chapter10 gibbs free energy-composition curves and ...chapter10 gibbs free energy-composition curves...

27
Chapter10 Gibbs Free Energy-Composition Curves and Binary Phase Diagrams §10-1. Introduction §10-2. Gibbs Free Energy Curve, ( B M X G §10-3. ( B M X G of a Regular Solution §10-4. Criteria For Phase Stability in Regular Solutions §10-5. Standard States and Two-Phase Equilibrium §10-6. Binary Phase Diagrams with Liquid and Solid Exhibiting Regular Solution. §10-7. Eutectic Phase Diagrams and Monotectic Phase Diagram

Upload: others

Post on 03-Feb-2021

22 views

Category:

Documents


0 download

TRANSCRIPT

  • Chapter10 Gibbs Free Energy-Composition

    Curves and Binary Phase Diagrams

    §10-1. Introduction

    §10-2. Gibbs Free Energy Curve, ∆ ( )BM XG

    §10-3. ∆ ( )BM XG of a Regular Solution

    §10-4. Criteria For Phase Stability in Regular Solutions

    §10-5. Standard States and Two-Phase Equilibrium

    §10-6. Binary Phase Diagrams with Liquid and Solid Exhibiting

    Regular Solution.

    §10-7. Eutectic Phase Diagrams and Monotectic Phase Diagram

  • §10-1. Introduction 1. At constant T, P

    (1) Stable (equilibrium) state ⇔ G = minG

    (2) When phases coexist, ( a、ß、?… )

    α

    iG =β

    iG =γ

    iG =… … .

    2. Isobaric binary phase diagrams can be determined from ∆ ( )iM XG curves at

    different T for each phase. e.g : Si-Ge isomorphous phase diagram.

    T > ( )SiTm : Liquid T ≤ ( )SiTm or liquidus line: solid phase coexists with liquid phase

    ( )TX si 、 ( )TX iλ can be determined.

    §10-2. Gibbs Free Energy Curve, △ ( )BM XG

    MG∆ =RT( AX ln Aa + BX ln Ba )

    ∵ id,MG∆ =RT( AX ln AX + BX ln BX )

    ∴ MG∆ = id,MG∆ +RT( AX ln Aγ + BX ln Bγ )

  • Figure 10.1 I . ∆ id,MG <0

    II . iγ >1 III. iγ <1

    *When BX =°BX ,tangent intercept at BX =1 is

    MBG∆

    ∴∣ =BbM

    BG∆ =RT ln Ba (II)∣ Bγ (III)

    * 0X i → , ia 0→ , RTG i =∆ ln ia −∞→

    §10-3. ∆ ( )BM XG of a Regular Solution

    ∵Regular Solution, 0Sxs =

    id,MM GG ∆−∆ = xsG = ∆ MH =RT α AX BX =Ω AX BX

    * For ∆ MH <0, MG∆ is more negative than id,MG∆ <0

    a homogeneous solution is stable for all BX .

    * For ∆ MH >0, a>0

    RTGM∆-

    RTG id,M∆

    =RTHM∆=a AX BX

    ideal solution RTG id,M∆

    =-R

    S id,M∆= AX ln AX + BX ln BX

  • Figure 10.2 I : RTG id,M∆

    (a=0)

    When a ↑ ⇒ part of RTGM∆

    curve is convex upward.

    * When all ∆ ( )BM XG curve is 〝convex downward〞.

  • Figure 10.3 at any specific °BX , ∆MG ( )°BX =d.

    if it is mixed by any other two different compositions ( ) cba →+

    ∆ MG ( )c > ∆ MG ( )d

    i.e. no phase separation.

    * When part of ∆ ( )BM XG curve is 〝convex upward〞.

    i. m< BX <q

    ∆ MG is minimized when two solutions(m, q)coexist

    e.g. →γ m+q

    ii. m, q are the common tangent of ∆ MG curve.

