chapter 3 gene function - tum · • transcript processing • proteins • translation • genetic...

70
Chapter 3 Gene Function • Transcription Prokaroyotes Eukaryotes • Transcript processing • Proteins • Translation • Genetic nomenclature

Upload: others

Post on 02-Aug-2020

21 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Chapter 3Gene Function

• TranscriptionProkaroyotesEukaryotes

• Transcript processing• Proteins• Translation• Genetic nomenclature

Page 2: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Transcription

Page 3: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

RNA composition

ATP, GTP, UTP, CTP are substrates for RNA polymerase.RNA is a ribonucleoside monophosphate polymer.

Page 4: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

RNA types

Informational:mRNA, encode amino acids, ~ 1% of total cellular RNAFunctional:tRNA, translationrRNA, ribosome components; 5S, 5.8S, 18S, 28S; bulksnRNA, splicingsiRNA, miRNA inhibitory (regulatory) RNAother small stable RNAs, signal recognition particle, RNaseP

ribozymes

Page 5: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Tandemly transcribedrRNA genes (NO).

Page 6: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Promoter codogenic strand

template strand

.....ApGpCpGpT......

.....TpCpGpCpA......

pppApGpCpGpU......

DNA5'

5' 3'

3'

mRNA

Transcription of a gene

5' 3'

Page 7: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Both DNA strands can serve as template for transcription

Page 8: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates
Page 9: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

RNA polymerisation

The RNA strand grows from 5' to 3'.

Page 10: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Comparison of eukaryotic andprocaryotic RNA polymerases.

Page 11: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Companion site for Biotechnology. by ClarkCopyright © 2009 by Academic Press. All rights reserved.

RNA Polymerase Synthesizes RNA at the Transcription BubbleRNA polymerase is a complex enzyme with two grooves. The first groove holds a single strand ofDNA, and the second groove holds the growing RNA. RNA polymerase travels down the DNA, addingribonucleotides that complement each of the bases on the DNA template strand.

Page 12: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

There are three eukaryotic nuclear RNA polymerases

5S rRNA, tRNAs, U3, U6other small stable RNAs

NucleoplasmIII

mRNAs, siRNA, U1, U2, U4,U5NucleoplasmII

28S, 18S, 5.8S rRNANucleolusI

ProductsLocationPolymerase

Page 13: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Mitochondria and plastids have "prokaryotic" RNA polymerases

Page 14: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

E. coli promoter consensus sequences

Page 15: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

RNA polymerase in start position

Page 16: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Initiation of transcription in E. coli

Page 17: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

The ternary elongation complex

Page 18: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Eukaryotic transcription

Page 19: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Structure and organization of a eukaryotic gene

important sequence motifsin promotors

Page 20: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Transcription initiation in eukaryotesrequires core transcription factors

Page 21: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Interaction with enhancers is required for efficient transcriptioninitiation in eukaryotes

Page 22: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Enhancer and Insulator Sequences

Page 23: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

RNA processing in eukaryotes

The basic transcription mechanism in eukaryotoes is similar to prokaryotes

Guanyltransferase adds 7-methylguanosin to 5' end

Page 24: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

An endonuclease cuts approximately 20 nucleotides downstream of the polyA addition signal.

Page 25: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

PolyA polymerase synthezises the poly(A) tail (about 200bp) to yieldthe complete primary mRNA (pre-mRNA).

Page 26: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Eukaryotic genes contain exons and introns

The ovalbumin gene is 7.7 kb long and encodes a mRNA of 1.9 kb.

Page 27: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

The ovalbumin gene is 7.7 kb long and encodes a mRNAof 1.9 kb.

Page 28: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Splice consensus sequences

Page 29: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Conserved sequences in introns

Page 30: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Intron splicing in nuclear pre-mRNA occurs within a largeribonucleoprotein complex, the splicosome.

