chapter3 the z transform - university of victoria · introductioncont’d thez...

65
Chapter 3 The Z Transform 3.1 Introduction 3.2 Definition 3.3 Convergence Properties 3.4 The Z Transform as a Laurent Series 3.5 Inverse Z Transform 3.6 Theorems and Properties 3.7 Elementary Discrete-Time Signals Copyright c 2005- Andreas Antoniou Victoria, BC, Canada Email: [email protected] September 25, 2009 Frame # 1 Slide # 1 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Upload: lamkhanh

Post on 24-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Chapter 3The Z Transform

3.1 Introduction3.2 Definition

3.3 Convergence Properties3.4 The Z Transform as a Laurent Series

3.5 Inverse Z Transform3.6 Theorems and Properties

3.7 Elementary Discrete-Time Signals

Copyright c© 2005- Andreas AntoniouVictoria, BC, Canada

Email: [email protected]

September 25, 2009

Frame # 1 Slide # 1 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 2: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Introduction

� The Fourier series and Fourier transform can be used toobtain spectral representations for periodic and nonperiodiccontinuous-time signals, respectively (see Chap. 2).

Analogous spectral representations can be obtained fordiscrete-time signals by using the z transform.

Frame # 2 Slide # 2 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 3: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Introduction

� The Fourier series and Fourier transform can be used toobtain spectral representations for periodic and nonperiodiccontinuous-time signals, respectively (see Chap. 2).

Analogous spectral representations can be obtained fordiscrete-time signals by using the z transform.

� The Fourier transform will convert a real continuous-timesignal into a function of complex variable jω.

Similarly, the z transform will convert a real discrete-timesignal into a function of complex variable z .

Frame # 2 Slide # 3 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 4: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Introduction Cont’d

� The z transform, like the Fourier transform, comes along withan inverse transform, namely, the inverse z transform.

Consequently, a discrete-time signal can be readily recoveredfrom its z transform.

Frame # 3 Slide # 4 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 5: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Introduction Cont’d

� The z transform, like the Fourier transform, comes along withan inverse transform, namely, the inverse z transform.

Consequently, a discrete-time signal can be readily recoveredfrom its z transform.

� The availability of an inverse makes the z transform veryuseful for the representation of digital filters and discrete-timesystems in general.

Frame # 3 Slide # 5 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 6: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Introduction Cont’d

� The most basic representation of discrete-time systems is interms of difference equations (see Chap. 4) but through theuse of the z transform, difference equations can be reduced toalgebraic equations which are much easier to handle.

Frame # 4 Slide # 6 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 7: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Objectives

� Definition of Z Transform

� Convergence Properties

� The Z Transform as a Laurent series

� Inverse Z Transform

� Theorems and Properties

� Elementary Functions

� Examples

Frame # 5 Slide # 7 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 8: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

The Z Transform

� Consider a bounded discrete-time signal x(nT ) that satisfiesthe conditions

(i) x(nT ) = 0 for n < −N1

(ii) |x(nT )| ≤ K1 for − N1 ≤ n < N2

(iii) |x(nT )| ≤ K2rn for n ≥ N2

where N1 and N2 are positive integers and r is a positiveconstant.

Frame # 6 Slide # 8 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 9: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

The Z Transform Cont’d

· · ·(i) x(nT ) = 0 for n < −N1

(ii) |x(nT )| ≤ K1 for − N1 ≤ n < N2

(iii) |x(nT )| ≤ K2rn for n ≥ N2

(a)

nT

x(nT )

N2

K1

K1

K2rn

−K2rn

−N1

Frame # 7 Slide # 9 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 10: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

The Z Transform Cont’d

� The z transform of a discrete-time signal x(nT ) is defined as

X (z) =∞∑

n=−∞x(nT )z−n

for all z for which X (z) converges.

