chapter 1.1-1.2 prob tso

100
1 USF, Math & Stat Introduction to Probability STA 4442.001: Fall 2015

Upload: evan-little

Post on 01-Feb-2016

234 views

Category:

Documents


1 download

DESCRIPTION

probability tsokos notes

TRANSCRIPT

Page 1: Chapter 1.1-1.2 prob tso

1

USF, Math & Stat

Introduction to Probability

STA 4442.001: Fall 2015

Page 2: Chapter 1.1-1.2 prob tso

2

USF, Math & Stat

Instructor: Dan Shen

Office: CMC 324

Phone: (813)974-5062

Email: [email protected]

Instructor Information

Page 3: Chapter 1.1-1.2 prob tso

3

USF, Math & Stat

Office hours: MW 9:45-10:45 a.m

Location: CMC 324

Office Hour

Page 4: Chapter 1.1-1.2 prob tso

4

USF, Math & Stat

“Probability for Engineering, Mathematics and Science’’

By Chris P. Tsokos,

Brooks/Cole (ISBN-13:978-1-111-43027-6).

Textbook

• Bring the textbook and a calculator to every class meeting.

• Do not bring laptop computers to class.

• Please turn off your cell phone during class time.

Page 5: Chapter 1.1-1.2 prob tso

5

USF, Math & Stat

• Use your USER ID and PASSWORD to login canvas

• Homework assignments and important announcements will be posted there.

Canvas

Page 6: Chapter 1.1-1.2 prob tso

6

USF, Math & Stat

• Assigned in each class. Monday home due day is next Monday and so on.

Necessary adjustments will be made right before each exam.

• No late homeworks will be accepted.

• Homeworks will not be accepted via email, disk, or any other electronic form.

• Missed homeworks will receive a grade of zero.

Homework

Page 7: Chapter 1.1-1.2 prob tso

7

USF, Math & Stat

• Show all work neatly, write in blue or black pen or pencil (never in red);

• Clearly label each problem, circle your numerical answers; • Staple the entire assignment together in the correct order (that is, the order in which problems were assigned.) with your name printed (in blue or black ink) on every page. Any homework violating any of these rules will receive a grade of zero for the entire assignment. Check your homework grades in “Canvas” after your homework is returned.

Homework

Page 8: Chapter 1.1-1.2 prob tso

8

USF, Math & Stat

• Homeworks, total 20% of your course grade; The lowest one will be dropped

• 6 Quizzes, total 15% of your course grade;

The lowest one will be dropped

• 3 in-class Midterm exams, total 45% of your course grade;

The lowest one will be dropped

• Final Exam, 20% of your course grade; • No make-up exams. Missed exams will receive a grade of zero; • Closed-book and closed-note with no formula sheets permitted; • Computers are not permitted during exams, but calculators may be used.

Grading

Page 9: Chapter 1.1-1.2 prob tso

9

USF, Math & Stat

•Drop/Add ends, fee liability/tuition payment deadline: Friday, August 28

•Last day to drop with a "W"; no refund & no academic penalty: Saturday, October 31

Drop the class

Page 10: Chapter 1.1-1.2 prob tso

10

USF, Math & Stat

• Feel free to approach the instructor with any concerns you may have

regarding the course

• Each student is responsible for verifying his or her recorded scores

(homeworks & midterm exams), which will be posted on canvas,

during the semester.

• The Honor Code will be observed at all times in this course.

• This class will participate in the Course Evaluation.

Course Concern

Page 11: Chapter 1.1-1.2 prob tso

11

USF, Math & Stat

Probability

Example 1.1.1 Tossing a fair die

Probability of obtaining an odd number?

