chapter 5: instrumentationinstrumentation sat chapter 5 - instrumentation 5 gas-filled instruments...

20
Chapter 5: Instrumentation

Upload: others

Post on 14-Mar-2020

31 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

Chapter 5:

Instrumentation

Page 2: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

Objectives:

• Summarize the advantages and disadvantages of the different types of devices used to monitor individuals for radiation exposure.

• Describe the principal advantages and disadvantages of air ionization chamber type survey instruments.

• Describe the principal advantages and disadvantages of Geiger-Müller (GM) type survey instruments.

SAT Chapter 5 - Instrumentation 2

Page 3: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

Objectives:

• Describe the important characteristics of any radiation monitoring instrument and why these characteristics are important for obtaining accurate results.

• Select the appropriate survey instrument for a task, and be able to ensure its proper operation and be able to interpret the results obtained.

SAT Chapter 5 - Instrumentation 3

Page 4: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

Overview:

• Humans cannot detect ionizing radiation with any of our senses. But, we need to know:– Is ionizing radiation present? – Are we receiving dose from ionizing radiation? – How much dose have we received (mrem)? – Is there contamination present?

• We use instruments which respond to ionizing radiation. The type of instrument needed depends on the type and levels of radiation that are present.

• Radiation detectors respond to ionizations or excitations created by radiation interaction with the detector media. Detectors can either be gas-filled or solid materials.

SAT Chapter 5 - Instrumentation 4

Page 5: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

Instrumentation

SAT Chapter 5 - Instrumentation 5

Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with atoms can cause ionizations. The ions are collected and measured. This is used to provide information on the presence of radioactive material (contamination) or the dose rate in an area.

HiVolt

IonizingRadiation (MEDIUM)

+

-

Page 6: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

SAT Chapter 5 - Instrumentation 6

00

200 400 600 800 12001000 1400 1600

103

106

109

1012

1015

I II III IV V VI

# of

Ion

Pair

s Col

lect

ed

α

β

Applied Voltage, V

ContinuousDischargeGeiger-

Müller

Proportional

IONIZATION CURVE

Page 7: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

Ionization Chamber

SAT Chapter 5 - Instrumentation 7

Ionization chambers measure the ionization of air. Most ionization chamber instrumentsare open to air (are unsealed).Pressurized ion chambers are more efficient and widely used in the industry. Both types of ion chambers are useful in determining dose rates from gamma radiation. Many detectors in open-air ion chambers have removable shields to allow the measure of dose rates from beta radiation ( with use of a correction factor).

Page 8: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

Geiger-Müller (GM) Detectors

SAT Chapter 5 - Instrumentation 8

GM instrument probes are available in a variety of sizes and uses - from measuring dose rates to determining contamination levels. GM tubes are generally filled with a low pressure gas mixture of an inert gas (e.g., Xenon, Argon) and an organic vapor or halon gas.GM detectors are not able to determine the type/energy level of the radiation (cannot differentiate energies).An “audio” response is a common feature.

Page 9: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

SAT Chapter 5 - Instrumentation 9

GM Detectors

FRISKERSURVEY METER

Page 10: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

ScintillationDetectors

SAT Chapter 5 - Instrumentation 10

• Scintillation detection systems use some type of substance (usually solid crystal, but can be gaseous or liquid) that creates a flash of light when ionizing radiation interacts with it. They are sensitive to gamma radiation and can measure dose rates in the µrem/hr range.• Ionizing radiation causes excitation and ionization of the probe material which results in emission of light. A photo-cathode converts the light to electrons. The PMT then multiplies the number of electrons to create a pulse, or count.• Crystal detectors are very sensitive to gamma radiation, measuring dose rates in the µrem/hr range. There are probes that can detect alphas, betas, and neutrons as well.

e

NaI Crystal Photomultiplier Tube (PMT)

Presenter
Presentation Notes
Radiation interacts with scintillation detectors, such as NaI, to create a light “photon.” This interacts with a photocathode to cause an electron to be ejected. The electron is attracted to dynodes that have increasing potential. Each time the electron interacts with a dynode, additional electrons are ejected which causes an amplification of the signal. The number of electrons measured is proportional to the amount of radiation interacting with the detector, that is, the activity. The energy of the electrons is dependent on the energy of the radiation. From this information we can determine what radionuclide interacted with the detector, as well as how much activity of that nuclide is present. This same system type of system is used to determine how much radioactive material enters your body. This information is then used to determine your internal dose, that is, the CDE and CEDE.
Page 11: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

NaI Crystal

SAT Chapter 5 - Instrumentation 11

Photo-Multiplier Tube

Zinc Sulfide α Detector

PMTLight Pipe(reflector)

Page 12: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

Neutron Monitoring

SAT Chapter 5 - Instrumentation 12

One type of neutron survey meter has a sphere of hydrogenous material which slows down neutrons to thermal energies, allowing them to be detected. Thermal neutrons then interact with a gas, BF3, inside the detector centered in the sphere. Neutron interactions with the boron cause alpha particles to be produced that ionize the gas, producing the output signal.

