chapter 6 thermal design considerations - … · april 2000 6 - 3 philips semiconductors ic...

24
CHAPTER 6 THERMAL DESIGN CONSIDERATIONS page Introduction 6 - 2 Thermal resistance 6 - 2 Junction temperature 6 - 2 Factors affecting R th(j-a) 6 - 2 Thermal resistance test methods 6 - 3 Test procedure 6 - 3 Forced air factors for thermal resistance 6 - 4 Thermal resistance data - assumptions and precautions 6 - 5 Thermal resistance (R th(j-a) ) data 6 - 6 Thermal resistance (R th(j-c) ) data tables - power packages 6 - 24

Upload: truongthuy

Post on 15-Jul-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

CHAPTER 6

THERMAL DESIGN CONSIDERATIONS

page

Introduction 6 - 2

Thermal resistance 6 - 2

Junction temperature 6 - 2

Factors affecting Rth(j-a) 6 - 2

Thermal resistance test methods 6 - 3

Test procedure 6 - 3

Forced air factors for thermal resistance 6 - 4

Thermal resistance data - assumptions and precautions 6 - 5

Thermal resistance (Rth(j-a)) data 6 - 6

Thermal resistance (Rth(j-c)) data tables - power packages 6 - 24

Page 2: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 2

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

INTRODUCTION

The ability to describe the thermal performancecharacteristics of a semiconductor IC package isbecoming increasingly crucial. With increased powerdensities, improved reliability and shrinking system sizes,the cooling of IC packages has become a challenging taskfor design engineers. The situation is further exacerbatedby the demand for ever decreasing sizes of electronicdevices because, in general, decreasing the size of anelectronic package decreases the thermal performance.The designer must carefully balance the benefits ofminiaturization and performance against the potentialreduction in reliability of electronic components resultingfrom high operating temperatures.

THERMAL RESISTANCE

The ability of a particular semiconductor package todissipate heat to its environment is expressed in terms ofthermal resistance (Rth(j-a)). This single entity describesthe heat path impedance from the active surface of thesemiconductor device (junction) to the ambient operatingenvironment. Rth(j-a) can be expressed by its constituentsas follows:

Rth(j-a) = Rth(j-c) + Rth(c-a)

Rth(j-c) is the impedance from junction to case (outsidesurface of package) and Rth(c-a) is the impedance fromcase to ambient. It is sometimes useful to use only theRth(c-a) to describe high performance packages wherecase temperatures are important and externally attachedheat radiators may need to be attached. In these cases theoverall Rth(j-a) will also include the contribution of the heatradiator.

JUNCTION TEMPERATURE

With the Rth(j-a) of a package known, the rise in junctiontemperature (Tj) with respect to the ambient temperature(Tamb) can be determined at a given power dissipation (Pd)of the semiconductor device:

Tj = (Rth(j-a) × Pd) + Tamb

Where:Tj = junction temperature (°C)Rth(j-a) = thermal resistance junction to ambient (K/W)Pd = power dissipated (W)Tamb = ambient temperature (°C)

It’s important to note that a lower Rth(j-a) indicates a higherthermal performance.

FACTORS AFFECTING Rth(j-a)

There are several factors which affect the characteristicthermal resistance of IC packages. Some of the moresignificant of these include the test board configuration,the lead frame material, the design of the lead frame andthe moulding compound.

Test board Configuration

An IC package’s thermal resistance highly depends on thePrinted Circuit Board (PCB) on which the package ismounted. The copper traces and thermal vias on the PCBprovide the major heat dissipation path of the package,therefore the configuration and the size of the coppertraces play a significant role in affecting Rth(j-a). For testpurpose, JEDEC standards (EIA/JEDEC51-3 and others)specify two categories of test boards: low effective thermalconductivity test board (low K board) and high effectivethermal conductivity test board (high K board). The low Kboard is a single sided board with only fine signal traces,the high K board is a board with two signal layers and twopower (or ground) layers. The real application board isalmost always different from the standard test boards,however, the thermal resistance measured from thestandard test board provides basic comparableinformation of the IC package thermal resistance.