Page 12: Chapter 1.1-1.2 prob tso

12

USF, Math & Stat

Example 1.1.1 Tossing a fair die

sample space: S={x, x=1, 2, 3, 4, 5, 6}

sample space, sample point, and sample event

Page 13: Chapter 1.1-1.2 prob tso

13

USF, Math & Stat

Example 1.1.1 Tossing a fair die

sample space: S={x, x=1, 2, 3, 4, 5, 6}

sample point: for example, x=1

sample space, sample point, and sample event

Page 14: Chapter 1.1-1.2 prob tso

14

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

sample space: S={x, x=1, 2, 3, 4, 5, 6}

sample point: for example, x=1

sample event: obtaining an odd number S1={x, x=1, 3, 5}

Page 15: Chapter 1.1-1.2 prob tso

15

USF, Math & Stat

Sample space, point, event

Example: flip a coin twice

H: head

T: tail

H

T

First flip

Page 16: Chapter 1.1-1.2 prob tso

16

USF, Math & Stat

Sample space, point, event

Example: flip a coin twice

H: head

T: tail

H

T

First flip

H

T

H

T

Second flip

Page 17: Chapter 1.1-1.2 prob tso

17

USF, Math & Stat

Sample space, point, event

H

T

First flip

H

T H

T

Second flip outcomes

HH

HT TH

TT

sample space:

Page 18: Chapter 1.1-1.2 prob tso

18

USF, Math & Stat

Sample space, point, event

H

T

First flip

H

T H

T

Second flip outcomes

HH

HT TH

TT

sample space: S={HH, HT, TH, TT}

Page 19: Chapter 1.1-1.2 prob tso

19

USF, Math & Stat

Sample space, point, event

H

T

First flip

H

T H

T

Second flip outcomes

HH

HT TH

TT

sample space: S={HH, HT, TH, TT}

sample point: for example, HH

Page 20: Chapter 1.1-1.2 prob tso

20

USF, Math & Stat

Sample space, point, event

H

T

First flip

H

T H

T

Second flip outcomes

HH

HT TH

TT

sample space: S={HH, HT, TH, TT}

sample point: for example, HH

sample event 1: the fist and second flip are both heards

S1={HH}

Page 21: Chapter 1.1-1.2 prob tso

21

USF, Math & Stat

Sample space, point, event

H

T

First flip

H

T H

T

Second flip outcomes

HH

HT TH

TT

sample space: S={HH, HT, TH, TT}

sample point: for example, HH

sample event 1: the fist and second flip are both heards

S1={HH} a simple event

Page 22: Chapter 1.1-1.2 prob tso

22

USF, Math & Stat

Sample space, point, event

H

T

First flip

H

T H

T

Second flip outcomes

HH

HT TH

TT

sample space: S={HH, HT, TH, TT}

sample point: for example, HH

sample event 2: the fist flip is head

Page 23: Chapter 1.1-1.2 prob tso

23

USF, Math & Stat

Sample space, point, event

H

T

First flip

H

T H

T

Second flip outcomes

HH

HT TH

TT

sample space: S={HH, HT, TH, TT}

sample point: for example, HH

sample event 2: the fist flip is head

S2={HH, HT} a compound event

Page 24: Chapter 1.1-1.2 prob tso

24

USF, Math & Stat

Definitions

Discrete space S:

1. S contains a finite number of points

Page 25: Chapter 1.1-1.2 prob tso

25

USF, Math & Stat

Definitions

Discrete space S:

1. S contains a finite number of points

Example, S={x, x=1, 1.5, 2, 2.5}

Page 26: Chapter 1.1-1.2 prob tso

26

USF, Math & Stat

Definitions

Discrete space S:

1. S contains a finite number of points

2. S contains an infinite number of points that can be

put into a one to one correspondence with the

positive integer

Page 27: Chapter 1.1-1.2 prob tso

27

USF, Math & Stat

Definitions

Discrete space S:

1. S contains a finite number of points

2. S contains an infinite number of points that can be

put into a one to one correspondence with the

positive integer

Example, S={x, x=1, 1.5, 2, 2.5, ……}

Page 28: Chapter 1.1-1.2 prob tso

28

USF, Math & Stat

Definitions

Discrete space S:

1. S contains a finite number of points

2. S contains an infinite number of points that can be

put into a one to one correspondence with the

positive integer

Continuous space S: S contains a continuum of points

Page 29: Chapter 1.1-1.2 prob tso

29

USF, Math & Stat

Definitions

Discrete space S:

1. S contains a finite number of points

2. S contains an infinite number of points that can be

put into a one to one correspondence with the

positive integer

Continuous space S: S contains a continuum of points

Examples, S={t, 0≤ t< +∞}

Page 30: Chapter 1.1-1.2 prob tso

30

USF, Math & Stat

Definitions

Discrete space S:

1. S contains a finite number of points

2. S contains an infinite number of points that can be

put into a one to one correspondence with the

positive integer

Continuous space S: S contains a continuum of points

S={t, 0< t< 1} is continuous space?????

