k space a re spaces wi th a la t t ice , i .e .

    t r ans la t iona l symmetry , and th is means tha t each la t t ice type in one space mus t have a

    counte rpar t in the o ther ( i .e . r ec iproca l) space . For example , i t fo l lows tha t bcc ( rea l space)

    transla tes into fcc (reciproc al) and fcc ( real) translates into bcc ( reciprocal) , e tc . Fur t her ,

    i t f o l lo ws th a t th e v e c to r k a n d th e p s e u d o - mo me n tu m p h a v e in a c r y s ta l o f r e c ta n g u la r

    form the same d irec t ions in the rea l and in the rec iproca l space . This enables us to

    in d ic a te th e r e a l mo v e me n t o f e l e c t r o n s b y mo v e me n ts o f k - s t a t e s in th e r e c ip r o c a l s p a c e .

    This i s aga in an impor tan t s ta tement for the descr ip t ion and unders tanding of the angle -

    reso lved e lec t ron photo emiss io n . I f e lec t rons proceed in the k- space der ived , fo r exam ple ,

    f rom a cubic c rys ta l in a ce r ta in d i rec t ion , they do the same in the rea l c rys ta l too , and a t

    the sur face they cont inue to pass in to vacuum without r e f rac t ion because the kx ,ky-compo-

    nents a re prese rved . F igure 4 shows a Br i l lou in zone of an fcc rea l - space la t t ice .

    The func t ion E(k) , ca l led of ten the d ispers ion law, is usua l ly theore t ica l ly ca lcu la -

    ted for ce r ta in se lec ted va lues of k , fo r example , fo r k ' s a long wel l chosen l ines in te rcon-

    nec t ing im por tan t po in ts on the Br i l lou in zones . These po in ts a re denoted by le t te rs F , X,

    K, W e tc . ( see a lso chapte r s 2 and 3) . The typ ica l fo rm of such E(k) - sec t ions a re shown

    in f igure 5a by resu l ts fo r copper . When the k-poin ts cor responding to the h ighes t energy

    leve ls s t i l l occupied by e lec t rons a re in te rconnec ted by a p lane , the so ca l led Fermi sur face

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    8/66

    14 chap ter 1

    is c rea ted ( f igure 5b) .

    (a)

    k ,

    t ~ / a

    k~

    a

    y

    (b)

    bl[ a

    : ~ / a

    ~/a w

    kl

    Energy

    (c)

    = 4~

    o{

    ~ + 4 ~

    (0,0)

    n,a, O) n/a,n /a)

    (0,0)

    X M F

    NIE)

    f i g u r e 3 .

    A h y p o t h e t i c a l t w o d i m e n s i o n a l c r y s t a l .

    T h r e e r e p r e s e n t a t i o n s o f E k ) f o r t h e s b a n d .

    a ) E n e r g y s u r f a c e f o r o n e q u a r t e r o f t h e B r i l l o u i n z o n e .

    b ) C o n s t a n t - e n e r g y c o n t o u r s, i l lu s t r a ti n g t h e s y m m e t r y o f t h e z o n e .

    c ) E n e r g y p l o t t e d o v e r a t r ia n g u l a r p a t h o f k va lu e s, s h o w i n g m i n i m u m a n d m a x i m u m

    energ ies , an d dens i ty o f s ta tes .

    f o r s y m b o l s F , X a n d M s e e f i g u r e 4 )

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    9/66

    Struc ture and proper t ies o f meta ls and a l loys 15

    k

    z

    1

    t d l

    y

    f igure 4 .

    Bri l lou in zone in a reciprocal space wi th b .c .c .

    latt ice, c orre spon ding to fc .c . lat t ice in the

    real space.

    f igure 5 .

    Ban d s t ruc tu re a ) and

    Ferm i sur face b ) f o r copper .

    In a) the Cu 3d bands are

    label led; the dashed curve

    shows the 4 s band pred ic t ed

    wi thou t any m ix ing wi th

    the d band [4]

    E n e r g y [

    F X W

    C 3 '

    ,,,,~

    I

    { b )

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    10/66

    16 cha pter 1

    Th e o c c u p a t io n o f E ( k ) - l e v e l s a t t e mp e r a tu r e s a b o v e a b s o lu te z e r o i s g o v e r n e d b y

    the Fermi-Dirac d is t r ibu t ion func t ion [1-4] .

    E - E v ) ]

    (25)

    f ( E ) = [ 1 + e x p ( - 1

    k T

    Equat ion 25 s ta tes tha t as the tempera ture approaches ze ro , a l l leve ls be low EF, the Fermi

    energy , bec om e o ccupied ( i.e . f(E) tends to un i ty ) and a ll leve ls above E v beco me vacant .

    Thus for meta ls hav ing a pseudo-cont inu ous band , E F is the h ighes t o ccupied leve l a t the

    abso lu te ze ro . B y us ing eq ua t ion 25 in s ta t is tica l the rmo dyna m ics , one can d er ive tha t E F

    is the to ta l f r ee energy of the e lec t rons , pe r e lec t ron , i .e . i t i s the e lec t rons ' chemica l

    po ten t ia l . A t equi l ib r iu m there is on ly a sing le va lue of EF for the w hole sys tem .

    The Fermi energy is a to ta l energy , i .e . i t inc ludes a lso the e lec t ros ta t ic po ten t ia l

    energy , such as tha t due to the contac t po ten t ia l be tween meta ls , and o ther s imila r te rms .

    I t i s the re fore a lmos t a lways necessary to take EF as the ze ro re fe rence leve l , because i t i s

    a lway s d i f f icu l t and usua l ly impo ss ib le to es tab l ish the exac t pos i t ion of EF with regard to

    th e v a c u u m le v e l Eva c. The work func t ion of the meta l , O, i s on ly approximate ly (0-2 eV)

    equal to Evac-EF.

    I f one connec ts by a cont inuous sur face in k- space a l l k ' s cor responding to EF, the

    so-ca l led Fermi sur face a r ises . For f ree e lec t rons , as can be seen f rom equa t ion 21 , th is

    sur face is a sphere (EF - k2) . For o ther , h igher approx imat ion s th is sphere is deforme d; an

    e x a mp le o f a Fe r mi s u r f a c e wh ic h h a s b e e n e s ta b l i s h e d e x p e r ime n ta l ly a s we l l a s b y

    theore t ica l ca lcu la t ions is shown in f igure 5b .

    The geometr ic form of the Fermi sur faces is a l ready known for mos t meta ls [7] .

    The main techniques to es tab l ish the form of the Fermi sur face a re those assoc ia ted wi th

    the so-ca l led de Haas and van Alphen e f fec t and the sk in e f fec t [7] .

    An impor tan t f ea ture of a meta l o r an a l loy is the dens i ty of s ta tes a t the Fermi

    leve l N(Ev) ; th is va lue can be de te rmined by measurements o f the magne t ic suscept ib i l i ty

    and the hea t capac i ty a t low tempera ture [7] .

    In the d iscuss ion on the e lec t ron ic s t ruc ture of meta ls and a l loys and i t s r e la t ion to

    e lec t ron spec troscopies , the mos t impor tan t quant i ty is mos t p robably the dens i ty of s ta tes ,

    N(E) . This i s because a s imple re la t ion ex is ts be tween the d is t r ibu t ion of the photoemit ted

    e lec t rons I (E) , and the in tegra l dens i ty of s ta tes taken over a l l ang les N(E) : to a good

    a p p r o x ima t io n

    I E ) = c o n s t . M ~ i . N E ) in in a rN E ) ~ 2

    (26)

    wh e r e

    Mf, i

    i s

    ~ffinal H'

    ~ i n i t i a l

    dx and H' i s the per turba t ion caus ing the t r ans i t ion f rom the

    init ia l into the f inal s ta te . The density of s ta tes for the f ree electron in the f inal s ta te is

    propor t iona l to ~ /E, so tha t fo r h igh energ ies i t changes c om para t i ve ly l i t t le over the

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    11/66

    Struc ture and proper t ies o f meta ls and a l loys

    17

    energy range of in te res t . This means tha t the d is t r ibu t ion I (E) measured a t the de tec tor i s

    on ly a s l igh t ly deformed dens i ty of s ta tes for the sys tem before ion isa t ion , N ( E ) i n i t i a v

    I n th e a p p r o x ima t io n o f ' n e a r ly f r e e e l e c t r o n s ' , t h e d e n s i ty o f s t a t e s f u n c t io n

    resembles tha t shown in f igure 6 . This s imple form a l ready re f lec ts the main fea tures

    observed exper imenta l ly , and there fore in theore t ica l d iscuss ions the N(E) func t ion is o f ten

    schem at i ca l l y

    pic tured as in f igure 6 ( see chapte r s 2 and 3) .

    F ig u r e 5b s h o ws th e Fe r mi s u r f a c e o f c o p p e r . I f th i s we r e a me ta l wh ic h c o u ld b e

    e x a c t ly d e s c r ib e d b y a f r e e e l e c t r o n mo d e l , th e Fe r mi s u r f a c e wo u ld b e p e r f e c t ly s p h e r ic a l .