Page 31: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Splicing mechanism

Splicing is initiated by thenucleophilic attack of the 2'hydroxyl group of the branch siteadenosine on the phosphodiesterbond at the 5' splice site. Therebythe intron forms a lariat andreleases the 5' exon. Splicing iscompleted with a secondnucleophilic attack by the 3'-hydroxyl group of the 5' exon.

Page 32: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

RNA splicing

Group I introns can self-splice (ribozymes);in mitochondria of yeast, rRNA genes of Tetrahymena, and plant organells

Group II introns and splicocomal introns share the same splicingmechanism;

in fungal mitochondria (self splicing), and in plant organells(not self splicing)

Page 33: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Three types of RNA splicing

Page 34: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates
Page 35: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

An extensive network of coupling among gene expression machinesTom Maniatis, Robin Reed, Nature 416, 499 - 506 (2002)

The black arrows indicate physical and/or functional coupling

Page 36: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Gene expression factory model for coupling steps in gene expression.

PIC, preinitiation complexTF, transcription factorsCTD, carboxy-terminal domainCAP, capping factorSF, splicing factorpA, polyadenylation factorP, posphorylated CTD

CTD consists of hepta repeatsthat are phosphosylated duringinitiation (serin 5). This isrequired for binding the cappingapparatus. During elongation,serin 5 is dephosphorylated andserin 2 is phosphorylated, this isrequired for binding the splicingand poly(A) machineries.Genetic analysis: Deletion ofCTD decreases mRNAprocessing.

large RNAP subunit

Page 37: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

PIC, preinitiation complexTF, transcription factorsCTD, carboxy-terminal domainCAP, capping factorSF, splicing factorpA, polyadenylation factorP, posphorylated CTD

CTD is dephosphorylatedduring termination

The mRNA is released as aribonucleoprotein

Page 38: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Model for couplingsplicing to mRNAexport and nonsense-mediated decay (NMD).

a) UAP recruits ALY andNMD

b) complex formation atexon/exon junction

c) NMD remains bound inthe cytoplasm

d) if NMD is not releasedby translation,degradation istriggered

Page 39: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

mRNA degradation pathways

Reactions take place in the cytoplasm• shortening the polyA tail by 3' to 5' exonuclease• removal of CAP• degradation is completed by 5' to 3' exonuclease

Page 40: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Message

The mRNA of eukaryotes is processed by

• 5' capping• 3' polyadenylation• intron splicing

Page 41: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

1. Three different RNApolymerases

2. mRNA is processed beforetransport to the cytoplasm

3. Genes contain often introns4. mRNAs are monocistronic

1. All RNAs are syntesized by asingle RNA polymerase

2. mRNA is translated duringtranscription

3. Genes are colinear with mRNA4. mRNA is often polycistronic

EukaryotesProkaryotes

Message

Page 42: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Is splicing an advantage for eukaryotes?

Exons often encode protein domains.

18 exons constitute the LDL receptor gene, containing six functional domains.

Page 43: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

What is the evolutionary origin of splicing?

Intron early vs. intron late hypothesis.(Walter Gilbert)

Page 44: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

AlternativAlternativ splicing splicing

products

e.g. adeno virus

Page 45: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Trans splicing

intron 1 intron 2

complementary intron sequences

trans splice products normal products

e.g. actin mRNA C. elegans

pre-mRNAs

Page 46: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Proteins

• Structure• Genetic Code• Translation

Page 47: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Protein structure

Page 48: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates
Page 49: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Protein structure

α-helix

Page 50: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Protein structure: antiparallel β sheet

Page 51: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates
Page 52: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Protein structure

Page 53: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Translation

Page 54: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

The genetic code

Page 55: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

tRNA

Page 56: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Structure of tRNA Allows Wobble in the Third PositionTransfer RNA recognizes the codons along mRNA and presents the correct amino acid for eachcodon. The first position of the anticodon on tRNA matches the third position of the codon.