Page 31: Chapter 1.1-1.2 prob tso

31

USF, Math & Stat

Definitions

Two events S1= S2: if they contain same points.

Impossible (empty) event S1 denoted by Ø :

• S1 contains no sample point

Page 32: Chapter 1.1-1.2 prob tso

32

USF, Math & Stat

Definitions

Two events S1= S2: if they contain same points.

Impossible (empty) event S1 denoted by Ø :

• S1 contains no sample point

For example S1 ={x, x=7, 8}

Page 33: Chapter 1.1-1.2 prob tso

33

USF, Math & Stat

Definitions

Complement event of S1 denoted by S-S1 or S1 :

• Event contains sample points in S but not in S1

_

Page 34: Chapter 1.1-1.2 prob tso

34

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

Page 35: Chapter 1.1-1.2 prob tso

35

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1=???

_

Page 36: Chapter 1.1-1.2 prob tso

36

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1={t; 0≤ t ≤25 or 100<t <+∞}

_

Page 37: Chapter 1.1-1.2 prob tso

37

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1={t; 0≤ t ≤25 or 100<t <+∞} S2=???

_ _

Page 38: Chapter 1.1-1.2 prob tso

38

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1={t; 0≤ t ≤25 or 100<t <+∞} S2={t; 0≤ t ≤60 or 140<t <+∞}

_ _

Page 39: Chapter 1.1-1.2 prob tso

39

USF, Math & Stat

Definitions

Complement event of S1 denoted by S-S1 or S1 :

• Event contains sample points in S but not in S1

Union of S1 and S2 denoted by S1 ∪ S2 :

• Event contains all sample points in S1 and S2

_

Page 40: Chapter 1.1-1.2 prob tso

40

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1={t; 0≤ t ≤25 or 100<t <+∞} S2={t; 0≤ t ≤60 or 140<t <+∞}

S1 ∪ S2=???

_ _

Page 41: Chapter 1.1-1.2 prob tso

41

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1={t; 0≤ t ≤25 or 100<t <+∞} S2={t; 0≤ t ≤60 or 140<t <+∞}

S1 ∪ S2={t; 25< t≤140 }

_ _

Page 42: Chapter 1.1-1.2 prob tso

42

USF, Math & Stat

Definitions

Complement event of S1 denoted by S-S1 or S1 :

• Event contains sample points in S but not in S1

Union of S1 and S2 denoted by S1 ∪ S2 :

• Event contains all sample points in S1 and S2

Intersection of S1 and S2 denoted by S1 ∩ S2 :

• Event contains sample points in both S1 and S2

_

Page 43: Chapter 1.1-1.2 prob tso

43

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1={t; 0≤ t ≤25 or 100<t <+∞} S2={t; 0≤ t ≤60 or 140<t <+∞}

S1 ∪ S2={t; 25< t≤140 } S1 ∩ S2=???

_ _

Page 44: Chapter 1.1-1.2 prob tso

44

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1={t; 0≤ t ≤25 or 100<t <+∞} S2={t; 0≤ t ≤60 or 140<t <+∞}

S1 ∪ S2 ={t; 25< t≤140 } S1 ∩ S2={t; 60< t≤100 }

_ _

Page 45: Chapter 1.1-1.2 prob tso

45

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1={t; 0≤ t ≤25 or 100<t <+∞} S2={t; 0≤ t ≤60 or 140<t <+∞}

S1 ∪ S2 ={t; 25< t≤140 } S1 ∩ S2={t; 60< t≤100 }

S1 ∩ S2 =???