    The "necks" s t ick ing ou t towards the (111) faces a re caused by the per iod ic c rys ta l

    po ten t ia l V.

    f i gure 6 .

    D en s i ty o f s ta t e s i n a band

    (Ema~ Emin) or a model o f

    near l y f r e e e l ec trons

    N I E )

    i

    I .

    s

    i \

    / I

    \

    I

    I

    I

    I , / E

    I

    , , J

    E m i n E m a x

    - E

    m a x

    E

    Th e v o lu me o f th e s p a c e e n c lo s e d b y th e Fe r mi s u r f a c e d e p e n d s o n th e to ta l

    number of e lec t rons n in the sys tem; for f ree e lec t rons , the sur face a rea is p ropor t iona l to

    n ~'3. K n o w in g th a t, we s h a ll n o w ma k e a h y p o th e t i c a l e x p e r ime n t : we r e p la c e s o me c o p p e r

    a to ms b y a to ms wi th mo r e th a n o n e v a le n c e e le c t r o n , f o r e x a mp le , b y z in c o r a lu min u m.

    This increases the vo lu m e und er the E F sur face and s ince the sph ere can not in gen era l case

    c o n t in u e to g r o w in to th e h ig h e r Br i l lo u in z o n e , b e c a u s e o f a g a p in e n e r g y o n th e

    Br i l lou in zone face , the sphere - l ike form wil l p robably be deformed to f i l l up the s ta tes

    near to and jus t unde r the Br i l lou in zon e faces. H ow ever , i t is a lso poss ib le tha t i f the

    a l loy could have another c rys ta l lographic s t ruc ture than tha t o f copper , and as a conse-

    q u e n c e to h a v e a n o th e r f o r m o f Br i l lo u in z o n e , th e a d d i t io n a l e l e c t r o n s c o u ld b e b e t t e r

    a c c o mmo d a te d a t lo we r e n e r g ie s , f o r e x a mp le , in a mo r e s p h e r e - l ik e b o d y . Th u s , th e

    a v e r a g e n u mb e r o f e l e c t r o n s p e r a to m in s u c h c a s e s wi l l d i c t a t e th e c r y s ta l lo g r a p h ic

    s t ruc ture of the a l loy . Hume-Rothery has formula ted severa l very usefu l ru les re la t ing the

    m os t s tab le s t ruc ture to the average num ber of e lec t rons [8], and a l though so m e de ta i ls o f

    h is theory a re no t longer va l id , the bas ic idea is p robably sound . There a re a lso some

    p a p e r s wh ic h t r y to r e l a t e th e Hu me - Ro th e r y ' s s t r u c tu r a l c h a n g e s in a l lo y s to th e c h a n g e s

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    12/66

    18 cha pter 1

    in the catalytic activity [9] .

    Three approximat ions in the descr ip t ion of the behaviour of e lec t rons in a per iod ic

    poten t ia l have so fa r been ment ioned: ( i ) a mode l o f f ree e lec t rons ; ( i i ) a mode l o f near ly

    f ree e lec t rons ; ( i i i ) a mode l o f e lec t rons t igh t ly bound to the a toms ( t igh t b ind ing

    approximat ion , wi th L .C.A.O. used as a t r ia l func t ion) .

    These approximat ions a re usefu l to e luc ida te the te rms of which the theory and an

    e x p e r ime n ta l i s t ma k e u s e a n d to id e n t i f y th e p h e n o me n a ty p ic a l f o r s y s te ms wi th a

    per iod ic po ten t ia l , bu t a l l th ree approximat ions ment ioned a re unsu i tab le for quant i ta t ive

    pred ic t ions . Approximat ions i and i i exaggera te the de- loca l iza t ion of e lec t rons , whi le

    approximat ion i i i cons iders the e lec t rons as too s t rongly bound and too much loca l ized on

    the ind iv idua l a toms . S ince a l l th ree a re one-e lec t ron approximat ions and take the e lec t ron-

    e lec t ron in te rac t ions (Coulombic and exchange in te rac t ions ) impl ic i t ly in the average

    poten t ia l , they do no t t r ea t th is par t icu la r aspec t p roper ly . The h igher approximat ions t ry to

    improve on th is s i tua t ion . Of many ways of do ing i t tha t a re descr ibed in the l i te ra ture , we

    s h a l l me n t io n o n ly th e f o l lo win g o n e s [ 1 0 - 1 6 ] : ( 1 ) Au g me n te d P la n e Wa v e ( APW) a n d

    r e la te d th e o r ie s , [ 1 0 ,1 ] a n d th e Ko r r in g a - Ko h n - Ro s to k e r ( KKR) a p p r o x ima t io n s [ 1 2 ] ,

    which bo th a t tempt to improve the cons t ruc t ion of the wave func t ion ; (2 ) e lec t ron dens i ty

    method (Kohn, Sham, Lang [13 ,14] ) which expl ic i t ly t r ea ts the e lec t ron-e lec t ron in te rac t i -

    ons . Jus t a f ew remarks about these theor ies fo l low.

    One poss ib i l i ty for improving the cons t ruc ted wave func t ion is to cu t the c rys ta l in

    a space where the e lec t rons behave as essen t ia l ly f ree and in a space where they behave as

    b e in g b o u n d t ig h t ly to th e n u c le i : t h i s i s wh a t th e APW ( Au g me n te d P la n e Wa v e ) th e o r y

    does . The Schr6dinger equa t ion is then so lved ins ide a spher ica l po ten t ia l wa l l o f a r ad ius

    R. The e lec t ros ta t ic po ten t ia l o f the nuc leus is hypothe t ica l ly conta ined in th is sphere ,

    be ing zero ou ts ide . The so lu t ion for the sphere resembles tha t fo r f ree a toms , be ing a

    l inear combina t ion of p roduc ts o f the rad ia l func t ions and spher ica l ha rmonics . The

    coef f ic ien ts o f the l inear combina t ion a re then chosen in such a way tha t the so lu t ions

    match smooth ly , on the sur face of the sphere , the p lane waves which descr ibe the

    beh avi ou r of e lectro ns outs id e th e s phere [ 10, 11 ] .

    Another technique for cons t ruc t ing a wave func t ion or c rys ta l o rb i ta l which would

    descr ibe proper ly the de loca l ized charac te r o f the e lec t rons in the meta l i s the theory

    s u g g e s te d b y Ko r r in g a a n d b y Ko h n a n d Ro s to k e r ( KKR) [ 1 2 ] . I n th e KKR th e o r y th e

    a tomic spheres a re aga in cons idered . We can then imagine tha t a t the sur face of a ce r ta in

    a tom ic sphere there is a so lu t ion w hich w e sha l l ca ll the ou tgo ing func t ion ~out , and the

    same holds for a l l o ther a tomic spheres . As a consequence a t the sur face of our f i r s t

    c h o s e n s p h e r e a c o mb in a t io n

    C I ) i n

    of a l l o ther waves ex is ts . The two func t ions

    C I ) i n

    and Oout

    a re pu t equa l on the sur face of the a tomic sphere , and they a re mutua l ly re la ted as

    sca t te red and inc ident waves , wi th sca t te r ing depending on the po ten t ia l ins ide the a tomic

    spheres .

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    13/66

    Structure and proper t ies of metals and al loys 19

    Both the APW and the KKR techniques descr ibe the poten t ia l ins ide the spheres as

    an ar t i f ic ia l po ten t ia l , which has no components ou ts ide the sphere; i t i s cal led muff in- t in

    poten t ia l . Both techniques have also been appl ied to a l loys (see below).

    Another successfu l approach to the problems of the descr ip t ion of the so l id s ta te

    has been suggested [13-16] . The au thors of these papers have shown that the system of

    many elect rons can be to tal ly descr ibed by the elect ron densi ty n(r ) , and have in t roduced a

    funct ion E(n(r) ) , by the fo l lowing equat ion [13 ,14]

    E ( n ( r ) ) = T [n ( r ) ] -

    (27)

    N n ( r ) e 2 n ( r ) n ( r / / )

    E Z e 2 f I r_ R M I d r + - - f ir _-- ~i

    M---1

    2

    + E , o ._ , o + E .x c h ( n ( r ) )

    In th is equat ion T s tands for the k inet ic energy of the non- in teract ing elect rons wi th

    densi ty n(r ) , the second term is for nuclei -elect ron in teract ions wi th the nuclei a t the

    pos it ions RM in the lat t ice, the third term is the mutual Co ulom bic interac tion of electrons ,

    Eion_io n

    i s for Coulombic repuls ion of nuclei and the las t term is the exchange energy . The

    func t ion E(n ( r ) ) has a min imum when n ( r ) co r responds to t he g round s t a t e dens i ty and the

    minimal energy i s then taken as the ground s ta te energy of the system. The pract ical

    approximat ion i s to wri te down the equat ion for one elect ron funct ions wi th an effect ive

    poten t ia l and wi th the exchange term wri t ten in the so cal led local -densi ty approximat ion .

