chapter(7a:chemicalkinetics…scienide2.uwaterloo.ca/.../ch_7_chemical_kinetics_general.pdf ·...

18
Winter 2015 Chem 350: Statistical Mechanics and Chemical Kinetics Chapter 7a: Chemical Kinetics, Steady State and PreEquilibrium 77 Chapter 7a: Chemical Kinetics, Steady State and Preequilibrium ............................................................ 77 Chemical Kinetics ....................................................................................................................................... 77 Experimental Determination of reaction rates ...................................................................................... 79 Nonreversible elementary reactions .................................................................................................... 79 Reversible reactions .............................................................................................................................. 83 General discussion of kinetics Elementary reactions ............................................................................ 84 Temperature dependence ..................................................................................................................... 88 Steady State and Preequilibrium Approximation ..................................................................................... 90 a) Steady State Approximation ( f 2 fast) ................................................................................................ 91 b) Preequilibrium ( 2 f slow) .................................................................................................................. 92 Chapter 7a: Chemical Kinetics, Steady State and Preequilibrium Chemical Kinetics Up to now we mainly discussed thermodynamical properties and their calculation using principles of statistical mechanics. This tells us about properties at equilibrium. This does not tell us anything about how fast on can reach equilibrium. In the previous section we discussed tranition state theory. This is really part of chemical kinetics. Reaction rates are the topic of chemical kinetics. Physical kinetics relates to eg. Transport properties (diffusion, heat transport, charge transport) Chemical kinetics: from an experimental point of view, one measures concentration profiles, concentrations of reactants, products and intermediates as a function of time. Concentration profiles will depend on ! Initial concentrations ! , PT ! Presence of a catalyst/enzyme ! Other molecular species in the reaction vessel A major interest in studying kinetics is to understand a reaction mechanism. If this is understood, one can start thinking about how to make it faster or design a catalyst etc. Other examples where one wishes to understand mechanism and perhaps control kinetics: o Time release capsules (drug delivery) o Flow chemistry, where one continuously supplies new reagents at specific times o Processes in the atmosphere Time scales can be vastly different for various phases of a complex reaction In an initial discussion, consider a single reaction (usually quite unrealistic)

Upload: duongbao

Post on 05-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

77  

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐equilibrium  ............................................................  77  Chemical  Kinetics  .......................................................................................................................................  77  

Experimental  Determination  of  reaction  rates  ......................................................................................  79  Non-­‐reversible  elementary  reactions  ....................................................................................................  79  Reversible  reactions  ..............................................................................................................................  83  General  discussion  of  kinetics  Elementary  reactions  ............................................................................  84  Temperature  dependence  .....................................................................................................................  88  

Steady  State  and  Pre-­‐equilibrium  Approximation  .....................................................................................  90  

a)  Steady  State  Approximation  ( f2  fast)  ................................................................................................  91  

b)  Pre-­‐equilibrium  ( 2f slow)  ..................................................................................................................  92  

 Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐equilibrium    Chemical  Kinetics    

Up  to  now  we  mainly  discussed  thermodynamical  properties  and  their  calculation  using  principles  of  statistical  mechanics.  This  tells  us  about  properties  at  equilibrium.  This  does  not  tell  us  anything  about  how  fast  on  can  reach  equilibrium.    In  the  previous  section  we  discussed  tranition  state  theory.  This  is  really  part  of  chemical  kinetics.    Reaction  rates  are  the  topic  of  chemical  kinetics.  Physical  kinetics  relates  to  eg.  Transport  properties  (diffusion,  heat  transport,  charge  transport)    Chemical  kinetics:  from  an  experimental  point  of  view,  one  measures  concentration  profiles,  concentrations  of  reactants,  products  and  intermediates  as  a  function  of  time.    Concentration  profiles  will  depend  on  

! Initial  concentrations  ! ,P T  ! Presence  of  a  catalyst/enzyme  ! Other  molecular  species  in  the  reaction  vessel  