_ _

____

Page 46: Chapter 1.1-1.2 prob tso

46

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1={t; 0≤ t ≤25 or 100<t <+∞} S2={t; 0≤ t ≤60 or 140<t <+∞}

S1 ∪ S2 ={t; 25< t≤140 } S1 ∩ S2={t; 60< t≤100 }

S1 ∩ S2 ={t; 0≤ t ≤60 or 100<t <+∞}

_ _

____

Page 47: Chapter 1.1-1.2 prob tso

47

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1={t; 0≤ t ≤25 or 100<t <+∞} S2={t; 0≤ t ≤60 or 140<t <+∞}

S1 ∪ S2 ={t; 25< t≤140 } S1 ∩ S2={t; 60< t≤100 }

S1 ∩ S2 ={t; 0≤ t ≤60 or 100<t <+∞}

S1 ∪ S2 =???

_ _

____

____

Page 48: Chapter 1.1-1.2 prob tso

48

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1={t; 0≤ t ≤25 or 100<t <+∞} S2={t; 0≤ t ≤60 or 140<t <+∞}

S1 ∪ S2 ={t; 25< t≤140 } S1 ∩ S2={t; 60< t≤100 }

S1 ∩ S2 ={t; 0≤ t ≤60 or 100<t <+∞}

S1 ∪ S2 ={t; 0≤ t ≤25 or 140< t<+∞ }

_ _

____

____

Page 49: Chapter 1.1-1.2 prob tso

49

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1={t; 0≤ t ≤25 or 100<t <+∞} S2={t; 0≤ t ≤60 or 140<t <+∞}

S1 ∪ S2 ={t; 25< t≤140 } S1 ∩ S2={t; 60< t≤100 }

S1 ∩ S2 ={t; 0≤ t ≤60 or 100<t <+∞}

S1 ∪ S2 ={t; 0≤ t ≤25 or 140< t<+∞ }

S1 ∪ S2 =???

_ _

____

____

_ _

Page 50: Chapter 1.1-1.2 prob tso

50

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1={t; 0≤ t ≤25 or 100<t <+∞} S2={t; 0≤ t ≤60 or 140<t <+∞}

S1 ∪ S2 ={t; 25< t≤140 } S1 ∩ S2={t; 60< t≤100 }

S1 ∩ S2 ={t; 0≤ t ≤60 or 100<t <+∞}

S1 ∪ S2 ={t; 0≤ t ≤25 or 140< t<+∞ }

S1 ∪ S2 ={t; 0≤ t ≤60 or 100<t <+∞}

_ _

____

____

_ _

Page 51: Chapter 1.1-1.2 prob tso

51

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1={t; 0≤ t ≤25 or 100<t <+∞} S2={t; 0≤ t ≤60 or 140<t <+∞}

S1 ∪ S2 ={t; 25< t≤140 } S1 ∩ S2={t; 60< t≤100 }

S1 ∩ S2 ={t; 0≤ t ≤60 or 100<t <+∞}

S1 ∪ S2 ={t; 0≤ t ≤25 or 140< t<+∞ }

S1 ∪ S2 ={t; 0≤ t ≤60 or 100<t <+∞}

S1 ∩ S2 =???

_ _

____

____

_ _

_ _

Page 52: Chapter 1.1-1.2 prob tso

52

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1={t; 0≤ t ≤25 or 100<t <+∞} S2={t; 0≤ t ≤60 or 140<t <+∞}