    The s imp les t fo rm o f t he who le theo ry i s fo rmu la t ed fo r a model wi th an un i fo rm

    cont inuous posi t ive background, wi th elect rons as d iscrete charges on i t . This i s the so

    ca l l ed Je l l i um model . Many p rob lems o f chemiso rp t ion and p romoter e f fec t s have been

    successfu l ly a t tacked by th is theory and many importan t conclusions der ived [15,16] . To

    our knowledge i t has no t been used for a l loys , for which i t i s no t wel l su i ted .

    1 .1 .2 Paul ing ' s theory of pure metals

    This theory was formulated [17,18] a t a t ime when the chemical bonding was

    usual ly descr ibed in terms of e lect ron pai rs and resonance s t ructures , wi th the real

    s t ruc tu re somewhere in be tween them. Phys i c i s t s never r esponded to Pau l ing ' s i dea ' s wi th

    much en thusiasm, but a l l h is ideas , including the theory of metals , are ex t remely popular

    among chemis t s . Tha t i s t he main r eason why they a re p resen ted and ana lyzed be low. The

    other reason i s to demonst rate that in real i ty i t i s hard ly possib le to avoid a more d i f f icu l t

    theory [4-16] by accept ing one such as that o f Paul ing . I t i s no t possib le to use semi-

    empir ical approaches based on vague reasoning and yet be ab le to make r e l i a b l e predict i-

    ons.

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    14/66

    20 chapte r 1

    Paul ing ana lyzed the c rys ta l lographic s t ruc tures and d is tances be tween a toms for

    var ious meta l l ic e lements . In order to be ab le to compare s t ruc tures wi th var ious coord ina-

    t ion numbers , CN (CN is 8 for bcc , 12 for f cc ) and wi th var ious numbers of e lec t rons

    ava i lab le for bonding ( tha t i s the va lency , v ) . Pau l ing in t roduced the so ca l led s ing le bond

    rad ius , R(1) for a l l e lements , de f ined as

    R(n) = R(1) - 0 .60 0 In n (28)

    where R is in A and n is the bond order . For metals the la tter is

    n = ( v / f .N . ) ( 2 9 )

    The ana ly t ica l fo rm of equa t ion 28 and the va lue of 0 .6 ,h , fo r the pre logar i thmic cons tan t

    were der ived f rom R(1) , R(2) and R(3) of e thane , e thene and e thyne . With molecu les used

    for th is ca l ib ra t ion the order n was thus a lways grea te r than one , bu t fo r meta ls i t i s

    a lways less than one . However , Pau l ing assumed the same equa t ion to ho ld for bo th cases ,

    the cons tan t be ing on ly s l igh t ly ad jus ted , f rom 0 .7A for ca rbon-carbon bonds to 0 .6 /k for

    a l l o ther bonds . The sys tem of s ing le bond- rad i i i s shown in f igure 7 [ 17].

    Z . 5

    2 . 0

    1.5

    1.0

    0 . 5

    0 . 0

    T h e f ir s t 1 0 n g p e r io d

    . o

    c o ~

    - \ - " -%

    S o ~

    ~ o

    T, -,o _ _o=o= g~

    . o - ~ - ~ . o

    V " ~ , - O - o _ o _ o _ O

    C.,r J F e I N iC U I I A S s ; ~ r

    - M n C o Z n G e

    T h e s e c o n d lo n g p e r i o d

    o

    z ' \ o . _ - o ' - o = _ ~ o " ~ I ~ " . . .

    N b , ~ 1 7 6 A q J J 5 O j n

    I T r ! Rh I Cd Sn ie I

    M o ~

    P d

    R u

    o S i n g l e - b o n d m e t a l l i c

    r a d i i

    o O c t a h e d r a l r a d i i

    A T e t r a h e d r a l r a d i i

    t t I 1 1 1 t

    18 2 0 3 0 3 6 4 0 5 0 5 4

    A K r X e

    f igure 7

    Single bond radii as calculated by Pau ling fo r the indicated metals and semiconducting

    elements [17].

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    15/66

    Struc ture and proper t ies o f me ta ls and a l loys 21

    In the same f igure the te t rahedra l r ad i i a re a lso p lo t ted ; they a re rea l fo r s ,p -

    e lements and f ic t i t ious for the t r ans i t ion meta ls . The s t ra igh t l ine of the f i r s t pe r iod is

    descr ibed by : R(1) = Rl(SP 3) = 1 .825 - 0 .043 z wh ere z i s the num ber o f e lec t rons

    outs ide the a rgon she l l . Trans i t ion meta ls show a contrac t ion in R(1) and accord ing to

    Paul ing [17,18] th is i s due to the par t ic ipa t ion of d -orb i ta ls in the meta l l ic bond . He

    th e r e f o r e in t r o d u c e d th e c o n c e p t o f d - c h a r a c te r 8 ( in %) , a q u a n t i ty e x p r e s s in g e x a c t ly h o w

    mu c h o f th e b o n d in g i s d u e to th e d - e le c t r o n s . Wi th th i s 8 , h e wr o te th e e mp i r i c a l

    equa t ion for s ing le bond rad ius R(1) :

    R( 1 ) = R l ( 5 , z ) = 1 .82 5- 0 .0 4 3 z - ( 1 .6 0 0 - 0 .1 0 0 z ) 8

    (30)

    Th e f o r m o f e q u a t io n 3 0 wa s c h o s e n to d e s c r ib e th e r e s u l t s a n d to f i t t h e c u r v e s o f R( 1 )

    v s z s h o wn a b o v e o n ly f o r th e f i r s t r o w o f t r a n s i t io n me ta l s . To u n d e r s ta n d h o w Pa u l in g

    obta in ed the po in ts necessary to der ive the abso lu te va lues of the cons tan ts in equa t ion 30

    we mu s t lo o k to h i s t r e a tme n t o f th e e l e c t r o n ic s t r u c tu r e o f th e ma g n e t i c e l e me n ts i r o n ,

    coba l t and n icke l .

    Paul ing specula ted tha t each meta l has th ree types of o rb i ta l : ( i ) a tomic orb i ta ls

    in to which unpa ired as wel l as pa i red e lec t rons can be p laced ; ( i i ) va lence orb i ta ls in to

    w hich e lec t rons wh ich form the meta l l ic bonds a re p laced ; ( i ii ) me ta l l ic o rb i ta ls wh ich a re

    u n o c c u p ie d a n d wh ic h me d ia te "u n h in d e r e d r e s o n a n c e " . To b e a b le to e x p la in th e u s e o f

    f r a c t io n a l n u mb e r s o f e l e c t r o n s wh e n d e s c r ib in g th e b o n d in g , Pa u l in g a s s u me d th a t a me ta l

    c a n h a v e s e v e r a l ima g in a r y e x t r e me s t r u c tu r e s , wh ic h a r e mix e d in c e r t a in p r o p o r t io n s to

    g ive the rea l s t ruc ture . The rea l s t ruc ture is tha t which resu l ts in the exper imenta l ly - found

    magne t ic moments . This i s i l lus t ra ted by tab le 1 [17] . I t i s assumed tha t n icke l has two

    s t r u c tu r e s wh ic h a r e mix e d in th e p r o p o r t io n s 3 0 % ma g n e t i c n ic k e l a n d 70 % n o n -

    ma g n e t i c , in wh ic h a l l e l e c t r o n s a r e p a i r e d . Th i s mix tu r e l e a d s to th e e x p e r ime n ta l ly f o u n d

    ma g n e t i c mo me n t p e r a to m o f 0 .6 Bo h r ma g n e to n s , a n d in a s imi la r wa y th e s t r u c tu r e s o f

    c o b a l t a n d i r o n a r e mix e d to p r o d u c e th e e x p e r ime n ta l ly d e te r min e d v a lu e o f th e ma g n e t i c

    m o m e n t p e r a t o m .

    By c o n s t r u c t in g s u c h h y p o th e t i c a l s t r u c tu r e s a n d mix in g th e m in th e in d ic a te d wa y ,

    Paul ing a lso ca lcu la ted the 8% charac te r , ( the las t co lumn of tab le 1) . He ca lcu la ted va lues

    for the d-charac te r fo r i ron , coba l t and n icke l and wi th them he c rea ted equa t ion 30 for

    R( 1 ) . Th i s e q u a t io n h a s to f i t a l l p o in t s wh ic h h a v e b e e n c a lc u la te d f r o m R( n ) ' s o f

    in d iv id u a l me ta l s . Th e n , h e u s e d th e R( 1 ) v a lu e s to c a lc u la te 8 f o r n o n - ma g n e t i c me ta l s

    a n d p r o d u c e d th e t a b le o f v a le n c ie s a n d % d - b a n d c h a r a c te r ( s e e t a b le 2 ) , v a lu e s o f wh ic h

    s o o n b e c a me v e r y p o p u la r a mo n g s t c h e mis t s . Th e r e h a v e a l s o b e e n a t t e mp ts [ 2 1 ] to a p p ly

    the 8 va lues to expla in resu l ts on a l loys and even on su lph ides .