 A  major  interest  in  studying  kinetics  is  to  understand  a  reaction  mechanism.  If  this  is  understood,  one  can  start  thinking  about  how  to  make  it  faster  or  design  a  catalyst  etc.  Other  examples  where  one  wishes  to  understand  mechanism  and  perhaps  control  kinetics:    

o Time  release  capsules  (drug  delivery)  o Flow  chemistry,  where  one  continuously  supplies  new  reagents  at  specific  

times  o Processes  in  the  atmosphere  

Time  scales  can  be  vastly  different  for  various  phases  of  a  complex  reaction       In  an  initial  discussion,  consider  a  single  reaction  (usually  quite  unrealistic)          

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

78  

          A+ 2B 3C  

Rate  of  consumption  of   : AdnAdt

− ,   : BdnBdt

− ,     : CdnCdt

+  

  These  rates  are  all  related,  as  the  reaction  proceeds  in  unison      In  general  we  can  write             o

i i in n ξυ= +     ξ :  extent  of  reaction  

iυ =  +ve  stoichiometric  coefficient  for  products,  -­‐ve  for  reactants  

       

ii

dn ddt dt

ξυ=              or            1 i

i

dn ddt dt

ξυ

=  

  For  the  above  example  

       1 12 3

CA B dndn dndt dt dt

− = − =  

    For  reactions  in  solution  or  at  constant  volume  (gases),  we  would  use  concentrations  

          [ ] AnAV

=     etc.    

    For  a  general  reaction  we  can  often  write  

       [ ] [ ] [ ] [ ]d

v rate k A B Cdt

α β γξ= = =   (power  law)  

      , ,α β γ :  are  the  index  of  each  component  (non-­‐integer  possible)         α β γ+ + :  overall  order  of  reaction  

      Rate  is   1 1molL s− − ,  depends  on  time:  [ ] [ ] [ ], ,A B C time  

      k :  is  constant  (rate  constant)  The  symbol  k  is  used  for  everything  in  this  field!         Examples:   2 5 2 22 4N O NO O→ +  

        [ ]2 5v k N O= :  first  order  reaction  

            Or  :     ( ) ( ) ( )2 2 2g g gH Br HBr+ →  

       [ ][ ]

[ ] [ ]1/2

2 2

2 'k H Br

vBr k Hbr

=+

 

 The  latter  shows  that  expressions  for  reaction  rates  can  be  quite  complicated,  not  even  a  power  law!  

 The  origin  of  reaction  rate  formulas  lies  in  the  mechanism  of  the  reaction.  At  the  heart  of  a  reaction  mechanism  is  a  set  of  elementary  reactions.  If  elementary  reactions  are  known,  one  can  solve  a  set  of  differential  equations  to  get  reaction  profiles.  The  ‘formulas’  for  reaction  rates  are  a  fit  to  the  ‘true’  reaction  profiles  

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

79  

 I  will  discuss  here  the  general  procedure  to  set  up  the  differential  equations.  The  key  ingredients  are  the  elementary  reactions.  Once  the  differential  equations  are  established,  they  can  simply  be  integrated  using  a  computer  (eg.  Using  Matlab)    One  can  further  analyze  the  reaction  profiles  and  condense  the  information.  This  aspect  will  be  considered  later  on.  

   Experimental  Determination  of  reaction  rates       The  basic  principles  involve:  

o Control   P and  T  o Initiate  reaction  at  time   ot t= ,  by  mixing  known  amounts  of  reactants  o Monitor  reactants,  products  and  intermediates  as  a  function  of  time  

 How  do  you  monitor?  

a) Chemical  methods:  take  a  small  sample  at  various  times.  Stop  reaction  in  sample  (eg.  Put  in  ice,  rapidly  cool),  then  analyze  sample.  An  old  technique,  not  very  accurate  

b) Physical  methods:  monitor  properties  of  the  system,  or  better,  of  individual  molecular  species.  Use  properties  with  known  dependence  on  concentration.  Primary  method  is  spectroscopy  (all  kinds).  Monitor  specific  transition  in  molecules  (eg.  Laser  induced  fluorescence)  

