chapter 7 references - inflibnetshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189...

22
186 Chapter 7 REFERENCES 1. Rohrer, H., The Nanoworld: Chances and Challenges. Microelectronics Enginerring., vol.32, 1996, pp.5-14. 2. Eastman, J.A., Phillpot, S.R., Choi, S.U.S., and Keblinski, P., Thermal Transport in Nanofluids, Annual Review of Materials Research., vol.34, 2004, pp. 219-246. 3. Zhang, Y., Zeng, G., Piprek, J., Bar-Cohen, A., and Shakouri, A., Superlattice Microrefrigerators Flip-Clip Bonded with Optoelectronic Devices, Journal IEEE Trans. Computer Packing Tech., vol.28, no.4, 2005, pp.658-666. 4. Vanam,K., Junghans, J., Barlow, F., Selvam, R.P., Balda, J.C., and Elshabini, A., A Novel Packaging Methodology for Spray Cooling of Power Semiconductor Devices Using Dielectric Liquids. Applied Power Electronics Conf. Exposition, APEC2005, Vol.3, 2005, pp.2014-2018. 5. Peterson, G.P., An Introduction to Heat Pipes Modeling, Testing, and Applications, 1994, John Wiley & Sons, New York. 6. Hesselgreaves, J.E, Compact Heat exchangers selection, Design and Operation, 1 st edition, 2001, Pergamon. 7. Reay, D.A., Compact heat exchangers, enhancement and heat pump, International Journal of Refrigeration, vol. 25, 2002, pp.460-470. 8. Kays, W.H. & London, A.L, Compact Heat Exchangers, 3 rd edition, 1984, McGrawHil. 9. Shah, R.K., Sekulic, D.P., Fundamentals of Heat Exchanger Design, 1 st Edition, 2003, John Wiley & Sons.Inc.

Upload: others

Post on 30-Mar-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

186

Chapter 7

REFERENCES

1. Rohrer, H., The Nanoworld: Chances and Challenges.

Microelectronics Enginerring., vol.32, 1996, pp.5-14.

2. Eastman, J.A., Phillpot, S.R., Choi, S.U.S., and Keblinski,

P., Thermal Transport in Nanofluids, Annual Review of

Materials Research., vol.34, 2004, pp. 219-246.

3. Zhang, Y., Zeng, G., Piprek, J., Bar-Cohen, A., and

Shakouri, A., Superlattice Microrefrigerators Flip-Clip

Bonded with Optoelectronic Devices, Journal IEEE Trans.

Computer Packing Tech., vol.28, no.4, 2005, pp.658-666.

4. Vanam,K., Junghans, J., Barlow, F., Selvam, R.P., Balda,

J.C., and Elshabini, A., A Novel Packaging Methodology

for Spray Cooling of Power Semiconductor Devices Using

Dielectric Liquids. Applied Power Electronics Conf.

Exposition, APEC2005, Vol.3, 2005, pp.2014-2018.

5. Peterson, G.P., An Introduction to Heat Pipes Modeling,

Testing, and Applications, 1994, John Wiley & Sons, New

York.

6. Hesselgreaves, J.E, Compact Heat exchangers selection,

Design and Operation, 1st edition, 2001, Pergamon.

7. Reay, D.A., Compact heat exchangers, enhancement and

heat pump, International Journal of Refrigeration, vol. 25,

2002, pp.460-470.

8. Kays, W.H. & London, A.L, Compact Heat Exchangers, 3rd

edition, 1984, McGrawHil.

9. Shah, R.K., Sekulic, D.P., Fundamentals of Heat

Exchanger Design, 1st Edition, 2003, John Wiley &

Sons.Inc.

Page 2: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

187

10. Reay, D.A., Compact heat exchangers: A review of current

equipment and R&D in the field, Heat Recovery systems

& CHP, vol.14, no.5, 1994, pp.459-474.

11. Masala, O., Seshadri, R., Synthesis routes for large

volumes of nanoparticles, Annual Review of Materials

Research, vol.34, 2004, 41-81.

12. Edlestein, A. S., Cammarata, R. C., Eds. 2001,

Nanomaterials: Synthesis, Properties and Applications.

London: Institute of Physics.

13. Van Hyning, D. L., Klemperer, W. G., Zukoski, C. F.,

Silver nanopartcle formation: Predictions and verification

of the aggregative growth model, Langmuir, vol.17, no.11,

2001, 3128-3135.

14. Sondi, I., Goia, D. V., Matijevic, E., Prepartion of highly

concentrated stable dispersions of uniform silver

nanoparticles, Journal of Colloid and Interface Science,

vol.260, no.1, 2003, 75-81.

15. Mallick, K., Witcomb, M. J., Scurrell, M. S., Polymer

stabilized silver nanoparticles: a Photochemical synthesis,

Journal of Materials Science, vol.39, no.14, 2004, 4459-

4463.

16. Bonnemann, H., Paulus, U. A., Endruschat, U.,

Feldmeyer, G. J., Schmidt, T.J.,., Behm, R. J., New PtRu

alloy colloids as precursors for Fuel cell catalysts, Journal

of Catalysts, vol.195, 2000, 383-393.

17. Ma, H., Yin, B., Wang, S., Jiao, Y., Pan, W., Huang, S.,

Chen, S., Meng, F., Synthesis of sliver and gold

nanoparticles by novel electrochemical method,

ChemPhysChem, vol.5, no.1,2004, 68-75.