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    16/66

    22 chapter 1

    table 1

    Percentage d-character of cobal t , n ickel and copper (Paul ing theory)

    (brackets ind icate bonding orb i ta ls)

    M eta l

    Co(B)

    Co (B)

    Ni(A)

    Ni(B)

    Cu (A)

    Cu (B)

    Outer electrons

    3d

    4s I 4p

    ~ T T ~

    T, T I / ~

    T$ T T ' ~ - ~ ~ . 9

    T ~ T ~ i - - - o

    ~ ].

    T~ T~T~ I 1 - ~

    P~eso-

    nance

    rat io

    35

    65

    30

    70

    25

    75

    Percen tag e d - ch arac te r

    35~oo X z~ + 6~ o o X 3/~ = 39.5 %

    30~ 00 X 2/~ -Jl- 70~ 00 X 3/~ _-400 -/0

    25/~00 X 3/~ _Jr- 75/~00 X 2/~ -- 3 5 .7 %

    table 2

    Percentage d-character (d%) and valency (v) of e lements in the f i rs t ser ies of t ransi t ion

    metals

    V d%

    Sc 3 20

    Ti 4 27

    V 5 35

    Cr 6.3 39

    Mn 6.4 40.1

    Fe 5 .78 39.7

    Co 6 39.5

    Ni 6 40.0

    Cu 5.5 36

    How ever , the quest ion i s whe ther the popular ity of the 5 values i s jus t i fied . T hey

    have been der ived f rom hypothet ical e lect ronic s t ructures using empir ical equat ions for

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    17/66

    Structure and proper t ies of metals and al loys

    23

    R(1) ' s . I t i s doubtfu l whether equat ion 28 f rom which the argument s tar t s and which holds

    for C-C bonds and the bond order n greater than one, can be appl ied to metal -metal bonds

    and n less than one. Hume-Rothery [20] co l lected some resu l t s which cont rad icted

    Pau l ing ' s s ta tements on th is po int . How ever , even i f equat ion 28 w ere of general appl ica-

    bil i ty (as some modern authors assume [21]) a very mildly cri t ical reader would st i l l f ind

    many quest ionable s teps in the procedure lead ing to the tab le of valencies and 8 values .

    1 .1 .3 The Eng el -B rew er theory of metals and al loys

    This theory has a number of features that are s imi lar to the ideas of Paul ing :

    d i rected valencies , an importan t ro le of hybr id izat ion of orb i ta ls on atoms const i tu t ing the

    metal , widely changing valencies and the omnipresent e lect ron pai rs .

    Brewer i l lus t rates h is theory wi th the example of tungsten [26] , The conf igurat ion

    of tungsten in a free atom ground state is d4s 2. However, the two s-electrons form,

    accord ing to Brewer , a c losed shel l , which i s non-b inding and which in the so l id s ta te

    causes repuls ion of o ther tungsten atoms. However , the conf igurat ion dSs i s on ly 33 ,5

    kJ/mol (8 kcal /mol) above the ground s ta te , th is d i f ference being cal led promot ion energy

    of the d 5 s conf iguration , and the d4sp conf igurat ion i s 230kJ/mol (55 kcal /mo l) a bove the

    ground s ta te . Upon forming the metal , the energy of the das 2 conf igurat ion i s supposed to

    be lowered by 569kJ/mol (136 kcal /mol) , the dSs conf igurat ion by 890kJ/mol (211

    kcal /mol) and dnsp conf igurat ion by 569k J/mol (136 kcal /mol) . We shall now ex am ine the

    procedure by which the numerical values are ob tained .

    Fol lowing Hume-Rothery , Engel [24] associated crystal lographic s t ructures wi th

    numbers of valence electrons in certain orbitals, i .e. with certain electronic configurat ions.

    Having in mind the elements : sodium (bcc) , magnesium (hcp) and aluminum (fcc) , wi th

    one, two and three valence elect rons respect ively , he suggested that the t ransi t ion elements

    with the con figurat ion dn-ls should have a bc c structure, w ith dn-2sp they should have the

    hexagonal close-packed structure and with dn-3sp2 the fcc-s t ructure whe re n i s numbe r o f

    valence elect rons . Of course, some smal l deviat ions in n ( for example al loys) are to lerated .

    Vice versa , knowing the crystal lographic s t ructure one can determine the number and

    distribution of the valence electrons over the orbitals. The authors of the theory [24-27]

    assumed further that the contribution per s or p electron is given by the interpolat ion l ine,

    which connects the poin ts for metals having no b inding by d-elect rons , and serves as a

    calibrat ion (see figure 8).

    The contribution to the binding strength by d-electrons is calculated in the

    fo l lowing way. The promot ion energy i s subt racted f rom the subl imat ion energy: the

    former i s f ixed by the crystal lographic s t ructure of the metal in quest ion . The s t ructure

    determines , namely , how many elect rons should be in the s and p orb i ta ls .

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    18/66

    24 chapter 1

    60

    f i g u r e 8

    *~ 50

    B r e w e r - E n g e l t h e o r y o f m e t a l s -3

    B o n d i n g e n e r g y k c a l / m o l e e l e c tr o n ) c 4 0

    o f t h e i n d i ca t ed e l ec t ro n s 4 s , p o r -~

    3 d , r e sp . ) a s a f u n c t i o n o f t h e p o s i t i o n ~ 30

    i n th e p e r i o d i c t a bl e. E l e m e n t s o f th e

    f i r s t l o n g p e r i o d a r e s h o w n . -a 2 0

    u

    E ,p th e u p p er cu rve ) i s e s t i m a t ed b y I O

    in ter~ex t rapola t ion .

    E a ca l c u l a t e d a s d e s c r i b e d i n t h e t e xt . o

    C o S c T i V C r M n I re C o N i C u Z n

    I I I l i 1 1 I I

    XX

    X

    3d

    F

    o = -

    / 1 . l l 1 1 1 t [

    0 I 2 3 4 5 4 3 2 I 0

    N o . o f u np a i r e d e l e c t r o n s p e r a t o m

    The to tal cont r ibu t ion by s , p bonding i s then subt racted , values being taken f rom graphs

    such as that in f igure 8 , and the res t o f the b inding energy i s d iv ided by the number of

    unpai red d-elect rons . For example, hcp cobal t i s expected to have the conf igurat ion dTsp .

    From the sum of a l l d -orb i ta ls , two should be occupied by pai rs of e lect rons and three by

    unpa i red e l ec t rons . The max imum poss ib l e number o f unpa i red e l ec t rons i s cons idered as

    the ground s ta te conf igurat ion . As can be seen f rom f igure 8 , whi le the cont r ibu t ion to the

    binding energy by s ,p orb i ta ls increases monotonical ly wi th atomic number , the cont r ibu t i -

    on by unpai red d-elect rons decreases . By ci rcu lar argument , the au thors [24-27] ra t ional ize

    the crystal lographic pat terns in the per iod ic tab le of e lements , us ing values such as those

    shown in f igure 8 . Somet imes the ass ignment of the most s tab le conf igurat ion appears to

    be easy , as wi th molybdenum and tungsten , bu t in o ther cases var ious conf igurat ions lead

    to very s imi lar energ ies and thus to uncer tain t ies , such as i s the case wi th y t t r ium and

    zi rconium.

    The Engel -Brewer theory has a lso been appl ied to problems of the s tab i l i ty and

    crystal lographic s t ructure of a l loys , in par t icu lar to s t ructures of some in termetal l ic

    compounds. Such compounds are formed when a metal on the lef t -hand s ide of the

    per iodic tab le ( i . e . a metal wi th almost empty d-orb i ta ls) i s combined wi th a metal on the

    r igh t -hand s ide, where elements have several d -orb i ta ls wi th pai red d-elect rons . Brewer

    stated [26] that " the use of empty orb i ta ls of hafn ium and tan talum by the non-bonding

    ( i .e . pai red) e lect rons of osmium or p lat inum could opt imize the use of avai lab le orb i ta ls

    and elect rons , and approach the opt imal b inding achieved by tungsten" . Using the example

    of Hfl r 3 B rew er i l lus t rated how di f f icu l t i t i s to ma ke qu ant i ta tive pred ict ions of heats of

    al loy (compound) format ion , that i s , to go beyond qual i ta t ive pred ict ions . Never theless , the

    number of cases of b inary and ternary al loys where the pred ict ions are sat i sfy ing i s

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    19/66

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    20/66

    26 chapter 1

    where P and Q are cons tants , f (c) i s a symmetr ica l funct ion of the molar ra t ios , and for an

    al loy A B form ing a sol id so lut ion i t is XA(1-XA), XA being the m ole fract ion of co m po ne nt

    A. A~)* is the d ifference in the v alues of ~* for the tw o elem ents, ~* bein g to a f i rst

    appro xima t ion the w ork funct ion ~; Anws i s the d i f ference in the va lues of e lec t ron

    dens i t i es in the Wigner-Sei tz ce l l s , a l l cor responding to A and B, respect ive ly . Miedema

    showed tha t a more se l f -cons i s tent sys tem of enthalpies of format ion, in be t ter agreement

    wi th va lues known f rom exper iment , can be obta ined i f one uses the adjus ted ~* values

    tabula ted by the author . The di f ference between ~ and ~* i s smal l for p la t inum (5 .55 vs

    5 .65 V) , but somewhat l a rge for some other e lements ( for Zr , 3 .15 vs 4 .05 V) . Miedema

    sug ges ted calcu lat ing the densi t ies nws by using

    (B/Vm)v~,

    where B i s t he bu l k modul us o f

    com press ibi l i ty and V m the m olar volum e.

