chapter 11: liquids & solids

59
Chapter 11: Liquids & Solids The molecular compounds like water, ammonia, and carbon dioxide have different physical properties because of the intermolecular forces. Comparison of all three phases:

Upload: gin

Post on 25-Feb-2016

103 views

Category:

Documents


1 download

DESCRIPTION

Chapter 11: Liquids & Solids. The molecular compounds like water, ammonia, and carbon dioxide have different physical properties because of the intermolecular forces. Comparison of all three phases:. Liquids & Solids. Liquids & Solids. Compressibility. Changes of State. - PowerPoint PPT Presentation

TRANSCRIPT

Chapter 11: Liquids & Solids

Chapter 11: Liquids & SolidsThe molecular compounds like water, ammonia, and carbon dioxide have different physical properties because of the intermolecular forces.Comparison of all three phases:

Liquids & Solids

Liquids & Solids

Compressibility

Changes of StateChanges in state can be induced by a change in temperature or pressure.

Intermolecular ForcesForces between molecules.Always LESS in energy than actual bond.The attractive force between two HCl molecules is about 16 kJ/mol.The bond dissociation energy of the HCl bond is about 431 kJ/mol.

Intermolecular ForcesOne method to compare the strength of intermolecular forces is to examine the substances boiling point.When the forces are relatively weak, then the boiling point is small.Ex) HCl, bp = -85oC.There are three main types of intermolecular forces between neutral substances.Intermolecular ForcesIn the LS packet, we identified molecules as being polar or non-polar based on shape, types of atoms, etc.Polar molecules have a dipole that is a positive and negative end.

Intermolecular ForcesThus, the first type of force is called Dipole-Dipole (or DD) forces and occurs for any polar molecule.The larger the dipole moment, the more DD forces.

Intermolecular ForcesIf you cool any non-polar molecule or atom to a low enough temperature, then it will liquefy. Yet, these have no reason to be attractive to each other.Fritz London first proposed a theory in 1930.On average, electrons in an atom like He are evenly distributed.But, in one INSTANT, the two electrons may both be on the same side. Intermolecular ForcesThus, in that one INSTANT, a He atom would have an instantaneous dipole.This is called the London Dispersion (or LD) force.

Intermolecular ForcesSince all molecules have electrons, they all have a LD force.The polarizability of an atom or molecules electrons depends on two factors.The number of electrons. More electrons = More LD forces. The shape of molecule. More spread out = more LD forces. Intermolecular Forces

Non-polar Alkanes

Intermolecular ForcesThe formula C5H12 has three structural isomers.

CH3 CH2 CH2 CH2 CH3 CH3 CH3CH3 CH2 CH CH3 CH3 C CH3

CH3Non-polar Branched AlkanesNameMolar MassBoiling PointPentane72.15 g/mol36.1oCMethylbutane72.15 g/mol27.7oCDimethylpropane72.15 g/mol10ocButane58.12 g/mol-0.5oCMethylpropane58.12 g/mol-11.7oCComparison of the group 4A, 5A, 6A, and 7A hydrides shows an interesting result.What type of forces do the group 4A have?Group 6A?What is the notable exception?

Intermolecular ForcesThe third type of force is a special case of DD force and is called Hydrogen Bonding (or HB).The name Hydrogen Bonding is a misnomer!HB can only occur when:H is bonded to either N, O, or F.The N, O, or F atom has at least one lone pair.

Intermolecular ForcesThe strength of Hydrogen Bonding varies from 5 kJ to 40 kJ, which is still much weaker than a covalent bond (200 1000 kJ).However, it is MUCH stronger than DD or LD forces.Thus, it can greatly increase the boiling point temperatures of molecules.Intermolecular ForcesHB forces are very important in biochemistry.Proteins are made from the twenty amino acids.The structure of the amino acid has both an OH group and an NH2 group that can HB. R O H N C C O H H H Intermolecular ForcesPredicting relative boiling points.Determine the molecular weight.Determine the type(s) of intermolecular forces present.If weights are similar, then LD < DD < HBIf weights are very dissimilar, then #2 probably does not matter. However, HB can really distort the bps!Ex) H2O, bp = 100oC, MW = 18 g/mol versus CCl4, bp = 76oC, MW = 154 g/mol.Intermolecular ForcesThe strengths of attractions between the molecules may affect a liquids properties.ViscositySurface Tension

Intermolecular ForcesViscosity is the resistance of a liquid to flow.Liquids with low viscosity, like water, will produce a splash whereas liquids with high viscosity, like corn syrup or ketchup, will not.

Intermolecular ForcesViscosity tends to increase with more intermolecular forces and molecular weight.Many liquids, like water, have a consistent viscosity over a wide range of temperatures.Some liquids, like corn syrup, will decrease in viscosity as the temperature increases.Multi-weight motor oil actually increases with an increase in temperature (ie. 5W 30).Non-Newtonian liquids (ie. Slime) have a variable viscosity at the same temperature. Surface TensionSurface Tension is the skin-like appearance of the surface.Results from surface molecules seeking six nearest neighbors like interior molecules.

Surface Tension

Phase Changes

Phase ChangesEnergy when changing between solid and liquid phase is called the Heat of Fusion and denoted as DHfus.DHfus for water is 6.01 kJ/mol or 334 J/g.Energy when changing between liquid and gas is called the Heat of Vaporization and denoted as DHvap.DHvap for water is 40.67 kJ.mol or 2,260 J/g.Heating Curve

RefrigerationThe basics of refrigeration.First law of thermodynamics at work again!Coolant is CF2Cl2 (old) or CF3CH2F (new).