Frame # 8 Slide # 10 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 11: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

The Z Transform Cont’d

� Although the z transform of a signal x(nT ) is an infiniteseries, in practice it can be represented in terms of a rationalfunction as

X (z) =∞∑

n=−∞x(nT )z−n

=N(z)

D(z)=

∑Mi=0 aiz

M−i

zN +∑N

i=1 bizN−i

= H0

∏Mi=1(z − zi)∏Ni=1(z − pi )

where zi and pi are the zeros and poles of the z transform andH0 is a multiplier constant.

Frame # 9 Slide # 11 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 12: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

The Z Transform Cont’d

� Although the z transform of a signal x(nT ) is an infiniteseries, in practice it can be represented in terms of a rationalfunction as

X (z) =∞∑

n=−∞x(nT )z−n

=N(z)

D(z)=

∑Mi=0 aiz

M−i

zN +∑N

i=1 bizN−i

= H0

∏Mi=1(z − zi)∏Ni=1(z − pi )

where zi and pi are the zeros and poles of the z transform andH0 is a multiplier constant.

� In effect, z transforms can be represented by zero-pole plots.

Frame # 9 Slide # 12 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 13: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Example

The following z transform has the zero-pole plot shown.

X (z) =(z2 − 4)

z(z2 − 1)(z2 + 4)=

(z − 2)(z + 2)

z(z − 1)(z + 1)(z − j2)(z + j2)

j2

−2 −1 21

−j2

z plane

j Im z

Re z

Frame # 10 Slide # 13 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 14: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Theorem 3.1 Absolute Convergence

If

(i) x(nT ) = 0 for n < −N1

(ii) |x(nT )| ≤ K1 for − N1 ≤ n < N2

(iii) |x(nT )| ≤ K2rn for n ≥ N2

where N1 and N2 are positive constants and r is the smallest positiveconstant that will satisfy condition (iii), then the z transform of x(nT ),i.e.,

X (z) =∞∑

n=−∞x(nT )z−n

exists and converges absolutely if and only if

r < |z | < R∞ with R∞ → ∞

Frame # 11 Slide # 14 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 15: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Absolute Convergence Cont’d

z plane

( a ) ( b )

r

Region of convergence

nT

x(nT)

N2

K1

K1

K2rn

−K2rn

R∞

−N1

Frame # 12 Slide # 15 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 16: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Absolute Convergence Cont’d

The proofs of the Absolute Convergence Theorem and thetheorems that follow can be found in the textbook.

Frame # 13 Slide # 16 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 17: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

The Z Transform as a Laurent Series

� The Laurent series of a function X (z) about point z = aassumes the form

X (z) =∞∑

n=−∞an(z − a)−n

(See Appendix A.)

Frame # 14 Slide # 17 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 18: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

The Z Transform as a Laurent Series

� The Laurent series of a function X (z) about point z = aassumes the form

X (z) =∞∑

n=−∞an(z − a)−n

(See Appendix A.)

� The z transform is given by

X (z) =∞∑

n=−∞x(nT )z−n

If we compare the above two series for X (z), we conclude thatthe z transform is a Laurent series of X (z) about the origin,i.e., a = 0, with

an = x(nT )

Frame # 14 Slide # 18 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 19: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

The Z Transform as a Laurent Series Cont’d

� Since the z transform is a specific Laurent series, it followsthat it inherits all the properties of the Laurent series, whichare stated in the Laurent theorem as detailed in the slides thatfollow.

Frame # 15 Slide # 19 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 20: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Laurent Theorem

(a) If F (z) is an analytic and single-valued function on twoconcentric circles C1 and C2 with center a and in the annulusbetween them, then it can be represented by the Laurent series

F (z) =∞∑

n=−∞an(z − a)−n

where

an =1

2πj

∮ΓF (z)(z − a)n−1 dz

The contour of integration Γ is a closed contour in thecounterclockwise sense lying in the annulus between circles C1

and C2 and encircling the inner circle.