FIGURE 2.16

Page 57: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates
Page 58: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Ribosome

Page 59: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Decoding centre; Peptidyl transfer centre

Page 60: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Mechanismus of peptide synthesisThe N3 of A2486 abstracts a proton from theNH2 group as the latter attacks the carbonylcarbon of the peptidyl-tRNA. (B) A protonatedN3 stabilizes the tetrahedral carbonintermediate by hydrogen bonding to theoxyanion. (C) The proton is transferred fromthe N3 to the peptidyl tRNA 3' OH as the newlyformed peptide deacylates.

Page 61: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Translation in Prokaryotes(A) Initiation of translation begins with the

association of the small ribosomesubunit with the Shine-Dalgarnosequence (S-D sequence) on themRNA. Next, the initiator tRNA thatreads AUG is charged with fMet. Thecharged initiator tRNA associates withthe small ribosome subunit and findsthe start codon. Assembly is helped byinitiation factors (IF1, IF2, and IF3)—notshown.

(B) During elongation peptide bonds areformed between the amino acids at theA-site and the P-site. The movement ofthe ribosome along the mRNA andaddition of a new tRNA to the A-site arecontrolled by elongation factors (alsonot shown). The E-site binds exitingtRNA.

(C) Termination requires release factors.The various components dissociate.The completed protein folds into itsproper three-dimensional shape.

Page 62: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Translation in Eukaryotes(A) Assembly of the small subunit plus

initiator Met-tRNA involves the bindingof factors eIF3 and eIF2.

(B) The cap binding protein of eIF4attaches to the mRNA before it joinsthe small subunit.

(C) The mRNA binds to the small subunitvia cap binding protein and the 40Sinitiation complex is assembled.

(D) Assembly of the large subunitrequires factor eIF5. After assembly,eIF2 and eIF3 depart.

Page 63: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Two more amino acids

selenocysteine pyrrolysine

COO-

+H3N C H

CH2

SeH

These are also called non-canonical amino acids

Page 64: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

The genetic code for selenocysteine and pyrrolysine

selenocysteine insertion element (SECIS); pyrrolysine insertion element (PYLIS).

Codons that function usually as stop codons are used (in the context of aspecial structure of the mRNA) to encode these amino acids.

Nature (2004), 431, 257

Page 65: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Redefining the stop codon in mammalianmessenger RNAs. Ribosomes move alongmRNA, deciphering the nucleotide sequenceand making a protein according to theencoded amino-acid sequence. Thenucleotide sequence UGA normally specifiesthat the ribosome should stop translation.But sometimes this stop codon can beredefined, so that the twenty-first aminoacid — selenocysteine — is incorporatedinstead. This model shows how this mightbe done. a, A 'stem loop' structure in thedownstream, untranslated part of the mRNAbinds to a protein called SBP2. SBP2 in turnbinds to the eEFsec protein, which itself hasrecruited the transfer RNA carryingselenocysteine. b, The selenocysteine-bound tRNA is then delivered to the waitingUGA, for incorporation into the growingamino-acid string that constitutes the newlycreated protein.

Page 66: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

When stop means go. There are two ways in which the stop codon UAGcould be redefined to specify the 22nd amino acid, pyrrolysine. In the first(top), special signals in mRNAs tag a subset of stop codons that are to havetheir meaning redefined. In the second (bottom), a codon is redefinedregardless of the mRNA involved.

Page 67: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

A short consideration of genetic nomenclature

• gene• allele• wild type• wild type alleles• mutation• mutant alleles

Page 68: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Types of mutation

loss of function mutation

gain of function mutation

Page 69: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Types of mutation

• mutant site• leaky mutation• null mutation• silent mutation

Page 70: Chapter 3 Gene Function - TUM · • Transcript processing • Proteins • Translation • Genetic nomenclature. Transcription. RNA composition ATP, GTP, UTP, CTP are substrates

Position of mutant sites and functional consequences

protein

active site

mutant site

promoter

neutral

null

leakynull (or leaky, or neutral)

gain of function