! Very  fast  (femtoseconds   1510 s− )  ! Non-­‐invasive  (use  low  power  lasers  etc.)  ! The  intensity  (e.g.  of  fluorescence)  is  a  measure  of  concentration.  

c) Combine  spectroscopy  with  stop-­‐flow  techniques,  easy  way  to  initiate  a  reaction  d) Perturbation-­‐Relaxation:  Kinetics  close  to  equilibrium.    

o Reach  equilibrium  at   1T T= .  Next  change  T to   2T  (perturbation).  Monitor  how  system  relaxes  to  new  equilibrium  

 I  will  not  say  more  about  experimental  techniques  here.  Let  us  discuss  basic  principles.      We  will  first  discuss  some  elementary  examples  that  can  be  solved  by  hand.  Things  get  complicated  rapidly.  To  do  kinetics,  one  really  needs  computers  to  do  simulations.  We  will  get  there.  But  first  let’s  set  the  stage.  

   Non-­‐reversible  elementary  reactions    

a) First  order  (simplest,  exponential  decay)               A→k

P    [ ] [ ]d A

k Adt

= −   differential  rate  equation  

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

80  

( ) [ ]0 oA t A= =⎡ ⎤⎣ ⎦     initial  concentration  

     

       [ ]dA kdtA

= −  

The  above  expression  can  be  integrated    

       [ ][ ][ ]

( )

0o

A t t

A

d Akdt

A⎡ ⎤⎣ ⎦ = −∫ ∫  

       ( )

[ ]lno

A tkt

A⎡ ⎤⎣ ⎦ = −  

        ( ) [ ] ktoA t A e−=⎡ ⎤⎣ ⎦      

   Exponential  decay  of  [ ]A ,  exponential  growth  of  [ ]P  

       

The  above  expression  is  called  the  integrated  rate  law.  It  provides  a  convenient  function  that  shows  how  concentration  depends  on  time    Let  us  consider  the  integration  of  rate  laws  of  the  above  type  in  a  bit  more  mathematical  detail.  Let  us  consider  the  differential  rate  equation  

d A(t)⎡⎣ ⎤⎦dt

= −k f ( A(t)⎡⎣ ⎤⎦)   differential  rate  equation  

where  f  is  some  function  while  

A t = t0 = 0( )⎡⎣ ⎤⎦ = Ao⎡⎣ ⎤⎦     initial  concentration  

 Then  we  can  integrate  

 

1f ([A(t)])t0

t1

∫d[A(t)]

dtdt = −k dt

t0

t1

∫  

If  we  now  make  the  substitution  

u = [A(t)]; du = d[A(t)]

dtdt,u0 = [A(t0 )]; u1 = [A(t1)];  

The  integral  looks  like  

 

1f (u)u(t0 )

u(t1)

∫ du = −k(t1 − t0 )  

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

81  

or  substituting  back  u  by  A,  and  setting   t0 = 0, t1 = t    

   

1f ([A])[ A(t=0)]

[ A(t )]

∫ d[A]= −k(t − 0) = −kt  

This  is  the  general  equation  we  can  use  when  discussing  single  reactions.    Example  18.4  in  Reid  and  Engel  

An  interesting  example  of  exponential  decay  is  the  determination  of  the  age  of  fossils  by  monitoring  decay  of   14C .  This  is  a  very  slow  process  ( 12 13.81 10k s− −= ⋅ )  

Living  cells  exchange   14C  with  the  environment,  which  has  a  constant   14C⎡ ⎤⎣ ⎦ from  cosmic  rays  

(outer  space).  

The  environment  rate  is           −

d 14C⎡⎣ ⎤⎦dt

= k 14C⎡⎣ ⎤⎦ = 15.3 events / minute  

Then          

14 14

14 14

2.415.3

fossil fossil

o o

d C dt k C

d C dt k C

⎡ ⎤ ⎡ ⎤− ⎣ ⎦ ⎣ ⎦= =⎡ ⎤ ⎡ ⎤− ⎣ ⎦ ⎣ ⎦

     (2.4  is  supposedly  measured)    

 14 14 kt

fossil oC C e−⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  

    →using   12 13.81 10k s− −= ⋅  we  obtain   114.86 10t s= ⋅ =  15  400  years    

This  is  how  carbon  dating  works.  The  idea  is  that   14C⎡ ⎤⎣ ⎦  is  constant  on  the  surface  of  the  Earth  over  long  periods  of  time  (short  on  astronomical  timescales)  is  crucial  to  the  argument.  The  Earth  takes  up   14C⎡ ⎤⎣ ⎦  from  outer  space.  