Frame # 16 Slide # 20 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 21: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Laurent Theorem Cont’d

z plane

a

(a)

C1

C2

Frame # 17 Slide # 21 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 22: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Laurent Theorem Cont’d

(b) The Laurent series converges and represents F (z) in the openannulus obtained by continuously increasing the radius of C2

and decreasing the radius of C1 until each of C1 and C2

reaches a point where F (z) is singular.

z plane

a

�C1

C2

(b)

Frame # 18 Slide # 22 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 23: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Laurent Theorem Cont’d

(c) A function F (z) can have several, possibly many, annuli ofconvergence about a given point z = a and for each one aLaurent series can be obtained.

aI

II

III

z plane

(c)

Frame # 19 Slide # 23 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 24: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Laurent Theorem Cont’d

(d) The Laurent series for a given annulus of convergence isunique.

aI

II

III

z plane

(c)

Frame # 20 Slide # 24 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 25: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Example

The function represented by the zero-pole plot at the left has threeunique Laurent series as shown at the right.

−j2

z plane

j2

−2 −1 1 2

(a)

Re z

jIm zz plane

III

II

Ia

Frame # 21 Slide # 25 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 26: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Inverse Z Transform

� The absolute-convergence theorem states that the ztransform, X (z), of a discrete-time signal x(nT ) satisfying theconditions

(i) x(nT ) = 0 for n < −N1

(ii) |x(nT )| ≤ K1 for − N1 ≤ n < N2

(iii) |x(nT )| ≤ K2rn for n ≥ N2

exists and converges absolutely if and only if

r < |z | < R with R → ∞

Frame # 22 Slide # 26 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 27: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Inverse Z Transform

� The Laurent theorem states that a function X (z) has as manydistinct Laurent series about the origin as there are annuli ofconvergence.

Frame # 23 Slide # 27 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 28: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Inverse Z Transform

� The Laurent theorem states that a function X (z) has as manydistinct Laurent series about the origin as there are annuli ofconvergence.

� One of these series converges in the outer annulus (i.e., thelargest one) which is defined as

R0 < |z | < R with R → ∞

where R0 is the radius of a circle passing through the mostdistant pole of X (z) from the origin.

Frame # 23 Slide # 28 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 29: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Inverse Z Transform Cont’d

Summarizing:

� From the absolute convergence theorem, the z transformconverges in the annulus

r < |z | < R with R → ∞

Frame # 24 Slide # 29 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 30: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Inverse Z Transform Cont’d

Summarizing:

� From the absolute convergence theorem, the z transformconverges in the annulus

r < |z | < R with R → ∞� From the Laurent theorem, there is a unique Laurent series ofX (z) that converges in the outer annulus of convergence

R0 < |z | < R with R → ∞

Frame # 24 Slide # 30 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 31: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Inverse Z Transform Cont’d

Summarizing:

� From the absolute convergence theorem, the z transformconverges in the annulus

r < |z | < R with R → ∞� From the Laurent theorem, there is a unique Laurent series ofX (z) that converges in the outer annulus of convergence

R0 < |z | < R with R → ∞� Therefore, the z transform of x(nT ) is the unique Laurentseries that converges in the outer annulus and, furthermore,r = R0.

Frame # 24 Slide # 31 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 32: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Inverse Z Transform Cont’d

� We conclude that signal x(nT ) can be obtained from its ztransform X (z) by finding the coefficients of the Laurentseries of X (z) that converges in the outer annulus.

Frame # 25 Slide # 32 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 33: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Inverse Z Transform Cont’d

� We conclude that signal x(nT ) can be obtained from its ztransform X (z) by finding the coefficients of the Laurentseries of X (z) that converges in the outer annulus.

� From the Laurent theorem, we have

x(nT ) =1

2πj

∮ΓX (z)zn−1 dz

where contour Γ encloses all the poles of X (z)zn−1.

Frame # 25 Slide # 33 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 34: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Inverse Z Transform Cont’d

� We conclude that signal x(nT ) can be obtained from its ztransform X (z) by finding the coefficients of the Laurentseries of X (z) that converges in the outer annulus.

� From the Laurent theorem, we have

x(nT ) =1

2πj

∮ΓX (z)zn−1 dz

where contour Γ encloses all the poles of X (z)zn−1.