    ==

    )qsolution(G)msolution(G)qsolution(G)msolution(G

    BB

    AA

  • ∴ subtracting °AG and °BG

    then

    ==

    )q()m()q()m(a

    BB

    AA

    aaa

    i.e. solutions m, q are in equilibrium, they coexist.

    a ↑ ⇒ clustering causes phase separation curve AmqB represents the equilibrium state of the system, curve mnopq has no physical significance.

    §10-4. Criteria For Phase Stability in Regular Solutions * Given T, a critical crα occurs ,

    α>αα

  • Figure 10.4

    ∴ MG∆ =RT( BBAA XlnXXlnX + )+RT BA XXα

    ∴ =∂∆∂

    B

    M

    XG

    RT [ lnA

    B

    XX

    +α ( BA XX − )]

    =∂

    ∆∂2

    B

    M2

    X

    GRT( α−+ 2

    X1

    X1

    BA

    )

    =∂

    ∆∂3

    B

    M3

    X

    G( 2

    B2

    A X

    1

    X

    1− )

    From 0X

    G3

    B

    M3

    =∂

    ∆∂, ∴ 5.0XX BA ==

    Then from 0X

    G2

    B

    M2

    =∂

    ∆∂, =α 2cr =α

    ∵Ω =RT α

    ∴For a given positive Ω ( 0>Ω ) , R2R

    Tcr

    crΩ

    Ω=

    * Given fixed Ω >0

    When

    >α<

    .occursseparationphase,2,TT.solutionogeneoushom,2,TT

    cr

    cr

    ∵ MG∆ = )XlnXXlnX(RT BBAA + + BAXXRTα

    (1) (2) RT α =Ω =constant

    ↓⇒ negativelessis)1(termT:)1(termTof.indepis)2(term

    ⇒≤ crTT eventually , at ,5.0X B = MG∆ is positive

    MG∆ ( iX ) is convex upward.

    * Miscibility curve bounding two-phase region in phase diagram is the locus of common tangent compositions .

  • Figure 10.5 (a),(b) for Ω =16630J , crT =1000K

    * Ba )X( B at different T : Figure 10.5 (c)

    (1) at T= crT , ,5.0X B = inflexion occurs (i).

    i.e. B

    B

    Xa

    ∂∂

    =0 and 2

    2

    B

    B

    X

    a∂

    ∂=0

    (2) crTT < , Ba )X( B has a maximum, and minimum point.

  • e.g. Figure 10.6 points b, c where B

    B

    Xa

    ∂∂

    =0 and 2B

    MB

    2

    X

    G

    ∆∂=0

    ⇒ spinodal compositions.

    * Ba )X( B curve between∩bc , (

    B

    B

    Xa

    ∂∂

    )

  • ∴ ο )S(AG -ο

    λ)(AG =-ο

    )A(mG∆ =-(οο

    )A(m)A(m STH ∆−∆ )

    ∆ H= ∆ οH + ∫ ∆ dTCP , ∆ S= ∆ οS + ∫∆

    dTTCP

    ∆∆=

    ∆=∆∴=∆=

    .Tof.indepareS,H,CCif

    STH0G,TTat

    )A(m)A(m)(A,P)S(A,P

    )A(mm)A(m)A(m)A(m

    οολ

    οοο

    ∴ ο )A(mG∆ =ο

    )A(mH∆

    )A(m

    )A(m

    T

    TT

    ∴point c, ο )s(AG is more positive, when T↑ ( T> )A(mT )

    line cb is Gibbs free energy of unmixed

    BsolidAsolid

    ∆ G=- ο )A(mA GX ∆⋅

    similarly, ο λ)(BG -ο

    )S(BG =ο

    )B(mG∆ =ο

    )B(mH∆ -Tο

    )B(mS∆ ≅ο

    )B(mH∆

    )A(m

    )A(m

    T

    TT

    line ab , G∆ = BXο

    )B(mG∆⋅

    ∆∩

    M)S(

    M)(

    G,solutionsolidiscfbcurve

    G,solutionliguidtheisaedcurve λ

    * Assume : Ideal solution for solid and liquid solutions.