S1 ∪ S2 ={t; 25< t≤140 } S1 ∩ S2={t; 60< t≤100 }

S1 ∩ S2 ={t; 0≤ t ≤60 or 100<t <+∞}

S1 ∪ S2 ={t; 0≤ t ≤25 or 140< t<+∞ }

S1 ∪ S2 ={t; 0≤ t ≤60 or 100<t <+∞}

S1 ∩ S2 ={t; 0≤ t ≤25 or 140< t<+∞ }

_ _

____

____

_ _

_ _

Page 53: Chapter 1.1-1.2 prob tso

53

USF, Math & Stat

Example

S={t; 0≤ t <+∞} S1={t; 25< t≤100 } S2={t; 60< t≤140 }

S1={t; 0≤ t ≤25 or 100<t <+∞} S2={t; 0≤ t ≤60 or 140<t <+∞}

S1 ∪ S2 ={t; 25< t≤140 } S1 ∩ S2={t; 60< t≤100 }

S1 ∩ S2 ={t; 0≤ t ≤60 or 100<t <+∞}

S1 ∪ S2 ={t; 0≤ t ≤25 or 140< t<+∞ } S1 ∩ S2 = S1 ∪ S2

S1 ∪ S2 ={t; 0≤ t ≤60 or 100<t <+∞} S1 ∪ S2 = S1 ∩ S2

S1 ∩ S2 ={t; 0≤ t ≤25 or 140< t<+∞ } De Morgan’s laws

_ _

____

____

_ _

_ _

____ _ _

_ _ ____

Page 54: Chapter 1.1-1.2 prob tso

54

USF, Math & Stat

Definitions

Complement event of S1 denoted by S-S1 or S1 :

• Event contains sample points in S but not in S1

Union of S1 and S2 denoted by S1 ∪ S2 :

• Event contains all sample points in S1 and S2

Intersection of S1 and S2 denoted by S1 ∩ S2 :

• Event contains sample points in both S1 and S2

S1 and S2 are mutually exclusive events or disjoint events • S1 ∩ S2= Ø

_

Page 55: Chapter 1.1-1.2 prob tso

55

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

sample event 1: obtaining an odd number S1={x, x=1, 3, 5}

sample event 2: obtaining an even number S2={x, x=2, 4, 6}

Page 56: Chapter 1.1-1.2 prob tso

56

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

sample event 1: obtaining an odd number S1={x, x=1, 3, 5}

sample event 2: obtaining an even number S2={x, x=2, 4, 6}

S1 ∩ S2= Ø

Page 57: Chapter 1.1-1.2 prob tso

57

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

sample event 1: obtaining an odd number S1={x, x=1, 3, 5}

sample event 2: obtaining an even number S2={x, x=2, 4, 6}

Pr( S1)=???

Page 58: Chapter 1.1-1.2 prob tso

58

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

sample event 1: obtaining an odd number S1={x, x=1, 3, 5}

sample event 2: obtaining an even number S2={x, x=2, 4, 6}

Pr( S1)=3/6=1/2

Page 59: Chapter 1.1-1.2 prob tso

59

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

sample event 1: obtaining an odd number S1={x, x=1, 3, 5}

sample event 2: obtaining an even number S2={x, x=2, 4, 6}

0 ≤ Pr( S1) ≤ 1

Page 60: Chapter 1.1-1.2 prob tso

60

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

sample event 1: obtaining an odd number S1={x, x=1, 3, 5}

sample event 2: obtaining an even number S2={x, x=2, 4, 6}

0 ≤ Pr( S1) ≤ 1

0 ≤ Pr( S2) ≤ 1

Page 61: Chapter 1.1-1.2 prob tso

61

USF, Math & Stat

Axioms

Axiom 1.2.1 0 ≤ Pr( Si) ≤ 1

Page 62: Chapter 1.1-1.2 prob tso

62

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

S={x, x=1, 2, 3,4, 5,6}

Pr( S)= ???

Page 63: Chapter 1.1-1.2 prob tso

63

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

S={x, x=1, 2, 3,4, 5,6}

Pr( S)= 1

Page 64: Chapter 1.1-1.2 prob tso

64

USF, Math & Stat

Axioms

Axiom 1.2.1 0 ≤ Pr( Si) ≤ 1

Axiom 1.2.2 Pr( S) = 1

Page 65: Chapter 1.1-1.2 prob tso

65

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

Si ={ i}, i=1, …, 6

Pr(Si )= ???