    The idea behind equat ion 31 i s tha t e lec t rons are t ransfer red f rom atoms of a meta l

    of lower e lec t ronegat iv i ty to a toms of a meta l of h igher e lec t ronegat iv i ty . According to

    Miedema [32] , the charge t ransfer red per a tom mT~ can be calculated by

    AZ A = 1.2 (1-XA) A~* (32)

    This m eans tha t in Hf l r 3 about 0 .7 of an e lec t ron per hafnium atom i s t ransfer red f ro m

    hafnium to i r id ium. The Engel -Brewer theory, which a l so expla ins the high s tabi l i ty of th i s

    compound (see 1 .1 .3) , assumes an opposi te e lec t ron t ransfer . The exper imenta l resul t s ,

    e .g . core level shi f t s , on var ious compounds of th i s type indica te tha t most l ike ly there i s

    no e lec t ron t ransfer a t a l l ( see chapter 3) , but format ion of s t rong par t ia l ly- local ized bonds

    takes p lace be tween unl ike e lements ( see chapter 2) .

    The prac t ica l success of th i s theory i s indisputable . I t i s a lmost imposs ible to check

    the s tabi l i ty exper imenta l ly and to make some predic t ions concerning phase diagrams of

    a l l a l loys of potent ia l in teres t for mater ia l sc iences . Miedema 's theory, however , of fers a

    cer ta in tool for ma king rough but useful predic t ions , where exper im enta l resul t s a re

    lacking.

    The theore t ica l background of the theory i s however weak. I t i s too s t rongly

    as soc i a t ed w i t h t he a s sumed cha rge t r ans f e r be t ween t he componen t s o f a l l oys , and moreo-

    ver , whi le the work funct ion ~ i s indeed a measure of the e lec t ronegat iv i ty of meta l

    sur faces , a subs tant ia l cont r ibut ion to ~ i s made by the sur face dipole , which i s not present

    in the bulk a t the Wigner-Sei tz ce l l boundar ies , where the charge t ransfer should take

    place.

    1.1.5

    The quan t um t heory o f a l l oys

    Quan t um mechan i ca l ca l cu l a t i ons on sma l l o rgan i c mol ecu l e s can ach i eve a ve ry

    high accuracy, which i s imposs ible to achieve wi th la rge sys tems of in terac t ing par t ic les ,

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    21/66

    Structure and proper t ies of meta l s and a l loys

    27

    such as sol id crystals . Yet the fact that the potent ial in the sol id can be taken as periodic,

    and Born-Karman condi t ions can be assumed to be ful l f i l l ed ( see 1 .1 .1) , a l lows us to be

    somewhat prec i se when t rea t ing the proper t ies of l a rge s ingle crys ta l s of meta l l i c e lements

    (see for example a compar i son of ca lcula ted band s t ruc tures wi th those der ived f rom

    e l ec t ron pho t oemi s s i on i n chap t e r 3 ) . However , when a r andom a l l oy i s f o rmed wi t h

    elemen ts A and B, the m ole f rac t ions be ing x A and xB, the per iodic i ty of the p otent ia l i s

    abol i shed and the degree of sophis t ica t ion which i s needed for a descr ip t ion of the same

    accuracy i s cons iderably enhanced.

    Fau l kne r summar i zed t he ea r l y deve l opment o f t he quan t um t heory o f a l l oys i n a

    paper [33] which we shal l fo l low.

    The potent ia l in the a l loy A-B a t a point r can be wr i t t en as a sum of cont r ibut ions

    from different lat t ice si tes

    (Rn):

    V( r) : n Wn ( r - Rn) (33)

    V n

    i s V A or VB according to the a to m on s i te n , but the fac t tha t in rand om al loys V i s no

    longer per iodic i s a problem in the descr ip t ion of a l loys . There are severa l ways of coping

    wi th th i s d i f f icul ty , but we shal l ment ion only three of them.

    (1) In the R i g i d B an d T heory (R B T) one neg lec t s t he d i f fe r ence be t ween A and B and

    assumes tha t the only consequence of subs t i tu t ing A for B i s tha t the common band i s

    occu pied to a h igh er o r lowe r degree , v iz . E F i s shif ted , jus t by adding e lec t rons to or

    ext rac t ing them f rom the pool of e lec t rons under the Fermi sur face [34,35] . A consequence

    of th i s model i s tha t charge i s f ree ly t ransfer red f rom one component to another , for

    example , f rom copper to n ickel . The RBT was for a long t ime the bas i s of ear ly theor ies

    of catalysis by al loys [9,19,36], but the total fai lure of this theory, and of ideas behind i t ,

    to expla in the photoemiss ion resul t s ( see chapters 2 and 3) s topped i t s appl ica t ion af ter

    about 1968 , when the papers by Spicer appeared [37] .

    (2) The next l evel of approximat ion i s a model of a v i r tua l c rys ta l wi th an average

    potent ial VAV [38,39] on each lat t ice point :

    WAy = XA VA(r) +

    XBVB(r) (34)

    The di f ference V Av(r) - Vo(r) , wh ere Vo(r ) is the ideal pe riodic poten t ial , can be t reated as

    a per turbat ion and i t l eads to smal l devia t ions f rom the Eo(k ) funct ion for the per iodic

    potent ia l . I t has been shown tha t th i s i s a l so a ra ther poor approximat ion.

    (3) Higher approximat ions s tem f rom the theory of mul t ip le sca t ter ing phenomena. This i s

    appropr ia te , because the crys ta l orbi ta l ~ i s , in the context of these theor ies , cons t ructed in

    such a way tha t the de local iza t ion of e lec t rons outs ide the a tomic spheres i s formal ly

    desc r i bed by wave func t i ons whi ch l ook l i ke a combi na t i on o f " i ncomi ng" waves w i t h

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    22/66

    28 chapter 1

    waves " sca t tered" by sur rounding a toms. Atoms A and B are in th i s way cons idered as

    unl ike sca t terers conver t ing the incoming funct ion in to di f ferent sca t tered funct ions , by the

    opera t ion of potent ia l s V A and VB. The opera tor w hich re lates the incom ing and sca t tered

    waves is t , there being different values tA and tB for each type of atoms. In early at tempts

    an averaged sca t ter ing opera tor was used.

    t a v = XA tA + x B tB (3 5)

    but the resul t s were even worse than wi th the approximat ion of the vi r tua l c rys ta l . The

    break through came when Soven [40,41] sugges ted us ing the fol lowing pic ture . A vi r tua l

    crys ta l i s cons t ructed which has an in i t i a l ly undetermined coherent potent ia l W(r) on each

    si te. The scat ter ing is caused by local deviat ions from this potent ial , so that the scat ter ing

    operators are:

    tA = (V A- W ) + (V A- W ) CJ tA

    tB = ( V B - W ) + ( V 8 - W ) C J tB ( 3 6 )

    In equat ion 36,

    fur ther be low.

    s tands for the so-ca l led Green opera tor , which wi l l be br ief ly d i scussed

    The reader i s a l ready fami l iar wi th the Schr6dinger equat ion"

    [ -h2/2m) V 2 + V ( r ) ] ~ = E ~

    (37)

    which in the opera tor form reads as"

    12I~ = E ~ or ( E - 121) ~ = 0 (38)

    The Green opera tor i s def ined by an analogous opera tor equat ion:

    ( E - 121) G = 1 (39 )

    and i t i s very useful in descr ib ing sca t ter ing phenomena or o ther quantum mechanica l

    problems, such as the cons t ruct ion of wave funct ions for crys ta l s , which have a s imi lar

    s t ruc ture . For example , in the formal i sm and the language of the mul t ip le sca t ter ing, the

    solut ion of equat ion 37 is wri t ten as [33]:

    V - - r - I ( ~ Jo ]~ n tn ~ ] / ~ n ( 4 0 )

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    23/66

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    24/66

    30 chap t e r 1

    5 --1

    7 7 % C u , 2 3 % N , |

    o ? . _

    , / h x \

    -

    zf , /

    I

    - \ \ \ - ,~ , _

    i / / , " \ _

    o

    /

    i . . . . . . r - . . . . . " l

    - 0 . 7 - 0 . 6 - 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . I 0

    E N E R GY B E L O W E f ( r y d b e r g s )

    4 O

    3 5

    ~

    3O E

    o

    2 5 ~

    o

    2 0 ~

    i---

    ~5 ~

    LL

    I 0 o

    > -

    5 ~

    Z

    0

    f i gure 9

    Dens i t y o f s t a tes f o r a Cu-Ni

    al loy and the projected densi t ies

    of s tates fo r the Cu an d Ni s ites .