Lead Frame Material

The lead frame material is one of the more importantfactors in IC package thermal resistance. In early dualin-line packages (DIPs), a Ni/Fe alloy (A42) was thematerial of choice for lead frames as it provided a goodcombination of strength and formability as well asassembly process compatibility. However, with thecontinued miniaturization of IC packages and the need forincreased electrical conductivity for advanced ICs, aswitch to sophisticated copper alloys was required.Copper alloy lead frames offer several advantages overA42:

• they have a high thermal conductivity which reducesthermal resistance, essential for packages such as theShrink Small Outline Package (SSOP) and Thin ShrinkSmall Outline Package (TSSOP)

• their improved electrical conductivity enhances theelectrical performance of a package

Most plastic encapsulated packages produced by PhilipsSemiconductors incorporate copper alloy lead frames intotheir design.

Page 3: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 3

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Lead Frame Design

The design of a lead frame is another significantcontributing factor to thermal resistance. The mostimportant design aspect is the IC attach-pad size and tiebar design. However, the lead frame designer is oftenfaced with fixed parameters such as die size and wirebonding limitations, which reduce lead frame designflexibility.

Moulding Compound

Moulding compounds also determine IC package thermalresistance. The mould compounds used by PhilipsSemiconductors are optimized for high purity and quality toprovide good thermal performance and reliability.

Heat Spreaders

The option of a heat spreader, or heat slug, within somepackages can improve thermal behaviour by spreading theheat over a larger area of the package, and so improveRth(j-a) or Rth(j-c).

Adhesive and Plating Type

Other package related factors include die attach adhesiveand lead frame plating type, but the actual influence onthermal resistance is small owing to the fine geometry ofthese factors.

THERMAL RESISTANCE TEST METHODS

Philip Semiconductors uses what is commonly called theTemperature Sensitive Parameter (TSP) method whichmeets EIA/JEDEC Standards EIA/JESD51-1,EIA/JESD51-2 and EIA/JESD51-3. A typical test fixture instill air is shown in Fig.1. The enclosure is a box with aninside dimension of 1 ft3 (0.0283 m3). The enclosure andfixtures are constructed from an insulating material with alow thermal conductance, and all seams thoroughly sealedto ensure there is no airflow through the enclosure. The ICpackage is then positioned in the geometric center of theenclosure.

The forward voltage drop of a calibrated diodeincorporated into a special IC is used to correlate ajunction temperature change in the IC package to betested. As the power dissipation is known, the thermalresistance can be calculated using the following equation:

Where:Rth(j-a) = thermal resistance junction to ambient (°C/W)Tj = junction temperature (°C)Pd = power dissipated (W)Tamb = ambient temperature (°C)

TEST PROCEDURE

The TSP diode on the semiconductor device is calibratedusing a constant temperature oil bath and a constantcurrent power supply (see Fig.2). Calibration temperaturesare typically 25 °C and 100 °C with a measured accuracyof ±0.1 °C. The calibration current must be kept low andconstant to avoid significant junction heating. Thetemperature coefficient (K-factor) shown in Fig.3 iscalculated using the following equation:

Where:K = temperature coefficient (°C/mV)T2 = high test temperature (°C)T1 = low test temperature (°C)VF2 = forward voltage at T2 (mV)VF1 = forward voltage at T1 (mV)

Fig.1 The test fixture in still air.