Page 66: Chapter 1.1-1.2 prob tso

66

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

Si ={ i}, i=1, …, 6

Pr(Si )= 1/6

Page 67: Chapter 1.1-1.2 prob tso

67

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

Si ={ i}, i=1, …, 6

Pr(Si )= 1/6

Si ∩ Sj= ??? for i≠j

Page 68: Chapter 1.1-1.2 prob tso

68

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

Si ={ i}, i=1, …, 6

Pr(Si )= 1/6

Si ∩ Sj= Ø for i≠j

Page 69: Chapter 1.1-1.2 prob tso

69

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

Si ={ i}, i=1, …, 6

Pr(Si )= 1/6

Si ∩ Sj= Ø for i≠j

S1 ∪ S2 ∪ S3= ???

Page 70: Chapter 1.1-1.2 prob tso

70

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

Si ={ i}, i=1, …, 6

Pr(Si )= 1/6

Si ∩ Sj= Ø for i≠j

S1 ∪ S2 ∪ S3= {1, 2, 3}

Page 71: Chapter 1.1-1.2 prob tso

71

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

Si ={ i}, i=1, …, 6

Pr(Si )= 1/6

Si ∩ Sj= Ø for i≠j

S1 ∪ S2 ∪ S3= {1, 2, 3}

Pr(S1 ∪ S2 ∪ S3 ) =???

Page 72: Chapter 1.1-1.2 prob tso

72

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

Si ={ i}, i=1, …, 6

Pr(Si )= 1/6

Si ∩ Sj= Ø for i≠j

S1 ∪ S2 ∪ S3= {1, 2, 3}

Pr(S1 ∪ S2 ∪ S3 ) =3/6

Page 73: Chapter 1.1-1.2 prob tso

73

USF, Math & Stat

sample space, sample point, and sample event

Example 1.1.1 Tossing a fair die

Si ={ i}, i=1, …, 6

Pr(Si )= 1/6

Si ∩ Sj= Ø for i≠j

S1 ∪ S2 ∪ S3= {1, 2, 3}

Pr(S1 ∪ S2 ∪ S3 ) =3/6= Pr(S1 )+ Pr(S2 )+ Pr( S3 )

Page 74: Chapter 1.1-1.2 prob tso

74

USF, Math & Stat

Axioms

Axiom 1.2.1 0 ≤ Pr( Si) ≤ 1

Axiom 1.2.2 Pr( S) = 1

Axiom 1.2.3 Si ∩ Sj= Ø for i≠j =1, 2, 3, …, n, ….

Pr(S1 ∪ S2… ∪ Sn ∪ … ) = Pr(S1 )+Pr( S2)+…+Pr(Sn)+….

or

11

)Pr()Pr(i

iii

SS

Page 75: Chapter 1.1-1.2 prob tso

75

USF, Math & Stat

Theorems

Theorem 1.2.1 two events then Pr( S1) ≤ Pr( S2)

21 SS

Page 76: Chapter 1.1-1.2 prob tso

76

USF, Math & Stat

Theorems

Theorem 1.2.1 two events then Pr( S1) ≤ Pr( S2)

21 SS

S1

S2

S

Page 77: Chapter 1.1-1.2 prob tso

77

USF, Math & Stat

Theorems

Theorem 1.2.1 two events then Pr( S1) ≤ Pr( S2)

Proof S2= blue region + red region

21 SS

S1

S2

S

Page 78: Chapter 1.1-1.2 prob tso

78

USF, Math & Stat

Theorems

Theorem 1.2.1 two events then Pr( S1) ≤ Pr( S2)

Proof S2= blue region + red region= S1 ∪??

21 SS

S1

S2

S

Page 79: Chapter 1.1-1.2 prob tso

79

USF, Math & Stat

Theorems

Theorem 1.2.1 two events then Pr( S1) ≤ Pr( S2)

Proof S2= blue region + red region= S1 ∪(S2 ∩ S1 )

21 SS

S1

S2

S

_

Page 80: Chapter 1.1-1.2 prob tso

80

USF, Math & Stat

Theorems

Theorem 1.2.1 two events then Pr( S1) ≤ Pr( S2)

Proof S2= blue region + red region= S1 ∪(S2 ∩ S1 )

From Axiom 1.2.3, Pr(S2)= Pr(S1)+ Pr(S2 ∩ S1 )