18. Widegren, J. A., Finke, R. G., A review of soluble

transition metal nanoclusters as arene hydrogenation

Page 3: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

188

catalysts, Journal of Molecular Catalysts A: Chemical,

vol.191, no.2, 2003, 187-207.

19. Bonnemann, H., Angermund, K., Buhl, M., Endruschat,

U., Mauschick, F.T., Mortel, R., Mynott, R., Tesche, B.,

Waldofner, N., InSitu study on the wet chemical synthesis

of Nanoscopic Pt colloids by “ Reductive Stabilization”,

Journal of Physical Chemistry B, vol.107, 2003, 7507-

7515.

20. Bonnemann, H., Waldofner, N., VAD: Prepartion and

Characterization of Three-Dimensional Pt nanoparticle

networks, Journal of Chemical Materials, vol.4, 2002,

1115-1120.

21. Slistan-Grijalva, A., Herrera-Urbina, R., Rivas-Silva, J. F.,

Ávalos-Borja, M., Castillón-Barraza, F. F., Posada-

Amarillas, A., Assessment of growth of sliver

nanoparticles synthesized from an ethylene glycol silver

nitrate polyvinylpyrrolidone solution, Physica E, vol.25,

no.4, 2005, 438-448.

22. Mock, J. J., Barbic, M., Smith, D. R., Schultz, D. A.,

Schultz, S., Shape effects in plasmon resonance of

individual colloidal silver nanoparticle, Journal Chemical

Physical, vol.116, no.15, 2002, 6755- 6760.

23. Gonzalez, A. L., Noguez, C., Ortiz, G. P., Rodriguez-

Gattorno, G., Optical absorbance of colloidal suspensions

of sliver polyhedral nanoparticle, Journal of Physical

Chemistry B, vol.109, no.37,2005, 17512-17517.

24. Xuan, Y., and Li, Q., Heat transfer enhancement of

Nanolfuids, International Journal of Heat and Flud flow,

vol.21, 2000, pp. 58-64.

25. Yu-taek Sung, Y., Won, J.S., Kim, J.S., Kim, W.N. Kwak,

D.H., Hwang, T.W., Rheological properties and

Page 4: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

189

crystallization kinetics of polypropylene block copolymer

with repeated extrusion, Korea-Australia Rheology

Journal, vol.17, no.1, 2005, 21-25.

26. Bom D., Andrews R., Jacques D., Anthony J., Chen B.,

Meier M.S., Seleque J.P., Thermogravimetric analysis of

oxidation of multiwalled carbon nanotubes: Evidence for

the role of defect sites in carbon nanotube Chemistry,

Nano Letters, vol.2, no.6, 2002, 615-619.

27. Masuda, H., Ebata, A., Teramae, K., Hishinuma, N.,

Alteration Of Thermal Conductivity And Viscocity Of

Liquid By Dispersing Ultra-Fine Particles(dispersions of γ

Al2O3, SiO2, and TiO2 Ultra-fine particles), Netsu Bussei

(Japan), vol.4, 1993, pp.227-233

28. Choi, S.U.S., Lee, S., Li, S., Eastman, J.A., Measuring

Thermal Conductivity Of Fluids Containing Oxide

Nanoparticles, Journal of Heat Transfer, vol.121, 1999,

pp.280-289.

29. Eastman, J.A., Choi, S.U.S., Li, S., Thompson, L.J., Lee,

S., Enhanced thermal conductivity through development

of nanofluids, Proceedings of Materials Research Society

Symposium, Materials Research Society Pittsburgh, PA,

USA, Boston, MA, USA, vol.457, 1997, pp. 3-11.

30. Kreibig, U., Bour, G., Hilger, A., Gartz, M., Optical

properties of cluster-matter: Influences of interfaces,

Physica Status Solidi A, vol.175, 1999, 351-366.

31. Zhu, H., Lin Y., Yin, Y., A novel one-step chemical method

for preparation of copper Nanofluids, Journal of Colloid

and Interface Science, vol. 277, 2004, 100-103.

32. Temgire, M. K., Joshi, S. S., Optical and structural

studies of sliver nanoparticles, Journal of Physical

Chemistry, vol.71, no.5, 2004, 1039-1044.

Page 5: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

190

33. Patel, K., Kapoor, S., Dave, D. P., Mukherjee, T.,

Synthesis of nanosized silver colloids by microwave

dielectric heating, Journal of Chemical Science, vol.117,

no.1, 2005, 53-60.

34. Gao, Y.; Jiang, P., Song, L., Liu, L., Yan, X., Zhou, Z., Liu,

D., Wang, J., Yuan, H., Zhang, Z., Zhao, X., Dou, X.,

Zhou, W., Wang, G., Xie, S., Growth mechanism of sliver

nanowires synthesized by polyvinylpyrrolidone assisted

polyol reduction, Journal of Physics D: Applied Physics,

vol.38, 2005,1061-1067.

35. Bonet, F., Tekaia-Elhsissen, K., Sarathy, K. V., Study of

interaction of ethylene glycol/PVP phase on noble metal

powders prepared by polyol process, Bulletin of Material

Science, vol.23, no.3, 2000, 165-168.