� In DSP, this contour integral is said to be the inverse ztransform of X (z).

Frame # 25 Slide # 34 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 35: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Notation

� Like the Fourier transform and its inverse, the z transform andits inverse are often represented in terms of operator notationas

X (z) = Zx(nT ) and x(nT ) = Z−1X (z)

respectively.

Frame # 26 Slide # 35 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 36: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Z Transform Theorems

� The general properties of the z transform can be described interms of a small number of theorems, as detailed in the slidesthat follow.

Frame # 27 Slide # 36 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 37: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Z Transform Theorems

� The general properties of the z transform can be described interms of a small number of theorems, as detailed in the slidesthat follow.

� In these theorems

Zx(nT ) = X (z) Zx1(nT ) = X1(z) Zx2(nT ) = X2(z)

and a, b, w , and K represent constants which may becomplex.

Frame # 27 Slide # 37 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 38: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Theorem 3.3 Linearity

� The z transform of a linear combination of discrete-timesignals is given by

Z[ax1(nT ) + bx2(nT )] = aX1(z) + bX2(z)

Frame # 28 Slide # 38 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 39: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Theorem 3.3 Linearity

� The z transform of a linear combination of discrete-timesignals is given by

Z[ax1(nT ) + bx2(nT )] = aX1(z) + bX2(z)

� Similarly, the inverse z transform of a linear combination of ztransforms is given by

Z−1[aX1(z) + bX2(z)] = ax1(nT ) + bx2(nT )

Frame # 28 Slide # 39 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 40: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Theorem 3.4 Time Shifting

� For any positive or negative integer m,

Zx(nT +mT ) = zmX (z)

In effect, multiplying the z transform of a signal by a negativeor positive power of z will cause the signal to be delayed oradvanced by mT s.

Frame # 29 Slide # 40 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 41: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Theorem 3.5 Complex Scale Change

� For an arbitrary real or complex constant w

Z[w−nx(nT )] = X (wz)

Evidently, multiplying a discrete-time signal by w−n isequivalent to replacing z by wz in its z transform.

Similarly, multiplying a discrete-time signal by vn is equivalentto replacing z by z/v in its z transform.

Frame # 30 Slide # 41 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 42: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Theorem 3.6 Complex Differentiation

� The z transform of an arbitrary signal nT1x(nT ) is given by

Z[nT1x(nT )] = −T1zdX (z)

dz

Complex differentiation provides a simple way of obtaining thez transform of a discrete-time signal that can be expressed asa product nT1x(nT ).

Frame # 31 Slide # 42 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 43: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Theorem 3.7 Real Convolution

� The z transform of the real convolution summation of twosignals x1(kT ) and x2(nT ) is given by

Z∞∑

k=−∞x1(kT )x2(nT − kT ) = Z

∞∑k=−∞

x1(nT − kT )x2(kT )

= X1(z)X2(z)

The real convolution summation is used frequently for therepresentation of digital filters and discrete-time systems (seeChap. 4).

Frame # 32 Slide # 43 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 44: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Theorem 3.8 Initial-Value Theorem

� The initial value of a signal x(nT ) represented by a ztransform of the form

X (z) =N(z)

D(z)=

∑Mi=0 aiz

M−i∑Ni=0 biz

N−i

occurs atKT = (N −M)T

and its value at nT = KT is given by

x(KT ) = limz→∞[zKX (z)]

Frame # 33 Slide # 44 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 45: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Theorem 3.8 Initial-Value Theorem Cont’d

· · ·X (z) =

N(z)

D(z)=

∑Mi=0 aiz

M−i∑Ni=0 biz

N−i

� Corollary: If the degree of the numerator polynomial, N(z), ina z transform is equal to or less than the degree of thedenominator polynomial D(z), then we have

x(nT ) = 0 for n < 0

i.e., the signal is right-sided.

Frame # 34 Slide # 45 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 46: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Theorem 3.9 Final-Value Theorem

� The value of x(nT ) as n → ∞ is given by

x(∞) = limz→1

[(z − 1)X (z)]

The final-value theorem can be used to determine thesteady-state response of a discrete-time system.