21 SS

S1

S2

S

_

_

Page 81: Chapter 1.1-1.2 prob tso

81

USF, Math & Stat

Theorems

Theorem 1.2.1 two events then Pr( S1) ≤ Pr( S2)

Proof S2= blue region + red region= S1 ∪(S2 ∩ S1 )

From Axiom 1.2.3, Pr(S2)= Pr(S1)+ Pr(S2 ∩ S1 )

From Axiom 1.2.1, Pr(S2 ∩ S1 ) ≥ 0

21 SS

S1

S2

S

_

_

_

Page 82: Chapter 1.1-1.2 prob tso

82

USF, Math & Stat

Theorems

Theorem 1.2.1 two events then Pr( S1) ≤ Pr( S2)

Proof S2= blue region + red region= S1 ∪(S2 ∩ S1 )

From Axiom 1.2.3, Pr(S2)= Pr(S1)+ Pr(S2 ∩ S1 )

From Axiom 1.2.1, Pr(S2 ∩ S1 ) ≥ 0

Thus Pr(S1)≤ Pr(S2)

21 SS

S1

S2

S

_

_

_

Page 83: Chapter 1.1-1.2 prob tso

83

USF, Math & Stat

Theorems

Theorem 1.2.3 For any event Sk , we have Pr( Sk) =1- Pr( Sk)

Sk

S

_

Page 84: Chapter 1.1-1.2 prob tso

84

USF, Math & Stat

Theorems

Theorem 1.2.3 For any event Sk , we have Pr( Sk) =1- Pr( Sk)

Proof S= red region + white region

Sk

S

_

Page 85: Chapter 1.1-1.2 prob tso

85

USF, Math & Stat

Theorems

Theorem 1.2.3 For any event Sk , we have Pr( Sk) =1- Pr( Sk)

Proof S= red region + white region = Sk ∪( Sk )

Sk

S

_

_

Page 86: Chapter 1.1-1.2 prob tso

86

USF, Math & Stat

Theorems

Theorem 1.2.3 For any event Sk , we have Pr( Sk) =1- Pr( Sk)

Proof S= red region + white region = Sk ∪( Sk )

From Axiom 1.2.3, Pr(S)= Pr(Sk)+ Pr(Sk )

Sk

S

_

_

_

Page 87: Chapter 1.1-1.2 prob tso

87

USF, Math & Stat

Theorems

Theorem 1.2.3 For any event Sk , we have Pr( Sk) =1- Pr( Sk)

Proof S= red region + white region = Sk ∪( Sk )

From Axiom 1.2.3, Pr(S)= Pr(Sk)+ Pr(Sk )

From Axiom 1.2.2, Pr(S)= 1

Sk

S

_

_

_

Page 88: Chapter 1.1-1.2 prob tso

88

USF, Math & Stat

Theorems

Theorem 1.2.3 For any event Sk , we have Pr( Sk) =1- Pr( Sk)

Proof S= red region + white region = Sk ∪( Sk )

From Axiom 1.2.3, Pr(S)= Pr(Sk)+ Pr(Sk )

From Axiom 1.2.2, Pr(S)= 1

Then Pr(Sk)= 1- Pr(Sk )

Sk

S

_

_

_

_

Page 89: Chapter 1.1-1.2 prob tso

89

USF, Math & Stat

Theorems

Theorem 1.2.4 For impossible event Ø, we have Pr(Ø) =0

Proof From Theorem 1.2.3, Pr(S)= 1- Pr(S)

_

Page 90: Chapter 1.1-1.2 prob tso

90

USF, Math & Stat

Theorems

Theorem 1.2.4 For impossible event Ø, we have Pr(Ø) =0

Proof From Theorem 1.2.3, Pr(S)= 1- Pr(S)

Note that Pr(S)= 1 and Ø= S

_

_

Page 91: Chapter 1.1-1.2 prob tso

91

USF, Math & Stat

Theorems

Theorem 1.2.4 For impossible event Ø, we have Pr(Ø) =0

Proof From Theorem 1.2.3, Pr(S)= 1- Pr(S)