36. Brust, M., Walker, M., Bethell, D.,David J.S., Whyman, R.,

Synthesis of thiol-derivatised gold nanoparticles in a two-

phase Liquid–Liquid system, Journal of Chemical Society,

Chemical Communications, vol.7, 1994, pp.801-802.

37. Lo, C. H., Tsung, T.T., Chen, L.C., Su, C.H., Lin, H.M.,

Fabrication of copper oxide nanofluids using submerged

arc nanoparticle synthesis system (SANSS),Journal of

Nanoparticle Research, vol. 7, 2005, 313-320.

38. Meitz, D.W., Yen, L., Berry, G.C., Markovitz, H.,

Rheological studies of dispersions of spherical particles in

polymer solution, Journal of Rheology, vol.32, 1988, pp.

309-351.

39. Brinkman,H.C., The viscosity of Concentrated

suspensions and solutions, Journal of Chemical Physic,

vol. 20, 1955, pp.571-581.

Page 6: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

191

40. Batchelor, G.K., The effect of Brownian motion on the

bulk stress in a suspension of spherical particles, Journal

of Fluid Mechanic, vol.83, 1977, pp. 107-117.

41. Das, S.K., Putra, N., Thiesen, P., Roetzel, W., Temeprture

Dependence of Thermal conductivity enhancement for

Nanofluids, Journal of Heat Transfer, vol.125, 2003, pp.

567-574.

42. Chang, H., Jwo, C.S., Lo, C.H., Tsung, T.T., Kao, M.J., Lin,

H.M., Rheology of CuO nanoparticles suspension

prepared by ASNSS, Reviews on Advanced Materials

Science, vol.10, 2005, pp.128-132.

43. Wang, X., Xu, X. and Choi, S.U.S., Thermal conductivity

of Nanoparticle-Fluid mixture, Journal of Thermophyiscs

and Heat Transfer, vol.13, 1999, pp.474-480.

44. Pak, B.C. and Cho, Y.I., Hydrodynamic and heat transfer

study of dispersed fluids with sunmicron metallic oxide

particles, Experimental Heat Transfer, vol. 11, no.2, 1998,

pp. 151-170.

45. Chen, H., Ding, Y., He, Y., Tan, C., Rheological behaviour

of Ethylene glycol based titania nanofluids, Chemical

Physics Letters, vol.444, 2007, pp.333- 337.

46. Tseng, W.J. and Lin, K.C, Rhelogy and colloidal structure

of aqueous TiO2 Nanoparticle suspensions, Materials

Science and Engineering, vol.355, 2003, pp. 186-192.

47. Kukarni, P.D., Das, K.D., Chukwu, A.G., Temperature

dependent Rheological property of copper oxide

Nanoparticle suspension (Nanofluid), Journal of

Nanoscience and Nanotechnology, vol.6, 2006, pp.1150 –

115

48. Choi, S.U.S, Enhancing Thermal conductivity of fluids

with Nanoparticles, in Developments and Applications of

Page 7: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

192

Non-Newtonian flows, Eds. D.A. Springer and H.P. Wang,

vol. FED 231, 1995, pp. 99-105, ASME, Newyork.

49. Eastman, J.A., Choi, S.U.S, Li, S., Yu, W., and Thompson,

L.J., Anomalously incrased effective thermal

conductivities of Ethylene glycol based Nanofluids

containing Copper Nanoparticles, Applied Physics Letters,

vol.78, no.6, 2001, pp.718-720.

50. Assael, M.J., Metaxa, I.N., Arvanitidis, J., Christophilos,

D., Lioutas, C., Thermal conductivity enhancement in

aqueous suspensions of Carbon Multi walled and Double

walled nanotubes in the presence of two different

dispersants, International Journal of Thermophysics,

vol.26, 2005, pp.647-664.

51. Li, Q. and Xuan, Y., Convective heat transfer and flow

characteristics of Cu+ water nanofluids, Science in China,

Series E: Technological Sciences, vol. 45, 2002, pp.408-

416.

52. Patel, H.E., Das, S.K., Sudararagan, T., Nair, A.S., Geoge,

B., Pradep, T., Thermal conductivities of naked and

monolayer protected metal nanoparticles base nanofluids:

Manifestation of anomalous enhancement and chemical

effects, Applied physics Letetrs, vol. 83, 2003, pp. 2931-

2933.

53. Hong, T.K., Yang, H.S., and Choi, C.J., Study of the

enhanced thermal conductivity of Fe nanofluids, Journal

of Applied Physics, vol. 97, no. 6, 2005, pp.064311/1-4.

54. Lee, S., Choi, S.U.S., Li, S. and Eastman, J.A., Measuring

thermal conductivity of fluids containing oxide

nanoparticles, Transactions of ASME, Journal of Heat

Transfer, vol. 121, 1999, pp. 280-289.

Page 8: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

193

55. Xie. H., Wang, T., Xi., and Ai, F, Thermal conductivity

enhancement of suspensions containing Nanosized

Alumina particles, Journal of Applied Physics, vol.91,

2002, pp. 4568 – 4572.

56. Li, C.H., Perterson, G.P., Experimental investigation of

temperature and volume fraction variations on the

effective thermal conductivity of nanoparticle suspensions

(nanofluids), Journal of Applied Physics, vol. 99, no. 8,

2006, pp.084314/1-4.

57. Xie, H., Wang, J., Xi, T., Liu, Y., Thermal conductivity of

suspensions containing nanosized SiC particles,

International Journal of Thermophysics, vol. 23, no.2,

2002, pp.571-580.