������

��������������������

Package

Cables

MSC599

Box

Substrate

Thermocouple

Rth j a–( )∆Tj

Pd---------

Tj Tamb–( )Pd

-----------------------------= =

KT2 T1–( )

VF2 VF1–( )------------------------------=

Page 4: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 4

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

With the K-factor determined, Rth(j-a) can be calculated bypowering up the device at ambient conditions andmeasuring the forward voltage drop across the TSP diodeafter temperature equilibrium. Manipulating the originalthermal resistance equation with the K-factor, the Rth(j-a) ofthe package can be determined:

Fig.2 Test procedure.

handbook, halfpage

MSB474

VF

IF

D = ON DIE TSPDIODE

D

OIL BATHMAINTAINEDAT CONSTANTTEMPERATURE

I = CONSTANT

Fig.3 VF as a function of Tj.

handbook, halfpage

MSB473

VF1

V (V)F

VF2

T1 T2 T ( C)jo

Rth j a–( )∆Tj

Pd---------

Tj Tamb–( )Pd

-----------------------------K VF amb( ) VF s( )–( )

VH IH×------------------------------------------------= = =

Where:VF(amb) = forward voltage of TSP at ambient

temperature (mV)VF(s) = forward voltage of TSP at steady-state

temperature (mV)VH = heating voltage (V)IH = heating current (A)

FORCED AIR FACTORS FOR THERMAL RESISTANCE

Many applications with ICs have the benefit of forced aircooling by fans or other means. The junction to moving-airthermal resistance can be measured by placing the testsetup inside a low velocity wind tunnel (see Fig.4). The testboard and device under test are supported with minimalobstruction to the air flow.

The average effect of airflow on thermal resistance forpackage types at a particular air flow rate can bedetermined using a “derating” curve (see Fig.5). Whenusing derating curves, it’s important to note that the varietyof sizes in a package type group has been averaged. Seethe following section on “Thermal resistance data -assumptions and precautions” concerning airflow.

Fig.4 Wind tunnel - dimensions in cm (inches).

MSB475

�FAN

TESTPART

ANEMOMETER

AIR FLOW

FLOWSTRAIGHTENER

43 (19)

35.5(14)

58.5 (23)132 (52)

183 (72)

DIAMETER = 15 (6)not to scale

Page 5: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 5

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

THERMAL RESISTANCE DATA -ASSUMPTIONS AND PRECAUTIONS

The graphical data presented in this section are based onmeasurements , modelling and estimations . As with alldata, some assumptions and contributing factors shouldbe noted:

1. The “measured” thermal resistance of an IC packageis highly dependent on the configuration and size ofthe test board. Data may not be comparable betweendifferent semiconductor manufacturers because thetest boards may not be the same. Also, the thermalperformance of packages for a specific applicationmay be different than presented here because theconfiguration of the application boards may bedifferent than the test boards. Philip Semiconductorsuses low effective thermal conductivity test boards formost of its packages.

2. Device standoff is a factor in determining thermalresistance especially for surface mounted packagessuch as SO and QFP packages. The same packagefrom two different manufacturers will often havedifferent standoff from the test boards. In general, highstandoff corresponds to a higher thermal resistance.

3. The operating environment temperature must be usedas the ambient temperature when calculating junctiontemperatures in an application. The temperaturesinside an electronic enclosure are generally higherthan the room temperature.

4. When using airflow derating curves (see Fig.5), pleasenote that in actual applications where airflow isavailable, the flow dynamics may be more complexand turbulent than in a wind tunnel. Also, the manydifferent sizes of packages in a package family suchas QFP have been averaged to give one curve forease-of-use. Lastly, the test boards used in the windtunnel contribute significantly to forced convectionheat transfer and may not be similar to an actualapplication PC board, especially its size.

5. Thermal resistance will vary slightly as a function ofinput power. Generally, as the power input increases,thermal resistance decreases. Thermal resistancechanges approximately 5% for a 100% power change.

6. Thermal resistance data for some packages were notavailable at the time of publication. Please contactPhilips Semiconductors for information on packagesnot listed in this handbook.

7. All data presented are accurate to approximately±15%. For more specific information regarding anapplication, please contact Philips Semiconductors.

8. Philips Semiconductors is evaluating a new technique,which was described in the ESPRIT project DELPHI,to thermally characterize IC packages. This results ina description of the package by means of a resistornetwork, the so-called compact model. This resistornetwork gives an accurate model of the package andis valid for all practical environments. It is expectedthat these models can be imported into system- andPCB-level analyses tools in the near future. If yourequire more information about compact models,please contact the ATO-Innovation office in Nijmegen,the Netherlands tel. +31-24-3533085 orfax +31-24-3533350.