    ∆−+=∆

    ∆++=∆

    )2......(GX)XlnXXlnX(RTG

    )1......(GX)XlnXXlnX(RTG

    )A(mABBAAM

    )S(

    )B(mBBBAAM

    )(ο

    ολ

    * Common tangent positions e, f are the compositions of liquid and solid solutions in equilibrium.

    * When T↓ , ↓ca and ↑bd , positions of common tangent shift to left.

    ?)T(X )(A =λ , ?)T(X )s(A =

    For equilibrium between solid and liquid

  • ∆=∆

    ∆=∆

    )4......(GG

    )3......(GGM

    )(BM

    )s(B

    M)A(

    M)s(A

    λ

    λ

    ∵ M )(AG λ∆ =M

    )(AG λ∆ + )(BX λ)(A

    M)(

    X

    G

    λ

    λ

    ∆∂

    From (1) )(A

    M)(

    X

    G

    λ

    λ

    ∆∂=RT( ln )(AX λ -ln )(BX λ )-

    ο)B(mG∆

    ∴ M )(AG λ∆ =RT ln )(AX λ … … (5)

    Similarly, M )S(AG∆ =M

    )S(G∆ + )S(BX)S(A

    M

    X

    G

    ∆∂

    From (2) : ∴ M )S(AG∆ =RT ln )S(AX -ο

    )A(mG∆ … … (6)

    From (3),(5),(6), ∴RT ln )(AX λ = RT ln )S(AX -ο

    )A(mG∆

    From (1),(2),(4), RT ln )S(BX = RT ln )(BX λ +ο

    )B(mG∆

    ∆−⋅=

    ∆−⋅=

    )RT

    Gexp(XX

    )7)......(RT

    Gexp(XX

    )B(m)S(B)(B

    )A(m)S(A)(A

    ο

    λ

    ο

    λ

    or (1- )(AX λ )=(1- )S(AX )exp(- RT

    G )B(mο∆

    )… … (8)

    From (7),(8)

    ∆−−

    ∆−

    ∆−⋅

    ∆−−

    =

    ∆−−

    ∆−

    ∆−−

    =

    )RT

    Gexp()

    RT

    Gexp(

    )RT

    Gexp()]

    RT

    Gexp(1[

    X

    )RT

    Gexp()

    RT

    Gexp(

    )RT

    Gexp(1

    X

    )B(m)A(m

    )A(m)B(m

    )(A

    )B(m)A(m

    )B(m

    )S(A

    οο

    οο

    λ

    οο

    ο

    If )(i,PC λ = )S(i,PC

  • ο )i(mG∆ο

    )i(mH∆≅

    )i(m

    )i(m

    TTT

    ∴Given )A(mT , )A(mT , ο

    )A(mH∆ , ο

    )B(mH∆ and

    assuming ideal solution model for both liquid and solid solutions.

    The solidus and liquidus lines in isomorphous phase diagram can be calculated.

    Example: Ge-Si Figure 10.8 *Positions of points of double tangency are not influenced by choice of standard

    states; they are determined only by T, ο )A(mG∆ , ο

    )B(mG∆ .

  • See. Eq.(1),(2) and Figure 10.9

    *Values of activity, ia , will depend on the choice of standard state of i and T.

  • See. Figure 10.7 (a)(b)(c):

    Consider Ba : )B(m)A(m TTT 0

    ∴ )s(Ba =1, at 1XB = . i.e. gn =1

    point m is )(Ba λ of pure liquid B

    ∴ )(Ba λ = qnmn

    0 , ∴ [ ])(B

    )s(B

    B.t.r.w

    B.t.r.w

    aa

    λ

    >1

    ∴)(B

    )s(B

    B.t.r.w

    B.t.r.w

    aa

    λ

    >1

    i.e. )s(Ba > )(Ba λ

    )(B

    )s(B

    B.t.r.w

    B.t.r.w

    aa

    λ

    =exp(RT

    G )B(mο∆

    )