58. Beck, M.P., Sun, T., Teja, A., The thermal conductivity of

alumina nanoparticles dispersed in ethylene glycol, Fluid

Phase Equilibria, vol.260, no.2, 2007, pp.275 – 278.

59. Kim, S.H., Choi, S.R., Kim, D., Thermal conductivity of

metaloxide Nanofluids: Particle size dependence and effect

of Laser irradiation, ASME Journal of Heat

Trasnfer,vol.129, 2007,pp. 298 – 307.

60. Hong, K.S., Yoo, D.H., Yang, H.S., Study of thermal

conductivity of nanofluids for the application of heat

transfer fluids, Thermochimica Acta, vol.455, 2007,pp.

66-69.

61. Murshed, S.M.S., Leong, K.C., Yang, C., Investigation of

thermal conductivity and viscosity of nanofluids,

International Journal of Thermal Science, vol.47, no.5,

2008, pp.560 – 568.

62. Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E., and

Grulke, E.A., Anomalous Thermal conductivity

Page 9: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

194

enhancement in Nanotube suspensions, Applied Physics

Letters, vol. 79, 2001, pp. 2252-2254.

63. Xie, H., Lee, H., Youn, W., and Choi, M., Nanofluids

containing Multiwalled carbon nanotubes and their

enhanced Thermal conductivity, Journal of Applied

Physiscs, vol. 94, 2003, pp.4967-4971.

64. Wen, D., and Ding, Y., Effective thermal conductivity of

aqueous suspension of carbon nanotubes, Journal of

Thermophysics and Heat transfer, vol. 18, 2004, pp.481-

485.

65. Cho, T.H., Park, S.D., Enhancing thermal conductivity of

nanofluids containing carbon nanotubes, Hwahak

Konghak, vol. 42, 2004, pp.624-629.

66. Liu, M.S., Lin, M.C.C., Huang, I.T., and Wang, C.C.,

Enhancement of thermal conductivity with carbon

nanotubes for Nanofluids, International Communications

in Heat and Mass Transfer, vol. 32, 2005, pp.1202-1210.

67. Biercuk, M., Llaguno, M., Radosarljevic, M., Hyun, J.,

Johnson, A., Fischer, J., Carbon nanotubes composites

for thermal management, Applied Physics Letters, vol. 80,

no. 3, 2002, pp. 2767-2769.

68. Jana, S., Amin, S.K., Zhong, W.H., Enhancement of fluid

thermal conductivity by the addition of single and hybrid

nano-additives, Thermochimica Acta, vol.462, 2007, pp.

45-55.

69. Chon, C.H., Kihm, K.D., Lee, S.P., and Choi, S.U.S.,

Empirical correlation finding the role of temperature and

particle size for nanofluid (Al2O3) thermal conductivity

enhancement, Applied Physics Letters, vol. 87, 2005, pp.

153107/1-3.

Page 10: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

195

70. Chopkar, M., Das, P.K., Manna, I., Synthesis and

characterization of a Nanofluids for advanced heat

transfer applications, Scripta Materials, Vol.55, 2006, pp.

549 – 552.

71. Ding, Y., Alias, H., Wem, D., Williams, R.A., Heat transfer

of aqueous suspension of carbon nanotubes (CNT

nanofluids), International Journal of Heat and Mass

Transfer, vol.49, 2006, pp. 240-250.

72. Hwang, Y., Park, H.S., Lee, J.K., Jung, W.H., Thermal

conductivity and lubrication characteristics of nanofluids,

Current Applied Physics, vol.61, 2006, pp. 67 – 71.

73. Kang, H.U., Kim, S.H., Oh, J.M., Estimation of thermal

conductivity of nanofluids using experimental effective

particle volume, Experimental Heat Transfer, vol.19, 2006,

pp. 181 – 191.

74. Liu, M., Lin, M., Tsai, C.Y., Enhancement of thermal

conductivity of Cu nanofluids using Chemical reduction

method, International Journal of Heat and Mass Transfer,

vol.49, 2006, pp.3028-3033.

75. Yang, B., and Han, Z.H., Temperature dependent thermal

conductivity of nanorod based Nanofluids, Applied

physics Letters, vol.89, 2006, pp. 8311/1-3.

76. Maxwell-Garnett, J.C., Colors in metal glasses and in

metallic films, Philosophical Transaction of the Royal

Society of London, series A, vol. 203, 1904, pp.385-420.

77. Hamilton, R.L., and Crosser, O.K., Thermal conductivity

of Heterogeneous two component system, I&Ec

Fundamental vol.1, 1962, pp.182-191.

78. Bruggeman, D.A.G., Calculation of various physical

constants of heterogenous substances II. Dielectricity

Page 11: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

196

constants and conductivity of non regular multi crystal

systems, Annalen Der Physik, 25 (1936),7, pp. 645-672.

79. Jeffrey, D.J., Conduction through a Random suspension

of spheres, Proceedings of the Royal Society of London,

series A, vol.335, no.1602, 1973, pp. 355-367.

80. Davis, R.H., Effective thermal conductivity of a

composites material with spherical inclusions,

International Journal of Thermophysics, vol. 7, no. 3,

1986, pp. 609-620.

81. Lu, S., and Lin, H., Effective conductivity of composites

containing aligned spheroid inclusions of finite

conductivity, Journal of Applied Physics, vol.79, 1996, pp.