 I  will  discuss  more  examples  of  increasing  complexity.  Setting  up  the  differential  rate  equation  is  easy.  Getting  the  integrated  rate  expression  is  tedious,  and  can  only  be  done  (without  being  a  mathematician)  for  simple  cases.  

b) Second  order  –  simplest         2k

A P→  

− 1

2d A⎡⎣ ⎤⎦

dt= k A⎡⎣ ⎤⎦

2          →      

[ ][ ]2

2d A

kdtA

−=  

[ ][ ][ ]

( )2 2

o

A t

A

d Akt

A

⎡ ⎤⎣ ⎦− =∫  

( ) [ ]1 1 2

o

ktAA t

− =⎡ ⎤⎣ ⎦

  or    ( ) [ ]1 1 2

o

ktAA t

= +⎡ ⎤⎣ ⎦

 

 

Plot  ( )1A t⎡ ⎤⎣ ⎦

 vs   t  yields  a  straight  line,  slope  =   2k  

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

82  

 

c) Second  order  –  more  complicated  k

A B P+ →    

[ ] [ ]oA A x= −     P x=  

[ ] [ ]oB B x= −  

 [ ] [ ][ ] [ ]( ) [ ]( )o o

d A dx k A B k A x B xdt dt

− = = = − −  

[ ]( ) [ ]( )( )

0

x t

xo o

dx ktA x B x=

=− −∫  

    Difficult  integral,  how  do  you  do  it?  

     

CAo⎡⎣ ⎤⎦ − x( ) +

DBo⎡⎣ ⎤⎦ − x( ) =

1Ao⎡⎣ ⎤⎦ − x( ) Bo⎡⎣ ⎤⎦ − x( )  

  Solve  for  the  unknown  constants  C  and  D,  multiply  both  sides  by    

Ao⎡⎣ ⎤⎦ − x( ) Bo⎡⎣ ⎤⎦ − x( ), →  

        [ ]( ) [ ]( ) 1o oC B x D A x− + − =  

        ( ) 0x C D− + =   D C= −  

      [ ] [ ]( ) 1o oC B A− =    →  [ ] [ ]( )

1

o o

CB A

=−

 

 

     [ ] [ ]( ) [ ] [ ]

( )

0

1 1 1x t

xo oo o

dx ktA x B xB A =

⎛ ⎞− =⎜ ⎟⎜ ⎟− −− ⎝ ⎠

∫  

     [ ] [ ]( ) [ ]( ) [ ]( ) ( )

0

1 ln lnx t

o o xo o

B x A x ktB A =

⎡ ⎤− − − =⎣ ⎦−  

     [ ] [ ]( )

[ ][ ]

[ ][ ]

1 ln ln o

oo o

B Bkt

A AB A

⎡ ⎤⎛ ⎞ ⎛ ⎞− =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

     

ln

B⎡⎣ ⎤⎦A⎡⎣ ⎤⎦

⎝⎜

⎠⎟ = ln

Bo⎡⎣ ⎤⎦Ao⎡⎣ ⎤⎦

⎝⎜

⎠⎟ + Bo − Ao( )kt  

    If   o oB A= ,  the  analysis  is  not  correct.  For  that  case    ( ) [ ]1 1

o

ktAA t

= +⎡ ⎤⎣ ⎦

 

 Differential  equations  quickly  get  complicated.  Numerical  solutions  can  always  be  obtained  (Matlab!)  