    Similarly, iliquid.t.r.w

    isolid.t.r.w

    i

    i

    aa

    =exp(RT

    G )i(mο∆

    )=exp

    −∆

    )i(m

    )i(m)i(m RTT

    TTHο

    ∴In Figure 10.7(c) , Ba ( BX )

  • statedardtansas)(Bonbasedisjklmline

    statedardtansas)s(Bonbasedisjihgline

    λ

    these two lines vary in a constant ratio of exp(RT

    G )B(mο∆

    )

    * Similar discussions can be applied to Aa , Figure 10.7(d)

    * When T↓ , since T< )B(mT

    ∴ ο )B(mG∆ >0 , and ο

    )B(mG∆ ↑

    [)(B

    )s(B

    aa

    λ

    ] ↑ , i.e.

    mngn

    ↑ or

    gnmn

    When T↑ , ο )B(mG∆ ↓ ; at T= )B(mT , ο

    )B(mG∆ =0 , )s(Ba = )(Ba λ

    Point g and point m coincide.

    §10-6. Binary Phase Diagrams with Liquid and Solid

    Exhibiting Regular Solution.

  • 1. K800T )A(m = , K1200T )B(m = Figure 10.10

    −=∆

    −=∆

    T1012000G

    T108000G

    )B(m

    )A(m

    )ideal(0)gular(ReKJ20

    s =Ω−=Ωλ

    (1) )B(m)A(m TK1000TT

  • Figure 10.11

    * For solid solution : crT = R2SΩ = 601

    314.8210000

    (K)

    But MSG∆ =MG λ∆ , at T=661K , 35.0X B =

    * When ↓Ω λ and SΩ ↑

    ↑crT and point (MSG∆ =

    MG λ∆ ) ↓

    Eventually, these two points merge, then eutectic system occurs.

    3. Same conditions , but

    +=Ω+=Ω

    )gular(ReKJ30)gular(ReKJ20

    S

    λ

  • Figure 10.12 * Critical temperatures for solid and liquid solutions.

    )(crT λ = R2λΩ =1203K

    )S(crT = R2SΩ =1804K > )(crT λ

    α+α→α+→

    /

    /12

    :Eutectic:Monotectic

    λλλ

    are shown.

  • 4. Figure 10.13 Different ,λΩ SΩ

    * (a) → (d), λΩ ↑ ⇒ ↑eutecticT , (e) liquid is unstable ⇒ monotectic.

    §7. Eutectic Phase Diagrams and Monotectic Phase

    Diagram

    1. Complete solid solubility of components A, B:

    valenceSimilar)4(ativityelectronegSimilar)3(

    sizeatomicComparable)2(structurecrystalSame)1(

    if any one condition is not met⇒ miscibility gap.

  • 2. A-B system with two terminal solid solutions. ( βα, ) e.g. eutectic phase diagram. Figure 10.14

    3. Solid solubility in βα, phases are extremely small.

    * When solid solubility↓ ⇒ MG α∆ is compressed toward 1X A =

    i.e. it coincides with vertical axis.

    Figure 10.15 *

    statesolidinityimmiscibilCompletestateliquidinymiscibilitComplete

  • Figure 10.16 Liquidus curves can be calculated assuming that liquid solution

    is an ideal solution.

    Aa 1XatA.t.r.w A)S( = Aa =1

    Consider at T< )A(mT , ( pure )s(A + liquid ) coexist.