Note that Pr(S)= 1 and Ø= S

Then Pr(Ø)= 0

_

_

Page 92: Chapter 1.1-1.2 prob tso

92

USF, Math & Stat

Theorems

Theorem 1.2.5 For two events S1 and S2,

Pr(S1 ∪ S2)= Pr(S1) + Pr(S2) - Pr(S1 ∩ S2 )

S2 ∩ S1 S1 S2

Page 93: Chapter 1.1-1.2 prob tso

93

USF, Math & Stat

Theorems

Theorem 1.2.5 For two events S1 and S2,

Pr(S1 ∪ S2)= Pr(S1) + Pr(S2) - Pr(S1 ∩ S2 )

Proof :

S1= yellow + blue

S2 ∩ S1 S1 S2

Page 94: Chapter 1.1-1.2 prob tso

94

USF, Math & Stat

Theorems

Theorem 1.2.5 For two events S1 and S2,

Pr(S1 ∪ S2)= Pr(S1) + Pr(S2) - Pr(S1 ∩ S2 )

Proof :

S1= yellow + blue

S2= red + blue

S2 ∩ S1 S1 S2

Page 95: Chapter 1.1-1.2 prob tso

95

USF, Math & Stat

Theorems

Theorem 1.2.5 For two events S1 and S2,

Pr(S1 ∪ S2)= Pr(S1) + Pr(S2) - Pr(S1 ∩ S2 )

Proof :

S1= yellow + blue

S2= red + blue

S1 ∪ S2= yellow+blue+red

S2 ∩ S1 S1 S2

Page 96: Chapter 1.1-1.2 prob tso

96

USF, Math & Stat

Theorems

Theorem 1.2.5 For two events S1 and S2,

Pr(S1 ∪ S2)= Pr(S1) + Pr(S2) - Pr(S1 ∩ S2 )

Proof :

S1= yellow + blue

S2= red + blue

S1 ∪ S2= yellow+blue+red

S1 ∩ S2 =blue

S2 ∩ S1 S1 S2

Page 97: Chapter 1.1-1.2 prob tso

97

USF, Math & Stat

Theorems

Theorem 1.2.5 For two events S1 and S2,

Pr(S1 ∪ S2)= Pr(S1) + Pr(S2) - Pr(S1 ∩ S2 )

Proof :

S1= yellow + blue

S2= red + blue

S1 ∪ S2= yellow+blue+red

S1 ∩ S2 =blue

then Pr(S1)+Pr(S2) = Pr(S1 ∪ S2) + Pr(S1 ∩ S2 )

S2 ∩ S1 S1 S2

Page 98: Chapter 1.1-1.2 prob tso

98

USF, Math & Stat

Theorems

Theorem 1.2.5 For two events S1 and S2,

Pr(S1 ∪ S2)= Pr(S1) + Pr(S2) - Pr(S1 ∩ S2 )

Proof :

S1= yellow + blue

S2= red + blue

S1 ∪ S2= yellow+blue+red

S1 ∩ S2 =blue

then Pr(S1)+Pr(S2) = Pr(S1 ∪ S2) + Pr(S1 ∩ S2 )

It follows that Pr(S1 ∪ S2)= Pr(S1) + Pr(S2) - Pr(S1 ∩ S2 )

S2 ∩ S1 S1 S2

Page 99: Chapter 1.1-1.2 prob tso

99

USF, Math & Stat

Theorems

Theorem 1.2.6 For a sequence of events S1, …., Sn

)...Pr()1(... 21

1

n

n SSS

n

kjikji

ji

n

jiji

ji

n

i

ii

n

i

SSSSSS,,1,11

)Pr()Pr()Pr()Pr(

Page 100: Chapter 1.1-1.2 prob tso

100

USF, Math & Stat

Theorems

Theorem 1.2.6 For a sequence of events S1, …., Sn

If the events are disjoint, then

11

)Pr()Pr(i

iii

SS

)...Pr()1(... 21

1

n

n SSS

n

kjikji

ji

n

jiji

ji

n

i

ii

n

i

SSSSSS,,1,11

)Pr()Pr()Pr()Pr(