6761-6769.

82. Dube, D.C., Study of Landau-Lifshitz-Looyenga‟s formula

for dielectric correlation between powder and bulk,

Journal of Physics D: Applied Physics D, vol. 3, no.11,

1970, pp. 1648-1652.

83. Xuan, Y., Li, Q., Hu, W., Aggregation structure and

Thermal conductivity of Nanofluids, AIchE Journal, vol.

49, no. 4, 2003, pp. 1038-1043.

84. Keblinski, P., Phillopot, S.R., Choi, S.U.S., Eastman, J.A.,

Mechanisms of heat flow in suspensions of nanosized

particles (Nanofluids), International Journal of Heat and

mass transfer, vol. 45, 2002, pp.855-863.

85. Xie, H., Fujii, M., and Zhang, X., Effect of interfacial

Nanolayer on the effective thermal conductivity of

Nanoparticle fluid Mixture, International Journal of Heat

and Mass transfer, vol. 48, 2005, pp.2926-2932.

86. Einstein, A., Investigations on the theory of the Brownian

movement, 1956, Dover, New York

Page 12: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

197

87. Jang, S.P., and Choi, S.U.S., Role of Brownian motion in

the enhanced thermal conductivity of Nanofluids, Applied

Physics Letetrs, vol. 84, no. 21, 2004, pp.4316-4318.

88. Kumar, D.H., Patel, H.E., Kumar, V.R.R., Sundararajan,

T., Pradeep, T., Das, S.K., Model for heat conduction in

Nanofluids, Physics Review Letters, vol. 93, no. 14, 2004,

pp.144301/1-4.

89. Chon, C.H., Kihm, K.D., Lee, S.P., and Choi, S.U.S.,

Empirical correlation finding the role of temperature and

particle size for nanofluid (Al2O3) thermal conductivity

enhancement, Applied Physics Letters, vol. 87, 2005, pp.

153107/1-3.

90. Bhattacharya, P., Saha, S.K., Yadav, A., Phelan, P.E., and

Prasher, R.S., Brownian Dynamics simulation to

determine the effective thermal conductivity of Nanofluids,

Journal of Applied Physics, vol. 95, no.11, 2004,

pp.6492-6494.

91. Koo, J., Kleinstreuer, C., Impact analysis of nanoparticles

motion mechanisms on the thermal conductivity of

nanofluids, International Communications in Heat and

mass Transfer, vol. 32, no. 9, 2005, pp.1111-1118.

92. Prasher, R., Bhattacharya, P., and Phelan, P.E., Thermal

conductivity of Nanoscale colloidal solutions (Nanofluids),

Physical review Letters, vol. 94, 2005, pp.025901/1-4.

93. Nan, C.W., Liu, G., Lin, Y., Li., M., Interface effective

thermal conductivity of carbon nanotube composites,

Applied Physics Letters, vol. 85, 2004, pp.3549-3551.

94. Prasher, R., Applications of Nanotechnology in Electronics

Cooling, March 17, 2006, Seminar, Troy, New York.

Page 13: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

198

95. Nan, C.W., Birringer, R., Effective Thermal conductivity of

particulate composites with interfacial thermal resistance,

Journal of Applied Physics, vol. 81, 1997, pp.6692-6699.

96. Yu, C.J., Richter, A.G., Datta, A., Durbin, M.K., Dutta, P.,

Molecular layering in a liquid on a solid substrate: An x-

Ray reflectivity study, Physica B, vol. 283, 2000, pp.27-31.

97. Yu, W., Choi, S.U.S., The role of interfacial layers in the

enhanced thermal conductivity of nonofluids: a renovated

Hamilton-Crosser model, Journal of nanoparticle

Research, vol.6, no.4, 2004, pp.355-361.

98. Xue, L., Keblinski, P., Phillpot, S.R., Choi, S.U.S.,

Eastman, J.A., Effect of liquid layering at the liquid-solid

interface on thermal transport, International Journal of

Heat and Mass transfer, vol.47, 2004, pp.4277-4284.

99. Xue, Q.Z., Model for thermal conductivity of Carbon

nanotube based composites, Physica B, vol.368, 2005,

pp.302-307.

100. Xue, Q.Z., Model for effective thermal conductivity of

Nanofluids, Physics Letters A, vol.307, 2003, pp.313-317.

101. Xue, Q., and Xu, W.M., A model of thermal conductivity of

nanofluids with interfacial shells, Materials Chemistry

and Physic, vol.90, 2005, pp.298-301.

102. Ren, Y., Xie, H., Cai, A., Effective thermal conductivity of

Nanofluids containing spherical Nanoparticles, Journal of

Physics D: Apllied Physics, vol. 38, 2005, pp.3958-3961.

103. Xie, H., Fujii, M., and Zhang, X., Effects of Interfacial

Nanolayer on the effective thermal conductivity of

nanoparticle-fluid mixture, International Journal of Heat

and Mass Transfer, vol. 48, 2005, pp.2926-2932.

104. Yu, W., Choi, S.U.S., A effective thermal conductivity

model of nanofluids with a cubical arrangement of

Page 14: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

199

spherical particles, Journal of Nanoscience and

Nanotechnology, vol.5, 2007, pp. 580-586.