    ∴ )(A)s(A GG λο = = ο λ)(AG +RT ln Aa )(A.t.r.w λ

    ∴ οο λ )s(A)(A GG − =ο

    )A(mG∆ =-RT ln Aa

    assuming ideal liquid solution Aa = )(AX λ

    ∴ ο )A(mG∆ =-RT ln )(AX λ

    i.e. )(AX λ =exp( RT

    G )A(mο∆

    − )

    If ο )A(mG∆ = f (T) is known ⇒ )(AX λ =g (T) can be obtained.

    e.g. Bi-Cd phase diagram Figure 10.17

  • (3.1) Bi

    ×+×+=

    ×+==∆

    =

    −−

    )K/J(T101.21T1015.620C

    )K/J(T106.228.18C)J(10900H

    K544T

    253)(Bi,P

    3)s(Bi,P

    )Bi(m

    )Bi(m

    λ

    ο

    ∴ At T= )Bi(mT =544K, ο

    )Bi(mG∆ = 0 =ο

    )Bi(mH∆ - ⋅mTο

    )Bi(mS∆

    ∴ ο )Bi(mS∆ =)Bi(m

    )Bi(m

    T

    Hο∆=20.0 (J/K)

    ο )Bi(mG∆ (T) = ? T )Bi(mT≠

    ∴ Bi,PC∆ = )(Bi,PC λ - )s(Bi,PC =1.2-16.45310 −× T+21.1 25 T10 −×

    ο )Bi(mG∆ =ο

    544),Bi(mH∆ + ∫ ∆T

    544 Bi,PdTC -T( ο 544),Bi(mS∆ + ∫

    ∆T544

    Bi,P dTT

    C)

    =16560-23.79T-1.2T lnT+8.225 23 T10 −× -10.55× 15 T10 −

    ideal solution : -RT ln =)(BiX λο

    )Bi(mG∆

    ln =)(BiX λ 25

    4

    T

    10269.1T10892.9Tln144.0861.2

    T1992 ×

    +×−++− − … … (1)

    ∴ )(BiX λ (T) is line(i) in Fig. 10.17

  • (3.2) Cd

    =×+=

    =∆=∆=

    )K/J(7.29C)K/J(T103.122.22C

    K/J77.10S,J6400HK594T

    )(Cd,P

    3)s(Cd,P

    )Cd(m)Cd(m

    )d(m

    λ

    οο

    ∴ ο )Cd(mG∆ =ο

    )Cd(mH∆ + ∫ ∆T

    594 Cd,PdTC -T( ο )Cd(mS∆ + ∫

    ∆T594

    )Cd(,P dTT

    C)

    ο )Cd(mG∆ =-RT ln )(CdX λ ,

    ∗∗

    ilitylubsosolidneglectsolutionliquididealassume

    ∴ ln )(CdX λ = T495−-4.489+0.90 lnT- T10397.7 4−× … … (2)

    (3.3) ∴Eutectic temperature:

    =−∗=∗

    )T(gX1)2()T(fX)1(

    )(Bi

    )(Bi

    λ

    λ

    ∴ 1-f (T)=g (T) ⇒ T= eT =406 K

    Actual : eT =419K> ( ) .cale K406T =

    ∵Caculation is based on “ideal” solution.

    At T=419K ,

    =∆

    =∆

    J1898G:)2(from

    J2482G:)1(from

    )Cd(m

    )Bi(mο

    ο

    =∆=∆

    lnRTGlnRTG

    )Cd(m

    )Bi(mο

    Cd

    Bi

    aa

    Cd

    Bi

    aa

    580

    490

    .

    .

    =

    = , Actual eutectic composition is 45.0X,55.0X BiCd ==

    ==γ

    ==γ

    051

    091

    .Xa

    .Xa

    Cd

    CdCd

    Bi

    BiBi

    >1.0

    ∴ positive deviation from ideality ! ⇒ .)cal(ee TT >

    4. When positive deviation from ideal liquid solution increase , 0G XS > , ↑XSG ⇒ Ω > crΩ (1) Liquidus curve is not a monotonic. Max. and min. of curve

    forms.

  • (2) Liquid miscibility gap forms. ⇒ as conditions (1),(2) merge, monotectic system appears.

    * Assuming liquid solution is regular.