Fig.5 Average effect of airflow on Rth(j-a).

handbook, halfpage

0 5

0

−50

−40

MSC554

−30

−20

−10

1 2 3 4air flow (m/s)

percent changein Rth(j-a) (%)

SOSOLSDIP

PLCC/QFP

DIPLQFP

Page 6: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 6

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

THERMAL RESISTANCE (R th(j-a) ) DATA

Fig.6 DIP8 (300 mil).

handbook, halfpage

0

120

110

100

9010 20 30

die size (mm2)

Rth(j-a)(K/W)

MBK303

Fig.7 DIP14/16 (300 mil).

handbook, halfpage

0

100

90

70

80

6010 20 30

die size (mm2)

Rth(j-a)(K/W)

MBK305

Fig.8 DIP18 (300 mil).

handbook, halfpage

0

90

80

70

6010 20 30

die size (mm2)

Rth(j-a)(K/W)

MBK307

Fig.9 DIP20 (300 mil).

handbook, halfpage

0

80

70

60

5010 20 30

die size (mm2)

Rth(j-a)(K/W)

MBK304

Page 7: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 7

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.10 DIP22 (400 mil).

handbook, halfpage

0

65

60

55

5010 20 30

die size (mm2)

Rth(j-a)(K/W)

MBK306

Fig.11 DIP24 (300 mil).

handbook, halfpage

0

70

65

55

60

5010 20 30

die size (mm2)

Rth(j-a)(K/W)

MBK308

Fig.12 DIP24 (400 mil).

handbook, halfpage

0

70

60

50

4010 20 30 40

die size (mm2)

Rth(j-a)(K/W)

MBK309

Fig.13 DIP24 (600 mil).

handbook, halfpage

0

60

55

50

40

45

10 20 30 40die size (mm2)

Rth(j-a)(K/W)

MBK311

Page 8: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 8

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.14 DIP28 (600 mil).

handbook, halfpage

0

55

50

45

4010 20 30 5040

die size (mm2)

Rth(j-a)(K/W)

MBK310

Fig.15 DIP40 (600 mil).

handbook, halfpage

0

50

45

40

3520 40 60 80

die size (mm2)

Rth(j-a)(K/W)

MBK312

Fig.16 DIP48 (600 mil).

handbook, halfpage

0

50

45

40

3520 40 60 80

die size (mm2)

Rth(j-a)(K/W)

MBK314

Fig.17 HSQFP240 (32 × 32 × 3.4 mm).

handbook, halfpage

0

22

20

18

16

14

12100 300200 400 500

die size (mm2)

Rth(j-a)(K/W)

MBK319

Page 9: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 9

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.18 LQFP32 (5 × 5 × 1.4 mm)

handbook, halfpage

0

100

95

85

90

805 10 15

die size (mm2)

Rth(j-a)(K/W)

MBK316

Fig.19 LQFP32 (7 × 7 × 1.4 mm).

handbook, halfpage

0

100

90

80

70

6010 20 30

die size (mm2)

Rth(j-a)(K/W)

MBK318

Fig.20 LQFP44 (10 × 10 × 1.4 mm)

handbook, halfpage

0

70

65

60

55

5020 40 60 80

die size (mm2)

Rth(j-a)(K/W)

MBK320

Fig.21 LQFP48 (7 × 7 × 1.4 mm).

handbook, halfpage

0

90

70

80

6010 20 30

die size (mm2)

Rth(j-a)(K/W)

MBK321

Page 10: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 10

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.22 LQFP64 (7 × 7 × 1.4 mm).

handbook, halfpage

0

80

75

70

6510 20 30

die size (mm2)

Rth(j-a)(K/W)

MBK323

Fig.23 LQFP64 (10 × 10 × 1.4 mm).

handbook, halfpage

0

70

65

60

55

5020 6040 80

die size (mm2)