    Not ice: the UPS experimental

    resul t s are at lowest energies

    de formed by t he ar t e fac t s o f t he

    experimental techniques but the

    region round E i s correct ly pro-

    bed [44b1.

    f i gure 10

    C o m p a r i s o n o f X P S v a l e n c e- b a n d

    s p e c tr u m f o r a n e v a p o r a t e d C u - N i

    al loy sample wi th a densi ty of

    s ta tes f o r C u o . 6 N i o . 4 ca lcu la t ed

    in CPA. f rom re f 42)

    I0 ! ! Q i I .~

    /

    /

    1

    0.5

    0 1 9

    8 6 4 2 0 -2

    B I N D IN G E N E R G Y ( e V )

    The C oheren t Po t en t i a l Approx i ma t i on (C PA) has been worked ou t i n g r ea t de t a i l

    [43,44] and fur ther modi f ied and extended to ordered a l loys . I t goes much beyond the

    scope of th i s book to d i scuss these developments , but we refer the in teres ted reader to

    some se l ec t ed pape r s [45 ] . An ex t ended compar i son o f expe r i men t a l and t heore t i ca l UPS

    and XPS intens i t i es has been presented [46] .

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    25/66

    Structure and proper t ies of metals and al loys 31

    Theo ret ical calcu lat ions using the CPA [47 ] and exper imental X PS resu l t s [48]

    have been compared and found to agree for the Pd-Hx system (foreign atom is p laced

    in ters t i t ia l ly ) ; the exper imental ly found hydrogen- induced s ta tes cen tered at 5 .4 eV below

    the Fermi level s t rongly suppor t the idea that hydrogen i s p resent as a toms and not as

    pro tons which have in jected thei r e lect rons in to the d-holes of pal lad ium. In ters t i t ia l a l loys

    behave probably in a s imi lar way.

    In relat ion to the var ious semi-empir ical theor ies of a l loys (see sect ions 1 .1 .3 and

    1.1 .4) we note that the al loys of s-metals have been also analyzed by CPA theory [49] .

    For these al loys the CPA theory pred icts the ex is tence of var ious local ized s ta tes in the

    whole range of energ ies of valence elect rons .

    There are a lso some o ther sophis t icated methods which ei ther general ly or for some

    special cases are s t i l l bet ter su i ted for exact calcu lat ions than the or ig inal form of the CPA

    theo ry [50,51 ] .

    Al loying i s known to cause some red is t r ibu t ion of e lect rons on the ind iv idual

    atoms of a l loy components . For example, pal lad ium in s i lver has a narrower d-band than

    in pure pal lad ium. In consequence, f rom a cer ta in d i lu t ion up (about 60% si lver) , the

    whole narrowed band of s ta tes local ized around pal lad ium atoms fal l s below the Fermi

    level . This band therefore becomes fu l ly occupied at the expense of the s-band . The

    narrowing of the d-band resu l t s f rom the d iminished over lap of the pal lad ium orb i ta ls (see

    sect ion 1 .1 .1 for the relat ion betwee n ove r lap and band wid th) , and f rom the suppress ing

    of the d-d elect ron repuls ion by d i lu t ion . These and s imi lar ef fects should also ex is t in

    some o ther a l loys and one has a lways to consider the possib i l i ty of a change in e lect ron

    conf igurat ion caused by al loy ing . More in t r igu ing i s the quest ion to what ex ten t charge

    t ransfer between al loy components occurs . In chapters 2 and 3 we wi l l d iscuss some

    resu l t s deal ing wi th th is po in t , bu t f i rs t we consider a t tempts to deal theoret ical ly wi th th is

    p rob lem.

    Kfib ler e t a l . [52] used the Augmented Spher ical Wave method and the local

    funct ional densi ty theory for sel f -consis ten t calcu lat ions; they calcu lated the to tal and

    par t ia l densi ty of s ta tes , that i s , expressed per component and per orb i ta l o f a g iven

    symmetry , and f rom that they determined the occupat ion of s , p and d orb i ta ls of

    ind iv idual components . They concluded , for example, that in Zr3Pd the pal lad ium atoms

    receive 0 .6 s ,p e lect rons per a tom from the zi rconium atoms which each lose 0 .2 s ,p e lec-

    t rons per a tom. The in t ra-atomic t ransfer of s to d e lect rons on pal lad ium is calcu lated to

    be near ly zero . A closer inspect ion of calcu lat ions made by the same technique [52]

    reveals that the conf igurat ions for pure metals do not agree wi th the exper imental resu l t s

    (e .g . coppe r has 9 .5 d-elect rons , ins tead of 10) , so that the pred icted cha rge t ransfers in

    al loys might be doubted . Pred ict ions for core level sh i f t s are a lso presented [52] .

    Ear ly s tud ies of the M6ssbauer ef fect on al loys of t ransi t ion metals revealed

    somewhat large i somer sh i f t s which were at f i rs t explained so lely by charge t ransfer

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    26/66

    32 chapter 1

    between the a l loy components ( see chapter 3) . However , l a ter thorough theore t ica l work

    revealed tha t the or ig inal s t ra ight forward explanat ion needed ser ious cor rec t ions [53] .

    When an a tom A wi th a spat ia l ly extended p- or d-orbi ta l i s squeezed in a l a t t i ce of

    another e lement B wi thout tha t par t i cular fea ture , e lec t rons on the far reaching p-orbi ta l s

    s imula te in the space around B a toms a charge t ransfer . An analys i s shows tha t indeed the

    p- l ike charge increases on B , but tha t th i s i s mainly due to the ta i l ing of the p-orbi ta l s

    f rom A into the B a tomic spheres and not to an increase of p-e lec t rons on the on s i t e

    orbi ta l s of B , or to o ther bonding ef fec t s . At tempts were made to subt rac t the ta i l ing ef fec t

    or pseudo-charge t ransfer f rom the to ta l charge t ransfer , the la t t e r be ing ca lcula ted by

    integra t ing the dens i ty of e lec t rons wi thin the Wigner-Sei tz or a tomic spheres . Resul t s of

    these very del ica te ca lcula t ions are shown in f igure 11.

    o l ' ' ' ' ' ' ' I . . . . ' ' t < 1

    Tai l Only _ / M od Mu lhken i

    o . o . . . . . . . . . . . . I . . . . . . . . . . . . .

    A -

    u Compounds o

    Pt Compou nds [ ]

    I r Compou nds , ,

    I t . P t ,and Au

    0.2 Si tes r i , .~. . ,

    o, \ \

    O0

    j

    -0,1 +

    Hf Ta W Re Os I r Pt HI Ta W Re Os I r Pt

    -01

    -02

    f i g u re 1 1

    R es id u a l ch a rg e t ra n s fer a t I r ,

    P t a n d A u a n d t h e o t h e r a t o m i c

    s i te s in co m p o u n d s o f th e C sC I

    s t ru c tu re co m p o u n d s a f t e r th e

    e f f ec ts o f ta i lin g w ere su b t ra c -

    ted . Th is invo lves taking the

    to ta l ch a rg e t ra n s fer a n d su b -

    s tract ing o f the ta i l ing charge .

    T h e r ig h t h a n d co lu m n sh o w s

    the resu l ts fo r the res idua l char-

    g e w h en th e m o d i f i ed Mu l l i ken

    sch em e i s u sed to e s t im a te th e

    ta il ing . The le f t han d co lum n

    sh o w s th e resu l t s w h en o ver la p

    con tr ibu t ions to the ta i l ing are

    n eg lec ted a n d i s sh o w n to p ro v i -

    d e so m e sen se o f h o w sen s i t i ve

    the resu l t s a re to the t rea tm en t o f th e o ver la p . T h e o p en sym b o l s w e re o b ta in e d u s in g

    e l e m e n t a l v o lu m e s , h o w e v e r , w h e n h a f n i um c o m p o u n d s h a v e v o l u m e s a f e w p e r c e n t

    sm a l l er th a n th e su m s o f th e e l em en ta l vo lu m es a n d th e so l id sym b o l s in d ica te th e

    co n seq u en ce s i f t h is vo lu m e co n t ra c t io n i s a ss ig n ed to the h a fn iu m s it e. ~ ro m re f 5 3

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    27/66

    Structure and proper t ies of metals and al loys

    33

    For cataly t ical ly in teres t ing al loys , for example p lat inum-gold , the charge t ransfer

    to p lat inum is +0 .2 elect rons when correct ion for ta i l ing i s no t made, bu t wi th th is

    correct ion i t i s -0 .1 . The d i f ference in calcu lated charge t ransfer values , which i s on ly the

    resu l t o f the use of d i f feren t methods of calcu lat ions can be as large as 0 .5 e lect rons .