105. Garboczi, E.J., Snyder, K.A., Douglas, J.F., Geometrical

percolation threshold of overlapping ellipsoids, Physical

review E, vol.52, 1995, pp.819-828.

106. Wang, B., Zhou, L., Peng, X., Fractal model for predicting

the effective thermal conductivity of liquid with

suspension of nanoparticle, International Journal of heat

and mass transfer, vol. 46, 2003, pp.2665-2672.

107. Gao, L., Zhou, X.F., Differential effective medium theory

for thermal conductivity in nanofluids, Physics Letters A,

vol. 348, 2006, pp.355-360.

108. Choi, S.U.S., Zhang, Z.G., Keblinski, P., Nanofluids, in

Encyclopedia of Nanoscience and Nanotechnology, ed.

H.S. Nalwa, vol. 6, 2004, American scientific publishers,

LosAngels, Califorina, pp.757-773.

109. Ahuja, A. S., Augmentation of heat transport in laminar

flow of polystyrene suspensions. II. Analysis of data,

Journal of applied physics, vol.46, no.8, 1975, pp.3417-

3425.

110. Xuan, Y., and Li, Q., Investigation of convective heat

transfer and flow features of nanofluids, Transactions of

ASME Journal of Heat and Mass transfer, vol. 125, no.1,

2003, pp.151-155.

111. Xuan, Y., and Roetzel, W., Conceptions for heat transfer

correlation of nanofluids, International Journal of Heat

and Mass transfer, vol.43, 2000, pp.3701-3707.

112. Lee, C.H., Kang, S.W., Kim, S.H., Effects of nano-sized Ag

particle on heat transfer of nanofluids, Journal of

Industrial and Engineering Chemistry, vol.11, no. 1, 2005,

pp.152-158.

Page 15: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

200

113. Wen, D., Ding, Y., Experimental investigation into

convective heat transfer of nanofluids at the extreme

region under laminar flow conditions, International

Journal of heat and Mass transfer, vol.47, 2004, pp.5181-

5188.

114. Ding, Y., and Wen, D., Particle migration in flow of

nanoparticles suspensions, Powder Technology, vol.149,

2005, pp.84-92.

115. Chen, X., Li, J.-M., Wen, T., Xuan, W., Enhancing

convection heat transfer in mini tubes with nanoparticles

suspension, Journal of Engineering Thermophysics,

vol.25, 2004, pp.643-645.

116. Heris, S., Etemad, S.G., Esfahany, M., Experimental

investigation of oxide nanofluids laminar flow convective

heat transfer, International Communications in Heat and

Mass Transfer, vol.33, no.4, 2006, pp.529-535.

117. Tsai, C.Y., Chien, H.T., Ding, P.P., Chan, B., Luh, T.Y.,

Chen, P.H., Effects of structural character of gold

nanoparticles in nanofluid on heat pipe thermal

performance, Material Letters, vol.58, 2004, pp.1461-

1465.

118. Maiga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G., Heat

transfer behaviours of nanofluids in a uniformly heat

tube, Superlattices and Microstructures, vol.35, 2004,

pp.543-557.

119. Maiga, S.E.B., Palm, S.J., Nguyen< C.T., Roy, G., Galanis,

N., Heat transfer enhancement by using nanofluids in

forced convective flows, International Journal of heat and

fluid flow, vol.26, 2005, pp.530-546.

120. Maiga, S.E.B., CongTam, N., Galanis, N., Roy, G., Mare,

T., Coqueux, M., Heat transfer enhancement in turbulent

Page 16: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

201

tube flow using Al2O3 nanoparticle suspensions,

International Journal of Numerical methods for heat and

fluid flow, vol.16, no.3, 2006, pp.275-292.

121. Roy, G., Nguyen, C.T., Lajoie, P,-R., Numerical

investigation of laminar flow and heat transfer in a radial

flow cooling system with the use of nanofluids,

Superlattices and Microstructures, vol.35, 2004, pp.497-

511.

122. Koo, J., Kleinstreuer, C., Laminar nanofluid in micro heat

–sinks, International Journal of heat and mass transfer,

vol.48, 2005, pp.2652-2661.

123. Xuan, Y., Yao, Z., Lattice Boltzman model for Nanofluids,

Heat and Mass transfer, vol.41, no.3, 2005, pp.199-205.

124. Khanafer, K., Vafai, K., Lightstone, M., Buoyancy-Driven

heat transfer enhancement in a Two Dimensional

enclosure utilizing Nanofluids, International Journal of

heat and mass transfer, vol.46, 2003, pp.3639-3653.

125. Putra, N., Roetzel, W., Das, S.K., Natural convection of

nanofluids, Heat and Mass transfer, vol.39, no.8-9, 2003,

pp.775-784.

126. Wen, D., Ding, Y., Formulation of nanofluids for natural

convective heat transfer applications, International

Journal of heat and fluid flow, vol. 26, 2005, pp.855-864.

127. You, S. M. and Kim, J. H., Effect of Nanoparticles on

Critical Heat Flux of Water in Pool Boiling Heat Transfer,

Applied Physics Letters, vol. 83, No. 16, 2003, pp.3374-

3376.

128. Das, S. K., Putra, N., and Roetzel, W., Pool Boiling

Characteristics of Nanofluids, International Journal of

Heat and Mass Transfer, vol.46, 2003, pp.851- 862.