 Half-­‐life:  

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

83  

 Instead  of  rate  constants  one  may  speak  of  half-­‐life.  In  my  opinion  this  is  most  useful  in  the  context  of  first-­‐order  exponential  decay.  By  definition,  the  half-­‐life  is  the  time  needed  for  half  of  the  reactant  to  disappear.  For  first  order  reactions  it  gives  a  simple  relation  between  halftime  and  rate  constant:  

         [ ][ ]

2ln o

o

Ak

Aτ− =  

         ln 2k

τ =        in  seconds  

 Reversible  reactions    

Up  to  now,  we  only  considered  reactions  that  only  go  one  way  towards  the  products.  In  reality  all  reactions  are  reversible  in  principle.  This  is  how  one  obtains  chemical  equilibrium.  Let  me  discuss  the  simplest  example.  It  will  be  clear  quickly  that  we  have  to  resort  to  numerical  methods.  

 

First  order  reversible  reaction     A

b

f

B  

In  these  notes  I  use   f  for  forward  rates  constants  and  b for  backward  rate  constants.     The  differential  rate  laws  are  given  by  

       [ ] [ ] [ ]d A

b B f Adt

= −  

       [ ] [ ] [ ]d B

f A b Bdt

= −  

       [ ] [ ] 0d A d Bdt dt

+ =  

      [ ] [ ]( ) 0d A Bdt

+ =   A⎡⎣ ⎤⎦ + B⎡⎣ ⎤⎦ = 2Co       2Co :(some  initial  

concentration.  The  factor  of  2  is  for  convenience  below.)    

  At  equilibrium  [ ] 0d Adt

=        →     eq eqb B f A⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  

     eq

eqeq

B fKbA

⎡ ⎤⎣ ⎦ = =⎡ ⎤⎣ ⎦

  eqf K b=  

This  shows  that  the  forward  and  backward  rate  constant  are  related  by  the  thermodynamic  equilibrium  constant.  Kinetics  should  be  such  that  in  limit  of  large   t ,  equilibrium  is  reached.    Solving  the  differential  equation         [ ] oB C x= +  

      [ ] oA C x= −  

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

84  

   [ ] [ ] [ ]d B dx f A b Bdt dt

= = −  

      [ ] [ ]o of C x b C x= − − +  

( ) ( )of b C f b x= − − +  

 

( ) ( )o

dx dtf b C f b x

=− − +

 

( )( )

( )o

dx f b dtf b

x Cf b

= − +−

−+

 

( )( )

( )

( )

( )0

lnx t

o

x

f bx C f b t

f b⎛ ⎞−

− = − +⎜ ⎟⎜ ⎟+⎝ ⎠  

( ) ( )f b to o o

f b f bx t C x C ef b f b

− +⎛ ⎞⎛ ⎞ ⎛ ⎞− −= + −⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠  

As   t→∞ ,   ( ) of bx t Cf b

⎛ ⎞−= ⎜ ⎟+⎝ ⎠  

    Hence  as   t→∞  

       [ ][ ]

1221

oo

eqo

o

f bCB f bC x f f KA C x b bf bC

f b

⎛ ⎞−+⎜ ⎟++ ⎝ ⎠= = = = =− ⎛ ⎞−−⎜ ⎟+⎝ ⎠

 

It  is  seen  that   ( )x t  shows  exponential  decay  to  equilibrium  value,  but  details  are  cumbersome.  

Interestingly  the  rate  of  reaching  of  equilibrium  depends  on  (f+b).       The  decay  happens  as  the  sum  of  the  forward  and  backward  rates.       To  check  and  explore  formulas,  Matlab  might  be  most  appropriate.      General  discussion  of  kinetics  Elementary  reactions    

An  elementary  reaction  is  a  unimolecular  or  bimolecular  reaction  (higher  order  is  not  important.  They  do  not  contribute  to  the  rate).  Most  importantly  they  have  a  differential  rate  law  that  follows  stoichiometry.    Unimolecular:           Bimolecular:       A B           2A C  

      A 2B           2A C + D         A B +C           A+ B C  

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

85  

                  A+ B C + D       All  of  these  reactions  can  be  expressed  as    

 

aA+ bB cC + dD           , , ,a b c d :  all  integers  (0  also  possible)  

      R = dξ

dt= +k f A⎡⎣ ⎤⎦

aB⎡⎣ ⎤⎦

b− kb C⎡⎣ ⎤⎦

cD⎡⎣ ⎤⎦

d  

    fk  and   bk  are  the  rate  constants  for  the  forward  and  backward  reactions.    I  will  use  R  

to  denote  the  rate  of  the  reaction.    