Vapor PressureAbove the surface of any liquid, some liquid molecules will have enough energy to escape and become gas molecules.In a closed system, an equilibrium will be achieved between the gas molecules and the liquid. This is the vapor pressure.

Vapor PressureAs the temperature of the liquid increases, its vapor pressure will increase.

Vapor PressureWhen the vapor pressure equals 1 atmosphere, then the liquid spontaneously becomes a gas. You would call this the boiling point.Does pure water always boil at 100oC?

Clausius-Clapeyron EquationThe graphs of vapor pressure versus temperature are approximately an exponential function.Mathematically, if you take the natural logarithm (ln key on calculator) of the vapor press versus 1/T, then you get a linear relationship.

Clausius-Clapeyron Equation

R is molar gas constant = 8.314 J/K mol and the T is the temperature in KelvinHeat of vaporization must be in J/mol.Pressures can be in either atm or mmHg (must agree).Phase DiagramsDisplay a singles substances states of matter over a wide range of P and T.

Carbon DioxideThe phase diagram of CO2 shows that the liquid phase can only be found above a pressure of 5.11 atm.As the temperature of solid CO2 increases, it undergoes sublimation.

WaterThe phase diagram of water has one very important difference. What is it?

SolidsSolids can be either amorphous (random) or crystalline (repeating pattern).Unit cell is the smallest repeating pattern for the crystalline structure.Analogy: a hotel with many floors.Structure of unit cell can have various lengths and angles.

SolidsWhile many types of unit cells are possible, a few are seen many times in structures of metals, molecular, and ionic compounds.Cubic unit cells two main versions.Body-centered cubic (BCC) has atoms at each corner and an atom in the body-center.Face-centered cubic (FCC) has atoms at each corner and an atom on each face.Important just like a hotel room shares walls, floors, and ceilings with other rooms, so does a unit cell share atoms with other unit cells.Solids

Solids

SolidsCan also have atoms on edges in larger unit cells namely for ionic compounds.Thus, the following are the contributions for locations on or in a unit cell:

SolidsUnit cell calculations will follow the formula:

Where Vc is the volume of the cubic unit cell, MW is the molar mass, C is the number of atoms per unit cell, D is the density (m/V), and Na is Avogadros Number.

SolidsAnother view Closest Packing Model.Assumes that atoms are hard spheres.Maximize the density, minimize the empty spaces.

SolidsFirst layer what is the most efficient method of arrangement?

SolidsSecond layer is placed so that spheres sit in gaps from previous row.Third layer can either repeat first layer yielding an ABABAB pattern.OR, the third layer is offset from the first two producing an ABCABCABC pattern.

SolidsThe ABABAB pattern produces a unit cell called hexagonal closest packing or HCP. This is NOT a cubic unit cell!

SolidsThe ABCABCABC pattern produces a unit cell called cubic closest packing or CCP.However, CCP is the same as FCC!

SolidsH

HeHcpLiBccBeHcpB

CNOFNeFccNaBccMgHcpAlFccSiPSClArFccKBccCaFccScHcpTiHcpVBccCrBccMnBccFeBccCoHcpNiFccCuFccZnHcpGaGeAsSeBrKrFccRbBccSrFccYHcpZrHcpNbBccMoBccTcHcpRuHcpRhFccPdFccAgFccCdHcpInSnSbTeIXeFccCsBccBaBccHfHcpTaBccWBccReHcpOsHcpIrFccPtFccAuFccHg

TlHcpPbFccBiPoAtRnSolidsAll crystalline solids can be catagerized into one of four types.Type 1: Molecular SolidsConsist of atoms or molecules like Ne, CH4, and H2O.Are held together by relatively weak intermolecular forces.Are soft and have low melting points (unless they have a high MW).Poor conductors of heat and electricity. SolidsType 2: Ionic SolidsConsist of ions held together by their electrostatic attractions.Unit cells are always larger since the smallest repeating pattern must include two ions.When cation and anion are of similar sizes, get BCC type arrangement. When anion is much larger, get a CCP arrangement of anions with cations stuck in the holes.Hard and brittle and have high melting points.Poor electrical conductors as solids, but excellent when melted.Solids

(a) CsCl (b) ZnS (c) CaF2SolidsView of NaCl

SolidsType 3: Metallic SolidsAtoms are held together by a sea of valence electrons.Can be soft (Na, Au) or very hard (Fe, Co) with low to very high melting points.Excellent conductors of both heat and electricity.Malleable and ductile.

SolidsType 4: Covalent Network SolidsConsist of atoms held together in large networks of covalent bonds.There are not many of these C(diamond), SiO2, quartz, SiC, and BN.Very hard with very high melting points.Poor conductors.SolidsTwo forms of carbon, diamond and graphite.

SolidsComparing metal points of solids.First determine the type of solid.Molecular is always the lowest of the four types.Second if both are the same type of solid, then:Molecular is like bps. LD < DD < HB.Ex) CH4 (-182 C) < COCl2 (-118 C) < H2O (0 C)Ionic depends on lattice energy the larger the lattice energy, the higher the mp.Ex) NaCl (801 C) < MgO (2852 C)SolidsMetallic depends on the number of unpaired electrons. More unpaired electrons = higher melting point.K, 1 unpaired electron, mp = 64 CTi, 2 unpaired electrons, mp = 1668 CCr, 6 unpaired electrons, mp = 1907 CCu, 1 unpaired electron, mp = 1065 CCovalent network are always very high.Quartz, mp = 1670 to 1710 CDiamond, mp = 3550 C (highest of any naturally occurring substance)