Page 17: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

202

129. Vassallo, P., Kumar, R., and D‟Amico, S., Pool boiling

heat transfer experiments in silica-water nano-fluids,

International Journal of Heat and Mass transfer, vol.47,

2004, pp.407-411.

130. Zhou, D. W., Heat transfer enhancement of copper

nanofluid with acoustic cavitation, International Journal

of Heat and Mass transfer, vol.47, 2004, pp.3109- 3117.

131. Faulkner, D.J., Rector, D.R., Davidson, J., Shekarriz, R.,

Enhancement heat transfer through the use of nanofluids

in forced convection, the proceedings of IMECE 2004,

California, USA, November 2004, pp. 13-19.

132. Yang, Y., Zhang, Z.G., Grulke, E.A., Anderson, W.B., Wu,

G., Heat transfer properties of nanoparticles in fluid

dispersion in Laminar, International Journal of Heat and

Mass Transfer, vol. 48, 2005, pp. 1107 – 1116.

133. Cowell, T.A., A General method for the comparison of

compact heat transfer surfaces, Journal of Heat Transfer,

vol. 112, 1990, pp.289-294.

134. Nunez, P.N., Polley, G.T., Reyes, T.E., Munoz, G.A.,

Surface selection and design of plate –fin heat exchangers,

vol.19, no.9, 1999, pp.917-931.

135. Taylor, M.A., Plate fine Heat exchangers: Guide to their

specifications and use, 1st edition, 1987, HTFS.

136. Shah, R.K., Plate fin and tube fin heat exchangers design

procedures. In R.K. Shah, E.C. Subbarao, R.A. Mashelkar

(Eds), Heat transfer equipment design, 1988, publishing

cooperation, Washington, D.C, pp. 255-265.

137. Tagliafico, L., Tanda, G., A thermodynamic method for the

comparision of plate fin het exchangers performance,

Journal of Heat transfer, vol.118, 1996, pp.805-809.

Page 18: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

203

138. Bejan, A., The thermodynamic design of heat and mass

transfer processes and devices, International Journal of

heat fluid flow, vol.8, pp. 258-276, 1987.

139. London, A.L., Economics and second law: A engineering

view and methodology, International journal of heat and

mass transfer, vol.25, 1982, pp.743-751.

140. Sekulic, D., A reconsideration of the definition of heat

exchangers, International Journal of Heat and mass

transfer, vol.33, no.12, 1990, pp.2748-2750.

141. Schenone, C., Tagliafico, L., Tanda, G., Second law

performance analysis for offset strip fin heat exchangers,

Heat transfer Engineering, vol.12, 1991, pp.19-27.

142. Fiebig, M., Vortex generators for compact heat exchangers,

Journal of Enhanced heat transfer, vol.2, 1995, pp.43-61.

143. Brockmeier, U., Guntermann, T., Fiebig, M., Performance

evaluation of vortex generator heat transfer surface,

International Journal of heat and mass transfer, vol.36,

1989, pp.2575-2587.

144. Jacobi, A.M., Shah, R.K., Air side flow and heat transfer

in compact heat exchangers: A discussion of

enhancement mechanisms. Heat transfer Engineering,

vol.19, no.4, 1998, pp.29-41.

145. Hesselgreaves, J.E., Fin thickness optimization of plate

fin heat exchangers, 1st International conference on

Aerospace heat exchangers Technology, 1993, Palo Alto,

Elsevier, Newyork.

146. Bergeles, A.E., Blumenkrantz, A.R., Taborek, J.,

Performance evaluation criteria for seletion of enhanced

heat transfer surfaces, International Heat Transfer

Conference, Tokyo, vol.11, 1974, pp.239-243.

Page 19: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

204

147. Bergles, A.E., Bunn, L., Junkhan, G.H., Extended

performance evaluation criteria for enhanced heat

transfer surfaces, Letters Heat Mass Transfer, vol.1, 1974,

pp.113-120.

148. Bejan, A., General criterion for rating heat exchanger

performance, International Journal of Heat and mass

transfer, vol.21, no.5, 1978, pp.655-658.

149. Sprarrow, E.M., Liu, H., Heat transfer, pressure drop and

performance relationships for inline, staggered and

continuous plate heat exchangers, International journal

of Heat and Mass transfer, vol.22, no.12, 1979, pp.1613-

1625.

150. Shah, R.K., Heat Exchangers basic design methods, in :

S.Kakac, R.K Shahand A.E Bergles (Eds), Low Reynolds

number flow heat exchangers, 1983, Hemisphere,

Washington DC, pp.21-72.

151. Sekulic, D., A reconsideration of the definition of heat

exchangers, International Journal of Heat and Mass

transfer, vol.33, no.12, 1990, pp.2748-2750.

152. Campbell, J.F., Roshnow, W.M., Gas Turbines

Regenerators : A method for selecting the optimum plate

finned surface pair for minimum core volume,

International Journal of Heat and Mass transfer, vol.35,

1992, pp.3441-3450.

153. Smith, E.M., Direct thermal sizing of plate fin heat

exchangers, in: Proceedings of the 10th International Heat

Transfer Conference, 1994, Brighton, U.K, pp.55-66.

154. Webb, R.L., Principles of Enhanced heat transfer, 1st

edition, 1994, John Wiley & Sons, Newyork.

155. Andrews, M.J., Fletcher, L.S., Comparison of several heat

transfer enhancement Technologies for as heat

Page 20: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

205

exchangers, Journal of heat transfer, vol.118, no.4, 1996,

pp.897-902.