Frame # 35 Slide # 46 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 47: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Theorem 3.10 Complex Convolution

� If the z transforms of two discrete-time signals x1(nT ) andx2(nT ) are available, then the z transform of their product,X3(z), can be obtained as

X3(z) = Z[x1(nT )x2(nT )] =1

2πj

∮Γ1

X1(v)X2

(zv

)v−1 dv

=1

2πj

∮Γ2

X1

(zv

)X2(v)v

−1 dv

where Γ1 (orΓ2) is a contour in the common region ofconvergence of X1(v) and X2(z/v) (or X1(z/v) and X2(v)).

Frame # 36 Slide # 47 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 48: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Theorem 3.10 Complex Convolution Cont’d

� The complex convolution theorem can be used to obtain the ztransform of a product of discrete-time signals whose ztransforms are available.

Frame # 37 Slide # 48 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 49: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Theorem 3.10 Complex Convolution Cont’d

� The complex convolution theorem can be used to obtain the ztransform of a product of discrete-time signals whose ztransforms are available.

� It is also the basis of the window method for the design ofnonrecursive digital filters (see Chap. 9).

Frame # 37 Slide # 49 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 50: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Theorem 3.11 Parseval’s Discrete-Time Formula

� If X (z) is the z transform of a discrete-time signal x(nT ),then ∞∑

n=−∞|x(nT )|2 =

1

ωs

∫ ωs

0|X (e jωT )|2 dω

where ωs = 2π/T .

Frame # 38 Slide # 50 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 51: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Theorem 3.11 Parseval’s Discrete-Time Formula

� If X (z) is the z transform of a discrete-time signal x(nT ),then ∞∑

n=−∞|x(nT )|2 =

1

ωs

∫ ωs

0|X (e jωT )|2 dω

where ωs = 2π/T .

� Parseval’s formula is often used to solve a problem known asscaling which is associated with the design of recursive digitalfilters in hardware form (see Chap. 14).

Frame # 38 Slide # 51 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 52: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Theorem 3.11 Parseval’s Discrete-Time Formula Cont’d

� If T is normalized to 1 s, Parceval’s formula simplifies to:

∞∑n=−∞

|x(nT )|2 =1

∫ 2π

0|X (e jωT )|2 dω

Frame # 39 Slide # 52 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 53: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Elementary Discrete-Time Signals

Function Definition

Unit impulse δ(nT ) =

{1 for n = 0

0 for n �= 0

Unit step u(nT ) =

{1 for n ≥ 0

0 for n < 0

Unit ramp r(nT ) =

{nT for n ≥ 0

0 for n < 0

Exponential u(nT )e αnT , (α > 0)

Exponential u(nT )e αnT , (α < 0)

Sinusoid u(nT ) sinωnT

Frame # 40 Slide # 53 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 54: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Elementary Discrete-Time Signals Cont’d

nT

1.0

0 nT

1.0

0

(a) (b)

nT

4T

8T

nT

1.0

0

(c) (d)

nT

1.0

0 nT

1.0

0

(e) ( f )

(a) Unit impulse, (b) unit step, (c) unit ramp, (d) increasingexponential (e) decreasing exponential, (c) sinusoid.

Frame # 41 Slide # 54 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 55: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Examples

Find the z transforms of the following signals:

(a) unit-impulse δ(nT )

(b) unit-step u(nT )

(c) delayed unit-step u(nT − kT )K

(d) signal u(nT )Kwn

(e) exponential signal u(nT )e−αnT

(f ) unit-ramp r(nT )

(g) sinusoidal signal u(nT ) sinωnT

Frame # 42 Slide # 55 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 56: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Examples

Solutions

(a) From the definitions of the z transform and δ(nT ), we have

Zδ(nT ) = δ(0) + δ(T )z−1 + δ(2T )z−2 + · · · = 1

Frame # 43 Slide # 56 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 57: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Examples