Rth(j-a)(K/W)

MBK325

Fig.24 LQFP80 (12 × 12 × 1.4 mm).

handbook, halfpage

0

60

55

50

4520 40 8060

die size (mm2)

Rth(j-a)(K/W)

MBK322

Fig.25 LQFP100 (14 × 14 × 1.4 mm).

handbook, halfpage

0

60

55

50

45

4020 40 60 80 100

die size (mm2)

Rth(j-a)(K/W)

MBK324

Page 11: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 11

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.26 LQFP128 (14 × 14 × 1.4 mm).

handbook, halfpage

0

60

55

50

45

4020 40 8060 100

die size (mm2)

Rth(j-a)(K/W)

MBK326

Fig.27 PLCC20 (310 mil).

handbook, halfpage

0

82

70

74

78

6610 20 30

die size (mm2)

Rth(j-a)(K/W)

MBK327

Fig.28 PLCC28 (410 mil).

handbook, halfpage

0

80

70

60

5010 20 4030

die size (mm2)

Rth(j-a)(K/W)

MBK329

Fig.29 PLCC44 (610 mil).

handbook, halfpage

0

55

50

45

4020 40 80 10060

die size (mm2)

Rth(j-a)(K/W)

MBK328

Page 12: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 12

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.30 PLCC52 (710 mil).

handbook, halfpage

0

55

50

45

40

3520 40 60 80 100

die size (mm2)

Rth(j-a)(K/W)

MBK330

Fig.31 PLCC68 (910 mil).

handbook, halfpage

0

50

48

46

42

44

4040 12080 160

die size (mm2)

Rth(j-a)(K/W)

MBK332

Fig.32 PLCC84 (1110 mil).

handbook, halfpage

0

42

40

34

36

38

3220 40 60 80 100

die size (mm2)

Rth(j-a)(K/W)

MBK333

Fig.33 QFP44 (10 × 10 × 1.75 mm).

handbook, halfpage

0

75

70

65

60

55

5010 20 5030 40

die size (mm2)

Rth(j-a)(K/W)

MBK335

Page 13: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 13

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.34 QFP44 FeNi (14 × 14 × 2.2 mm).

handbook, halfpage

0

90

80

70

60

5020 6040 80

die size (mm2)

Rth(j-a)(K/W)

MBK337

Fig.35 QFP52 (10 × 10 × 2 mm).

handbook, halfpage

0

70

65

60

55

45

50

10 20 30 40 50die size (mm2)

Rth(j-a)(K/W)

MBK336

Fig.36 QFP64 (14 × 14 × 2.7 mm).

handbook, halfpage

0

60

55

50

45

4020 6040 80

die size (mm2)

Rth(j-a)(K/W)

MBK338

Fig.37 QFP64 (14 × 20 × 2.8 mm).

handbook, halfpage

0

55

50

40

45

3520 40 60 80 100

die size (mm2)

Rth(j-a)(K/W)

MBK339

Page 14: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 14

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.38 QFP80 (14 × 20 × 2.8 mm).

handbook, halfpage

0

55

50

45

40

3540 12080

die size (mm2)

Rth(j-a)(K/W)

MBK341

Fig.39 QFP100 (14 × 20 × 2.8 mm).

handbook, halfpage

0

52

48

44

40

368040 120

die size (mm2)

Rth(j-a)(K/W)

MBK343

Fig.40 QFP120 (28 × 28 × 3.4 mm).

handbook, halfpage

0

40

38

34

36

3240 80 160120

die size (mm2)

Rth(j-a)(K/W)

MBK340

Fig.41 QFP128 (28 × 28 × 3.4 mm).

handbook, halfpage

0

40

38

36

34

3240 80 120 160

die size (mm2)

Rth(j-a)(K/W)

MBK342

Page 15: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 15

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.42 QFP160 (28 × 28 × 3.4 mm).

handbook, halfpage

0

38

36

34

32

3040 12080 180160

die size (mm2)

Rth(j-a)(K/W)