    ∴- ο )A(mG∆ =RT ln Aa =RT ln AX +RT ln Aγ

    ∵regular solution : 2A

    A

    )X1(

    ln

    γ=α =

    RTΩ

    ∴ ο )A(mG∆ =RT ln AX +RT α2

    A )X1( −

    ο )A(mG∆ =RT ln AX +Ω2

    A )X1( −

    e.g. )A(mT =2000K, ο

    )A(mH∆ =10KJ

    ∴- ο )A(mG∆ =10000+5T=RT ln AX +Ω2

    A )X1( −

    Liquidus curve )(AX λ for different Ω is shown in Figure 10.18

    Ω > crΩ =25.3KJ

    max. and min. appears⇒ part of curve has no physical meaning.

    At Ω = crΩ

    ==

    5.0XK1413T

    A

    cr

    (AdX

    dT)=0,

    2A

    2

    dXTd

    =0

  • Proof :

    ∵)(A

    )S(A

    A.t.r.wa

    A.t.r.w

    λ

    a = exp[

    RT

    G )A(mο∆

    ] = exp[RT

    H )A(mο∆

    ()A(m

    )A(m

    T

    TT −)]

    pure )S(A is standard state. ∴ Aa =1 w.r.t. )S(A

    ∴)l(Aa

    1=exp[ −

    RT

    H )A(mο

    )A(m

    )A(m

    RT

    Hο∆]

    ∴ln Aa =- RTH )A(m

    ο∆+

    )A(m

    )A(m

    RT

    Hο∆

    dT

    alnd A = 2)A(m

    RT

    Hο∆, ∴d ln Aa =

    A

    A

    ada

    = 2)A(m

    RT

    Hο∆dT

    AdX

    dT=

    A)A(m aHRT

    ⋅∆ ο2

    A

    A

    dXda⋅

    2

    2

    AdXTd

    =(A)A(m aH

    RT⋅∆ ο

    2

    A

    A

    dXda

    ⋅ )AdX

    dT-(

    ο)A(mH

    RT∆

    2

    A

    A

    dXda

    ⋅ ). 21

    Aa.(

    A

    A

    dXda

    )

    +A)A(m aH

    RT⋅∆ ο

    2

    . 2

    2

    A

    A

    dXad

    ∵ =Ω crΩ , T= crT , A

    A

    dXda

    =0 and 2

    2

    A

    A

    dXad

    =0

    ∴AdX

    dT=0 and

    2A

    2

    dXTd

    =0

    * When Ω =30KJ , for regular liquid solution

    crT = R2Ω

    =231.8

    30000×

    =1804K Figure 10.19.

  • Ex: Cs-Rb phase diagram, Figure 10.20

    =

    =

    C5.39T

    C4.28T

    )Rb(m

    )Cs(mο

    ο

    ,

    −=∆

    −=∆

    )J(T05.72200G

    )J(T95.62100G

    )Rb(m

    )Cs(mο

    ο

    Compare with theory assuming:

    =Ω ?,regular:solutionsolidideal:solutionliquid

    S

    Sol: From phase diagram : liquidus and solidus curves touch each other

    at

    ==

    C7.9T47.0XRb

    ο

    when

    <<

    m(Rb)

    m(Cs)

    TTTT

  • Standard states : ο )s(CsG =0 , ο

    )s(RbG =0

    Ω++=∆

    ∆⋅+∆⋅++=∆

    CsRbSCsCsRbRbM

    )s(

    )Cs(mCs)Rb(mRbCsCsRbRbM

    )(

    XX)XlnXXlnX(RTG

    GXGX)XlnXXlnX(RTG οολ

    at

    ====

    53.0X,47.0XK7.282C7.9T

    CsRb

    ο

    M)(G λ∆ =M

    )s(G∆ , ∴ sΩ =668(J)

    c.p. When T=20 Cο =293K

    common tangents to M)(G λ∆ and M

    )s(G∆

    ==

    13.0X10.0X

    )(Rb

    )s(Rb

    λ

    ==

    81.0X75.0X

    )s(Rb

    )(Rb λ

    Very good fitting!! Figure 10.21