156. Kakac, S., Liu, H., Heat Exchangers Selection, Rating and

thermal design, 1st edition, 1997, CRC Press, Newyork,

pp.115-133.

157. Sekulic, D.P., Sizing of crossflow Compact Heat

Exchanger calculations, Eds Maryer Kutz, 2005,Mc

GrawHill, USA.

158. Taler, D., Prediction of heat transfer correlations for

compact Heat exchangers, Forschung im Ingenieurwesen,

vol.69, no.3, 2005, pp. 137 – 150.

159. Charyulu, D.G., Singh, G., Sharma, J.K., Performance

evaluation of radiator in diesel engine – A case study,

Applied Thermal engineering, vol. 19, 1999, pp.625-639.

160. Carluccio, E., Starace, G., Ficarella, A., Laforgia, D.,

Numerical analysis of a cross flow compact heat

exchanger for vehicle applications, Applied Thermal

Engineering, vol.25, 2005, pp.1995-2013.

161. Witry, A., Al-Hajeri, H.H., Bondok, A.B., Thermal

performance of automotive aluminum plate radiator,

Applied thermal Engineering, vol.25, 2005, pp.1207-1218.

162. Mahmoudi, J., Modeling of flow field and heat transfer in

copper base automotive radiator application,

International Journal Of Green Energy, vol.3, 2007,

pp.25-41.

163. Oliet, C., Oliva, A., Castra, J., Perez-segarra, C.D.,

Parametric studies on automotive radiators, Applied

Thermal Engineering, vol.27, 2007, pp.2033-2043.

164. Saripella, S.K., Yu, W., Routbort, J.L., Effects of

Nanofluid coolant in a class 8 truck Engine, SAE

International Journal, paper series 2007-01-2141, 2007.

Page 21: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

206

165. Bang, I.C., Heo, G., An axiomatic design approach in

development of nanofluids coolants, Applied Thermal

Engineering, vol.29, 2009, pp.75 – 90.

166. Brid, R.B., Stewart, W.E., Lightfoot, E.N., Transport

Phenomena, 2nd Edition, 2002, John Wiley & Sons Inc.,

New York.

167. Incropera, F.P., and DeWitt, D.D., Fundamentals of heat

and mass transfer, 5th edition, 2002, John Wiley & Sons

Inc., New York.

168. Carey, V.P., Statistical Thermodynamics and Microscale

Thermophysics, 1999, Cambridge, New York.

169. Lienhard IV, J.H., and Lienhard V, J.H., A Heat Transfer

Text book, 3rd Edition, 2004, Phlogiston press, Cambridge.

170. Vasu, V., Rama, K.K., Kumar, A.C.S., Exploitation of

Thermal Properties of Fluids Embedded with

Nanostructured materials, International Energy Journal,

Vol.8, no.3, 2007, pp.178-186.

171. Vasu, V., Rama, K.K., Kumar, A.C.S., Analytical

prediction of forced convective heat transfer of fluids

embedded with nanostructured materials (nanofluids),

Pramana – Journal of Physics, Vol.69, no.3, 2007,

pp.411- 421.

172. Vasu, V., Rama, K.K., Kumar, A.C.S., Empirical

Correlations to predict thermophysical and heat transfer

characteristics of Nanofluids, Thermal Science Journal,

vol.12, no.3, 2008.

173. Fox, R.W., McDonald, A.T., Pritchard, P.J., Introduction

of fluid Mechanics, 6th edition, 2004, Wiley & Sons. Inc.,

New York.

174. Heris, W.S., Esfahany, N.M., Etemad, Gh. S.,

Experimental investigation of convective heat transfer of

Page 22: Chapter 7 REFERENCES - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/2682/11/11...189 crystallization kinetics of polypropylene block copolymer with repeated extrusion, Korea-Australia

207

Al2O3/ water nanofluid in circular tube, International

Journal of Heat and Fluid Flow, vol.28, 2007, pp.203–

210.

175. Buongiorno, J., Convective Transport in Nanofluids,

Journal of Heat and Mass Transfer, vol.128, 2006,

pp.240-250.

176. Van Driest, E.R., On Turbulent flow near a wall, Journal

of Aeron Science, vol. 123, 1976, pp.1007-1011.

177. Huang, L.J., Shah, R.K., Assessment of calculation

methods for efficiency of straight fins of rectangular

profiles, International Jurnal of Heat fluid flow, vol.13,

1992, pp.282-293.

178. Shah, R.K., Compact Heat Exchangers, in Handbook of

Heat Transfer Applications, 2nd Edtion, 1985,

W.M.Rohsenow, J.P.Hartnett, and E.N. Ganic, Eds.,

McGraw-Hill, Newyork.

179. Miller, D.S., Internal Flow Systems, 2nd Edition, 1990,

BHRA, Cranfied, Bedford, UK.

180. Shah, R.K., Heikal, M.R., Thonon, B., Tochon, P.,

Progress in the numerical analysis of compact heat

exchanger surfaces, Advances in heat transfer, vol.34,

2001, pp.363-443.

181. Vasu, V., Ramakrishna, K., Kumar, A,C,S., Thermal

design analysis of compact heat exchanger using

nanofluids, International Journal of Nanomanufacturing,

vol.2, no.3, 2008, pp.271-288.