MBK344

Fig.43 SDIP24 (400 mil).

handbook, halfpage

0

80

70

60

5010 20 30 40

die size (mm2)

Rth(j-a)(K/W)

MBK345

Fig.44 SDIP32 (400 mil).

handbook, halfpage

0

75

65

55

4510 4020 30

die size (mm2)

Rth(j-a)(K/W)

MBK347

Fig.45 SDIP42 (600 mil).

handbook, halfpage

0

70

60

50

40

304020 8060

die size (mm2)

Rth(j-a)(K/W)

MBK349

Page 16: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 16

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.46 SDIP52 (600 mil).

handbook, halfpage

0

50

45

35

40

3040 80 120

die size (mm2)

Rth(j-a)(K/W)

MBK346

Fig.47 SDIP64 (750 mil).

handbook, halfpage

0

42

38

34

3020 40 60 10080

die size (mm2)

Rth(j-a)(K/W)

MBK348

Fig.48 SO8 (150 mil).

handbook, halfpage

0

162

158

154

1502 4 6 108

die size (mm2)

Rth(j-a)(K/W)

MBK350

Fig.49 SO14 (150 mil).

handbook, halfpage

0

135

125

115

1052 1084 6

die size (mm2)

Rth(j-a)(K/W)

MBK352

Page 17: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 17

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.50 SO16 (150 mil).

handbook, halfpage

0

116

112

108

104

10042 1086

die size (mm2)

Rth(j-a)(K/W)

MBK354

Fig.51 SO16 (300 mil).

handbook, halfpage

0

104

100

92

96

885 10 2015

die size (mm2)

Rth(j-a)(K/W)

MBK351

Fig.52 SO20 (300 mil).

handbook, halfpage

0

94

90

86

825 10 2015

die size (mm2)

Rth(j-a)(K/W)

MBK353

Fig.53 SO24 (300 mil).

handbook, halfpage

0

80

76

72

6810 20 30

die size (mm2)

Rth(j-a)(K/W)

MBK355

Page 18: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 18

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.54 SO28 (300 mil).

handbook, halfpage

0

74

70

66

6210 20 30 40

die size (mm2)

Rth(j-a)(K/W)

MBK356

Fig.55 SO32 (300 mil).

handbook, halfpage

0

68

66

64

60

62

10 403020die size (mm2)

Rth(j-a)(K/W)

MBK358

Fig.56 SSOP14 (5.3 mm).

handbook, halfpage

0

160

155

150

145

14042 1086

die size (mm2)

Rth(j-a)(K/W)

MBK360

Fig.57 SSOP16 (4.4 mm).

handbook, halfpage

0

160

155

145

150

135

140

2 4 1086die size (mm2)

Rth(j-a)(K/W)

MBK357

Page 19: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 19

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.58 SSOP16 (5.3 mm).

handbook, halfpage

0

155

145

135

1252 4 1086

die size (mm2)

Rth(j-a)(K/W)

MBK359

Fig.59 SSOP20 (4.4 mm).

handbook, halfpage

0

150

140

130

1204 8 12

die size (mm2)

Rth(j-a)(K/W)

MBK361

Fig.60 SSOP20 (5.3 mm).

handbook, halfpage

0

140

130

120

100

110

2 4 86 10die size (mm2)

Rth(j-a)(K/W)

MBK362

Fig.61 SSOP24 (5.3 mm).

handbook, halfpage

0

130

120

110

90

100

5 201510die size (mm2)

Rth(j-a)(K/W)

MBK364

Page 20: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 20

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.62 SSOP28 (5.3 mm).

handbook, halfpage

0

120

110

100

90105 2015

die size (mm2)

Rth(j-a)(K/W)

MBK366

Fig.63 SSOP56 (7.5 mm).

handbook, halfpage

0

83

84

82

81

805 1510

die size (mm2)

Rth(j-a)(K/W)

MBK365

Fig.64 TQFP44 (10 × 10 × 1 mm).

handbook, halfpage

0

75

70

60

65

5520 40 8060

die size (mm2)