    Conclusions are therefore very caut iously drawn [53] ; too much should not be read in to

    our f igure 11 and perhaps of greates t in teres t i s that once charge ta i l ing i s accounted for ,

    the remain ing changes in e lect ron counts are consis ten t wi th a p icture where elect ronegat i -

    v i t ies increase as one t raverses the 5d row from hafn ium to the elements to i t s r igh t , wi th

    gold however being less e lect ronegat ive than p lat inum and perhaps i r id ium as wel l . Whi le

    consis ten t wi th some not ions th is i s inconsis ten t wi th many not ions concern ing the

    chemist ry of go ld" . The d i f f icu l ty in assess ing theoret ical ly the ex ten t of the charge

    t ransfer i s c lear ly and s imply demonst rated by th is : one has to calcu late charge t ransfer of

    the order of 0 .1 e lect rons per a tom wi th up to 10 elect rons being involved , no t knowing

    exact ly over what space one has to count the elect rons belonging to each component .

    In chapter 3 , several e lect ron densi ty contour maps are presented ( f igures 13 ,21 ,22)

    which also touch the problem of the charge t ransfer . Actual ly they do not show much that

    one would cal l charge t ransfer . The reader wi l l a l so f ind in chapter 3 o ther v iews and

    prel iminary conclusions on the problem of charge t ransfer as der ived f rom the to tal i ty of

    al l results presented by that chapter.

    F inal ly , we ment ion the elect ronic theory of order ing and segregat ion in cataly t ical -

    ly less in teres t ing al loys such as these formed between s imple metals , for example, a lkal i

    and nob le meta l s [54 ]. A n impor t an t s t ep is m ade by u s ing microscop ic quan tum mechan i -

    cal calcu lat ions to pred ict macroscopic thermodynamic behaviour . Values for charge

    t ransfer between al loy components are der ived , for example, for the 1 :1 al loys: Li -Cs, 0 .25

    elect ron/atom from Cs to Li ; Na-Cr , 0 .27 elect ron/at f rom Cs to Na; Cu-Au, 0 .11 elect ron

    per / a t f rom Cu to Au ; Ag-Au , 0 .13 e l ec t ron /a t f rom Ag to Au .

    We have seen above how di f f icu l t i t i s to pred ict , i f on ly in a qual i ta t ive way, the

    main features of a l loys; use of the coherent po ten t ia l approximat ion (CPA) theory was the

    f i rs t real b reakht rough. To pred ict the proper t ies quant i ta t ively , e .g . the amount of charge

    t ransfer , i s again a task an order of magni tude more d i f f icu l t . However , cataly t ic chemists

    want to know the composi t ion and the elect ronic s t ructure of a l loy surfaces as wel l as

    thei r p roper t ies in chemisorp t ion and catalysis . I t i s an ex t remely demanding task , bu t

    some progress has a l ready been made in th is d i rect ion [55-57] . For example a pred ict ion

    has been made concern ing the b inding energy on a surface of an n ickel -copper a l loy [56] .

    Atomic adsorp t ion on the hol low square of four a toms i s considered and the conclusion i s

    reached that the b inding energy on th is c luster i s so much inf luenced by the average

    composi t ion of the al loy that i t d rops by a factor of two when going f rom pure n ickel to

    very d i lu te n ickel -copper a l loys . However an effect o f th is s ize seems to be at var iance

    wi th the exper imental resu l t s ment ioned in o ther par ts of th is book.

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    28/66

    34 chapte r 1

    The problem of adsorp t ion on a l loys has been a lso approached theore t ica l ly by

    other au thors , fo r example , in the book by van Santen [59] , whose t r ea tment i s s impler

    than tha t in [56] a l though i t goes fur ther in apply ing the theory . Van Santen conc ludes tha t

    there is an e lec t ron ic s t ruc ture e f fec t on the b ind ing energy of hydrogen a toms on an a l loy

    c lus te r where the average number of va lence e lec t rons in the a l loy is a var iab le .

    The n icke l-copper sys tem is a f avour i te sub jec t fo r ca lcu la t ions , s ince i t concerns

    somewhat l igh t e lements , and a lso many of the exper imenta l r esu l ts r e la te to i t . Cas te l lan i

    [60] s tud ied i t by Extended Hticke l Theory and conc luded tha t the re should be a charge

    trans fe r and an e f fec t o f copper on adsorp t ion proper t ies o f n icke l . P lac ing of n icke l in to a

    copper matr ix causes accord ing [60] a decrease of about 30 kJ /mol in the hea t o f

    a d s o r p t io n o f c a r b o n mo n o x id e , wh e n c o mp a r e d wi th n ic k e l in a n ic k e l ma t r ix . An e v e n

    mo re pro nou nced charge t r ans fe r f rom cop per to n icke l was found in [61 ] .

    S imp le LCAO th e o r ie s a r e g o o d e n o u g h to e x p lo r e n e w p h e n o me n a [ 59 - 6 3 ] s u c h

    as adsorp t ion on mul t icomponent sys tems , and to in t roduce the te rms necessary for the

    descr ip t ion of the exper imenta l r esu l ts , bu t they a re no t very re l iab le for making quant i ta t i -

    v e p r e d ic t io n s . Ho we v e r , s o me p io n e e r in g wo r k in h ig h e r a p p r o x ima t io n h a s a l r e a d y b e e n

    car r ied ou t too . Musca t [64] has s tud ied hydrogen adsorp t ion on the (111) face of copper ,

    in the sur face of which a n icke l a tom impur i ty is p laced . Binding energy was f i r s t

    ca lcu la ted for a c lus te r us ing 19 muf f in- t in po ten t ia ls o f e i ther pure copper or wi th one

    nicke l a tom ins tead of one copper a tom ( see f igure 12) .

    f i g u r e 1 2

    M o d e l c l u s t e r s

    HCu 9 or HCu 8Ni

    u s e d i n

    c a l c u l a t io n s b y M u s c a t . C i r c l e s - u p m o s t l a y e r,

    t r i a n g l e s - t h e l a ye r u n d er i t , sq u a re - a n a t o m

    i n t h e n ex t l o w er l a ye r . C ro ss i n d i ca t e s t h e

    p o s i t i o n o f H . P l a c i n g N i i n p o s i t i o n 1 c h a n g e s

    t he o n e e l e c t r o n e n e r g y o f t h e s y s t e m b y 0 . 4 0

    a .u . i n o t h e r w o r d s t h e e n s e m b l e N iC u 2 o f

    n e a r e s t a t o m s b e h a v e s v e r y d i ff e r e n t ly f r o m t h e

    e n s e m b l e C u 3 ). H o w e v e r p l a c i n g o f N i in p o s i-

    t i o n 2 , 3 o r 4 ca u se s a n e f f e c t 4 -5 t i m es sm a l -

    l e r a n d w i t h N i i n 5 a n d 6 t h e e f f e c t i s z e ro

    t h i s i s a n eg l i g i b l e i n t e ra c t i o n t h ro u g h t h e

    meta l ) .

    I n th e f o l lo win g s t e p , th e e n e r g y c h a n g e wa s c a lc u la te d d u e to th e c lu s te r b e in g e mb e d d e d

    in to a n e f f e c t iv e me d iu m c o n s i s t in g o f a h o mo g e n e o u s e le c t r o n g a s . Th e r e s u l t s we r e q u i t e

    in te res t ing : the e f fec t o f in t roduc ing a n icke l a tom in a copper matr ix is on ly impor tan t

    when a n icke l a tom is in the pos i t ion 1 ( see f igure 12) . In pos i t ion 2 i t i s f ive t imes

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    29/66

    Struc ture and proper t ies o f meta ls and a l loys 35

    smal le r and in pos i t ion 3 i t i s smal l and of the oppos i te s ign ; in pos i t ion 5 i t has no

    inf luence a t a l l . Obvious ly , ha rd ly any of the e f fec t o f n icke l i s th rough- the- la t t ice , v iz .

    th rough the co l lec t ive meta l p roper t ies ; i t i s c lea r ly a shor t r ange , chemica l bond e f fec t .

    We can ex trapola te th is conc lus ion and say tha t on the (111) sur face of copper -n icke l

    a l loys one can expec t four types of t r i - a tomic c lus te r each showing a d is t inc t ly d i f fe ren t

    b ind ing energy towa rds hydrogen : Ni 3, Ni2Cu, NiCu2, Cu3 , the las t show ing very we ak

    binding; we m ay then t ry to expla in chemisorp t ion and ca ta ly t ic r esu l ts by th is mo de l , in

    wh ich the en sem ble s ize (Ni 3, Ni2 . .. ) p lays the m os t impo r tan t ro le . W e sha l l tu rn to th is

    po in t in chapte r 9 and sha l l see tha t th is approach can be success fu l .

    The resu l ts fo r the ca lcu la ted charge t r ans fe r and l igand e f fec ts show an in te res t ing

    and c lea r p ic ture : the s impler the theory is , the more pronounced is the charge t r ans fe r .