Solutions

(a) From the definitions of the z transform and δ(nT ), we have

Zδ(nT ) = δ(0) + δ(T )z−1 + δ(2T )z−2 + · · · = 1

(b) As in part (a)

Zu(nT ) = u(0) + u(T )z−1 + u(2T )z−2 + · · ·= 1 + z−1 + z−2 + · · · = (1− z−1)−1

=z

z − 1

Frame # 43 Slide # 57 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 58: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Examples

Solutions

(a) From the definitions of the z transform and δ(nT ), we have

Zδ(nT ) = δ(0) + δ(T )z−1 + δ(2T )z−2 + · · · = 1

(b) As in part (a)

Zu(nT ) = u(0) + u(T )z−1 + u(2T )z−2 + · · ·= 1 + z−1 + z−2 + · · · = (1− z−1)−1

=z

z − 1

(c) From the time-shifting theorem (Theorem 3.4) and part (b),we have

Z[u(nT − kT )K ] = Kz−kZu(nT ) =Kz−(k−1)

z − 1

Frame # 43 Slide # 58 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 59: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Examples Cont’d

(d) From the complex-scale-change theorem (Theorem 3.5) andpart (b), we get

Z[u(nT )Kwn] = KZ[(

1

w

)−n

u(nT )

]

= KZu(nT )|z→z/w =Kz

z − w

Frame # 44 Slide # 59 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 60: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Examples Cont’d

(d) From the complex-scale-change theorem (Theorem 3.5) andpart (b), we get

Z[u(nT )Kwn] = KZ[(

1

w

)−n

u(nT )

]

= KZu(nT )|z→z/w =Kz

z − w

(e) By letting K = 1 and w = e−αT in part (d), we obtain

Z[u(nT )e−αnT ] =z

z − e−αT

Frame # 44 Slide # 60 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 61: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Examples Cont’d

(f ) From the complex-differentiation theorem (Theorem 3.6) andpart (b), we have

Zr(nT ) = Z[nTu(nT )] = −Tzd

dz[Zu(nT )]

= −Tzd

dz

[z

(z − 1)

]=

Tz

(z − 1)2

Frame # 45 Slide # 61 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 62: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Examples Cont’d

(g) From part (e), we deduce

Z[u(nT ) sinωnT ] = Z[u(nT )

2j

(e jωnT − e−jωnT

)]

=1

2jZ[u(nT )e jωnT ]− 1

2jZ[

u(nT )e−jωnT]

=1

2j

(z

z − e jωT− z

z − e−jωT

)

=z sinωT

z2 − 2z cosωT + 1

Frame # 46 Slide # 62 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 63: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Standard Z transforms

x(nT ) X (z)

δ(nT ) 1

u(nT )z

z − 1

u(nT − kT )KKz−(k−1)

z − 1

u(nT )Kwn Kz

z − w

u(nT − kT )Kwn−1 K (z/w)−(k−1)

z − w

u(nT )e−αnT z

z − e−αT

r(nT )Tz

(z − 1)2

Frame # 47 Slide # 63 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 64: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

Standard Z transforms Cont’d

x(nT ) X (z)

r(nT )e−αnT Te−αT z

(z − e−αT )2

u(nT ) sinωnTz sinωT

z2 − 2z cosωT + 1

u(nT ) cos ωnTz(z − cosωT )

z2 − 2z cosωT + 1

u(nT )e−αnT sinωnTze−αT sinωT

z2 − 2ze−αT cosωT + e−2αT

u(nT )e−αnT cosωnTz(z − e−αT cosωT )

z2 − 2ze−αT cosωT + e−2αT

Frame # 48 Slide # 64 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7

Page 65: Chapter3 The Z Transform - University of Victoria · IntroductionCont’d Thez transform,liketheFouriertransform,comesalongwith aninversetransform,namely,theinversez transform. Consequently,adiscrete

This slide concludes the presentation.

Thank you for your attention.

Frame # 49 Slide # 65 A. Antoniou Digital Signal Processing – Secs. 3.1 to 3.7