The reaction is abbreviated as: 10B(n,α)7Li

Presenter
Presentation Notes
Note: As with alpha particle detection, these are used often in commercial reactors, but it does reinforce the concept of using ionization events to determine the presence of radiation (neutrons in this case).
Page 13: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

SAT Chapter 5 - Instrumentation 13

Be sure to verify that the instrument calibration is current.Instrument calibrations do not ensure that the instrument is working properly when used! It only means that the instrument was operating properly at the time it was calibrated.Instruments should also be source checked (usually daily) to verify proper operation.

Instrumentation Calibration

Page 14: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

SAT Chapter 5 - Instrumentation 14

Survey instruments are required to be calibrated (usually annually), but the accuracy is limited to about 20%.

For this reason your survey instrument may not provide the same reading as another instrument of identical type and make.

Instrumentation Variability

Page 15: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

SAT Chapter 5 - Instrumentation 15

Instrumentation Selection Considerations

What type of radiation is present?

What are the levels of radiation?

What do you want to measure - dose rate or contamination?

Is previous survey information available to help with your selection?

Page 16: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

What type of detector to use?

AttributeGeiger –Müller

(GM) TubeIon Chamber Scintillation

NeutronBall

Detects α, β, γ α, β, γ α, β, γ, n n

Medium Gas Gas Solid/Liquid Gas

Ranges .04 mR/hrto 500 mR/hr

3 mR/hrto 104 mR/hr

up to800,000 cpm

up to500,000 cpm

Use• Low dose rate• Frisking• Area monitor

• Med to Highdose surveys• Area monitoring

• Low levelcontaminationsurveys

• Neutron surveys

Advantages

• Rapid response• Large output signal• Moderate sensitivity

• Low energy dependence• Simple to use• Wide dose range

• High sensitivity• Rapid response• Energy resolution

• Rapid response• γ discrimination

Disadvantages • Long dead time• Energy dependent

• Slow response• Low sensitivity

• Fragile• Expensive

• Requires Hi Volt• Hi maintenance

SAT Chapter 5 - Instrumentation 16

Page 17: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

Instrumentation Use:• Check that calibration is current. A calibration tells you

the instrument was working properly when calibrated.• Familiarize yourself with the instrument readout

“scale,” is it in µR/hr; mR/hr; µSv/hr; cpm; KCPM?• Check the battery (go to Batt Check), but don’t leave the

instrument on battery check!• Check the multiplier scale - start on the highest scale

and turn it lower until you get a reading. If it is “offscale,” LEAVE THE AREA!

• If there is an audio function, make sure it is ON.• Variability of 10-20% between instruments can be

expected.• Make sure that there has been a radiation response

(source) check - does the detector & instrument system respond properly?

SAT Chapter 5 - Instrumentation 17

Page 18: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

Area Monitors - Various Probes

• In addition to portable instruments, you will encounter “area monitors” that monitor radiological conditions in areas of the plant.

• Area monitors can measure dose rate (rem/hr) by using ionization chamber, GM, solid state detector or neutron instruments.

• They may have a light or other alarm associated with them. If they are alarming, leave the area immediately.

SAT Chapter 5 - Instrumentation 18

Page 19: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

Summary

• Instruments respond to ionizing radiation interactions.

• Selection of instrument depends on type and levels of radiation.

• Familiarize yourself with the instrument.• Check the battery, calibration date, and

response check to radiation before using an instrument.

• Start on high scale setting and move to lower until you get a reading.

SAT Chapter 5 - Instrumentation 19

Page 20: Chapter 5: InstrumentationInstrumentation SAT Chapter 5 - Instrumentation 5 Gas-filled instruments for detecting ionizing radiation utilize the concept that radiation interaction with

Summary

• If an instrument “goes off scale” warn others and get out of the area.

• GM (gas filled) and sodium-iodide (solid state) detectors are more sensitive.

• Ionization chamber (air filled) are used for higher dose rates than GM.

• Variation of 10% to 20% is expected when using an instrument.

SAT Chapter 5 - Instrumentation 20