Rth(j-a)(K/W)

MBK367

Fig.65 TQFP64 (10 × 10 × 1 mm).

handbook, halfpage

0

75

70

65

50

55

60

20 40 60 80die size (mm2)

Rth(j-a)(K/W)

MBK368

Page 21: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 21

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.66 TQFP80 (12 × 12 × 1 mm).

handbook, halfpage

0

65

60

55

5020 806040

die size (mm2)

Rth(j-a)(K/W)

MBK370

Fig.67 TQFP100 (14 × 14 × 1 mm).

handbook, halfpage

0

60

55

50

454020 8060

die size (mm2)

Rth(j-a)(K/W)

MBK372

Fig.68 TSSOP14 (4.4 mm).

handbook, halfpage

0

180

170

150

160

2 4 86die size (mm2)

Rth(j-a)(K/W)

MBK369

Fig.69 TSSOP16 (4.4 mm).

handbook, halfpage

0

160

165

155

150

140

145

2 864die size (mm2)

Rth(j-a)(K/W)

MBK371

Page 22: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 22

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.70 TSSOP20 (4.4 mm).

handbook, halfpage

0

150

145

135

140

1302 4 1086

die size (mm2)

Rth(j-a)(K/W)

MBK373

Fig.71 TSSOP24 (4.4 mm).

handbook, halfpage

0

136

132

128

120

124

2 4 6 108die size (mm2)

Rth(j-a)(K/W)

MBK374

Fig.72 TSSOP28 (4.4 mm).

handbook, halfpage

0

130

125

120

1152 10864

die size (mm2)

Rth(j-a)(K/W)

MBK376

Fig.73 TSSOP48 (6.1 mm).

handbook, halfpage

0

106

104

100

102

9884 12

die size (mm2)

Rth(j-a)(K/W)

MBK378

Page 23: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 23

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

Fig.74 TSSOP56 (6.1 mm).

handbook, halfpage

0

98

96

90

92

94

4 128die size (mm2)

Rth(j-a)(K/W)

MBK375

Fig.75 VSO40 FeNi (7.5 mm).

handbook, halfpage

0

125

120

115

11010 403020

die size (mm2)

Rth(j-a)(K/W)

MBK377

Fig.76 VSO56 FeNi (11 mm).

handbook, halfpage

0

108

104

100

9610 20 4030

die size (mm2)

Rth(j-a)(K/W)

MBK379

Page 24: CHAPTER 6 THERMAL DESIGN CONSIDERATIONS - … · April 2000 6 - 3 Philips Semiconductors IC Packages Thermal design considerations Chapter 6 Lead Frame Design The design of a lead

April 2000 6 - 24

Philips Semiconductors IC Packages

Thermal design considerations Chapter 6

THERMAL RESISTANCE (R th(j-c) ) DATA TABLES - POWER PACKAGES (1)

Note

1.

a) Almost all of the values in the table were determined with measurements.

b) Low values should be used with a large die, high values should be used with a small die.

PACKAGE NAME PHILIPS OUTLINE CODE R th(j-c) (K/W) GLUED DIE Rth(j-c) (K/W) SOLDERED DIE

DBS9MPF SOT111-1 6.0 to 12.0 n.a.

DBS9P SOT157-2 1.0 to 4.0 0.8 to 3.0

DBS13P SOT141-6 1.0 to 4.0 0.8 to 3.0

DBS17P SOT243-1 1.0 to 4.0 0.8 to 3.0

DBS23P SOT411-1 n.a. 0.8 to 3.0

HSOP20 SOT418-2 1.0 to 4.0 0.8 to 3.0

RBS9MPF SOT352-1 6.0 to 12.0 n.a.

RDBS13P SOT462-1 1.0 to 4.0 0.8 to 3.0

SIL9MPF SOT110-1 6.0 to 12.0 n.a.

SIL9P SOT131-2 1.0 to 4.0 0.8 to 3.0

SIL13P SOT193-2 1.0 to 4.0 0.8 to 3.0