    The reader wi l l f ind fur ther d iscuss ion on th is po in t in chapte r 3 and e lsewhere in th is

    book .

    1.2

    S o m e r e s u l t s o f th e t h e o r y o f c h e m i s o r p t i o n o n m e t a l s a n d a l l o y s

    1.2 .1 Genera l f ea tures of chemisorp t ion - a qua l i ta t ive p ic ture based on quantum chemica l

    ca lcu la t ions

    1 2 1 1 Chemisorption of atoms

    Th e r e a d e r w i l l b e f a mi l i a r w i th th e q u a n tu m me c h a n ic a l th e o r y o f b o n d in g in a

    mo le c u le A- B . Th e s imp le s t c a s e i s th a t o f two a to ms e a c h h a v in g o n e v a le n c e e le c t r o n in

    one a tomic orb i ta l ( see [1-4] o r , more advanced tex t [65] ) . The main te rms and resu l ts o f

    such a theory a re summar ized in f igure 13 and the in format ion conta ins the f i r s t ingred ien t

    needed to bu i ld up a qua l i ta t ive p ic ture of a chemisorp t ion theory . A so l id is ac tua l ly a

    g ian t molecu le . Due to the mutua l in te rac t ion of a l l a toms in the so l id , the molecu la r

    energy leve ls fo rm a whole band of leve ls ( see 1 .1 .1 and f igure 14 be low) . In ana logy

    wi th d ia to mic mo le c u le s , th e lo we r p a r t o f th e b a n d i s c a l l e d b o n d in g a n d th e u p p e r o n e

    ant ibonding . W e have presen ted a s imple theory of band form at ion in sec t ion 1 .1 .1 f rom

    wh ich we kno w tha t the band w id th is p ropor t iona l to the matr ix e lem ent 13 (1 .1 .1 ,

    equation 19) .

    In pr inc ip le , bo th the meta l a toms , on le f t -hand s ide of f igure 15 , and the adsorbed

    a toms or molecu les a t h igh sur face coverages can form a band of energy leve ls [66] .

    However , le t us s ta r t wi th the s imples t case . A s ing le a tom, wi th one e lec t ron in a s ing le

    va lence orb i ta l on a s ing le energy leve l , in te rac ts wi th a so l id , the e lec t rons of which

    occupy a band of energ ies ( f ig .15 , le f t -hand s ide) The in te rac t ion of an a tom with a so l id

    can be descr ibed by one of the two l imi t ing cases :

    ( i) the in te rac t ion is we ak and leads to a b roadenin g of leve l A in to a v i r tua l band

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    30/66

    3 6 c h a p t e r 1

    ( i i )

    i n s i d e t h e m e t a l b a n d ;

    t h e i n t e r a c t i o n i s s t r o n g a n d c a n b e d e s c r i b e d a s t h e f o r m a t i o n o f a p s e u d o m o l e c u l e

    f r o m a t o m A a n d o n e o r s e v e r a l s u r f a c e a t o m s o f th e s u r fa c e ; b y i n t e r a c t i o n w i t h

    t h e so l i d , th e e n e r g y l e v e l s o f t he p s e u d o m o l e c u l e s a r e b r o a d e n e d a g a i n i n t o a

    n a r r o w b a n d .

    B e f o r e b o n d f o r m a t i o n

    B e f o r e b o nd fo r m a t i o n

    . E

    b b ~

    m e t a l a t o m

    ~ B "

    a m p l i t u d e s

    ~a b "

    /

    /

    /

    /

    /

    \

    \

    a b

    I

    E A B

    / ~ a b a n t i b o n d i n g M . O . \ \

    / I \

    /

    / I /

    /

    I /

    A E /

    /

    I /

    , z

    /

    I /

    \ \ I E b B

    ~ B ' b o n d i n g M .O .

    a f t e r

    ond

    f o r m a t i o n '

    b a

    b a

    E a , ~ a

    a d s o r b a t e a t o m

    f i g u r e 1 3

    L e f t a n d r i g h t : e n e r g y l e v e ls o f a t o m s b a n d a , b e f o r e a m o l e c u l e A B h a s b e e n f o r m e d .

    I n th e m i d d l e , e n e r g y l e v e ls b o n d i n g - B , a n t i b o n d i n g a b ) c o r r e s p o n d i n g t o t h e m o l e c u l e

    A B a r e f o r m e d b y t h e i n t e r a c ti o n s o f e l e c tr o n s o n t he l e v e l b a n d a . I n t h e c r u d e s t

    a p p r o x i m a t i o n :

    2 8 9

    A E = [4 V 2 , b ,a + ( E b - E a ) } ,

    with Vo,a = ~dO n ~ dr,

    E a = ] , / 2 ( E b + E a ) + { V 2 b , a + 1 /4 ( E b - E o ) 2 } 8 9

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    31/66

    St r u c tu r e a n d p r o p e r t i e s o f me ta l s a n d a l lo y s

    3 7

    a) b )

    c ) - - - - ~N ( E )

    ~

    N = 8

    N oo N oo

    f i g u r e 1 4

    One d im ens iona l cha in o f a toms , w i t h i nd i ca t ed numb ers o f a toms N

    a) b ) - energy bands

    c) - dens i ty o f s ta tes curve , correspo nding to b)

    l

    Th e th e o r y f o r b o th l imi t in g c a s e s wa s d e v e lo p e d in th e 6 0 ' s , a n d in s o me e a r l i e r

    p io n e e r in g p a p e r s [ 67 ] . W h a t f o l lo ws i s b a s e d o n s o m e o f th e o r ig in a l p a p er s [ 6 8 -71 ] a n d

    s o me r e v ie ws [ 1 5 ,1 6 ,59 ] . Le t u s s t a r t th e d i s c u s s io n wi th th e we a k - b o n d l imi t .

    f i g u r e 1 5

    Wea k bond l im i t in t he f orm at i on o f a bond be tw een a t om A s i ng le orb it a l, s i ng le

    e l ec tron) an d a t oms o f me ta ls . Me ta l e l ec t rons occupy t he energy ban d up t o F erm i

    Energy . By in teract ion, l eve l A b roaden s and becom es par t ly occupied.

    The in te rac t ion of an e lec t ron in

    a n E A

    leve l ( f igure 15 , r igh t) wi th e lec t rons in the

    band ( f igure 15 , le f t ) leads to two e f fec ts on the

    E n

    level:

    ( i) the E A leve l i s sh i f ted on the energy sca le , and

  • 8/11/2019 Chapter 1 Structure and Properties of Metals and Alloys 1995 Studies in Surface Science and Catalysis

    32/66

    38 chap te r 1

    ( ii ) by the in t e rac t ion w i th a tom s , the e l ec t rons o f w h ich fo rm the band , i t i s b roade -

    ned.

    The b roa den ed l eve l E A can be fu l ly o r pa r t i a ll y occu p ied by e l ec t rons o r be com ple t e ly

    em p ty , i n w h ich case i t r ep resen t s an A + ion. W hen the ene rgy band fo r t he m e ta l i s

    na r row , t he b roaden ing o f t he adso rp t ion l eve l i s l e s s p ronounced than w hen the band i s

    broad.

    Le t u s now m ake a s t ep t o t he s t rong-bond l im i t and cons ide r t he so -ca l l ed

    pseud om olecu le s . The s t rong pseu dom olecu la r i n t e rac t ion sp l it s t he E A l eve l i n to tw o

    broadened l eve l s : a bond ing and an an t ibond ing one , w i th a gap in be tw een . Th i s i s

    s im i l a r t o t he s i t ua t ion w i th t he m olecu le A B in f i gu re 13 . The an t ibond ing band can be

    ei ther abo ve or be lo w the Fe rmi level E F, or i t can b e spl i t by EF in to an o ccu pie d and

    unoccupied par t . This las t case i s shown in f igure 16.

    d 1

    S

    before

    interact ion

    - - E F ~

    E A

    E

    -E A-

    N(E)

    metal ,

    on t ibond ing

    EA- metal ,

    bonding

    f i g u r e 1 6

    S t r o n g c h e m i s o r p t i o n p s e u d o m o l e c u l e s ) l i m it . C h e m i s o r p t i o n o f a t o m A o n a t r a n s i t io n

    m e t a l w i t h s a n d d b a n d s . L e f t - b e f o r e i n t e r a c t io n , r i g h t - a f t e r i n t e r a c t i o n .

    W e sha l l now inves t iga t e w he the r and how the s im ple t heo ry can exp la in t he t r ends

    in t he chem iso rp t ion bond s t r eng th fo r adso rbed a tom s w he n m e ta l s o f t he pe r iod ic t ab l e

    a r e c o m p a r e d .

    Theore t i ca l ana lys i s [15 ,16 , 5 9 , 68 -7 1] show s tha t w e can m ake the fo l low ing

    s im ple s t a t em en t s .

    ( i) The pos i t i on o f t he E A l eve l s (bands ) and the i r s epa ra t ion f rom each o the r a r e m a in ly

    due to the in terac t ion of