From  thermodynamics  we  can  get  a  relation  between   fk  and   bk  .  At  equilibrium  the  rate  is  0,  

or  the  forward  and  backward  rates  are  equal.    

     c d a b

b eq eq f eq eqk C D k A B⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

       Or  

c d

eq eq feqa b

beq eq

C D kK

kA B

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ = =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

              f b eqk k K= ,  as  seen  before    

 From  thermo,  at  a  given   ,P T    

      ( )ln ,eq RRT K G P T= −Δ  

   We  can  get   eqK  from   RGΔ .  There  is  lots  of  experimental  data  to  calculate  this.  

 If  one  knows   fk ,   bk and  initial  concentrations,  one  can  simply  integrate      

   

d A⎡⎣ ⎤⎦dt

= −aR = −a k f A⎡⎣ ⎤⎦a

B⎡⎣ ⎤⎦b− kb C⎡⎣ ⎤⎦

cD⎡⎣ ⎤⎦

d⎡⎣⎢

⎤⎦⎥  

   

d B⎡⎣ ⎤⎦dt

= −bR = −b k f A⎡⎣ ⎤⎦a

B⎡⎣ ⎤⎦b− kb C⎡⎣ ⎤⎦

cD⎡⎣ ⎤⎦

d⎡⎣⎢

⎤⎦⎥  

   

d C⎡⎣ ⎤⎦dt

= +cR = +c k f A⎡⎣ ⎤⎦a

B⎡⎣ ⎤⎦b− kb C⎡⎣ ⎤⎦

cD⎡⎣ ⎤⎦

d⎡⎣⎢

⎤⎦⎥  

   

d D⎡⎣ ⎤⎦dt

= +dR = +d k f A⎡⎣ ⎤⎦a

B⎡⎣ ⎤⎦b− kb C⎡⎣ ⎤⎦

cD⎡⎣ ⎤⎦

d⎡⎣⎢

⎤⎦⎥  

      [ ] [ ] [ ] [ ], , ,o o o oA B C D  

 This  kind  of  first  order  differential  equations  are  easy  to  solve  on  a  computer    

 Let  us  now  consider  that  we  have  a  number  of  competing  elementary  reactions.  This  is  what  defines  a  reaction  mechanism.  The  key  is  to  derive  a  set  of  coupled  differential  equations.  The  rest  can  be  done  by  computer.    Let  me  proceed  through  an  example.  It  concerns  a  mixture  of   2H  and   2Br  reacting  to  HBr  

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

86  

 Set  of  elementary  reactions  (reaction  mechanism):  

1) Br2 2Br       R1 = f1 Br2⎡⎣ ⎤⎦ − b1 Br⎡⎣ ⎤⎦2  

2) H2 2H       R2 = f2 H2⎡⎣ ⎤⎦ − b2 H⎡⎣ ⎤⎦2  

3) Br + H2 HBr + H     R3 = f3 Br⎡⎣ ⎤⎦ H2⎡⎣ ⎤⎦ − b3 H⎡⎣ ⎤⎦ HBr⎡⎣ ⎤⎦  

4) H + Br2 HBr + Br     R4 = f4 H⎡⎣ ⎤⎦ Br2⎡⎣ ⎤⎦ − b4 Br⎡⎣ ⎤⎦ HBr⎡⎣ ⎤⎦  

5) H + Br HBr       R5 = f5 H⎡⎣ ⎤⎦ Br⎡⎣ ⎤⎦ − b5 HBr⎡⎣ ⎤⎦    

Using  the  expression  for  the  rate  of  each  reaction,  we  can  write:  

   

d Br2⎡⎣ ⎤⎦dt

= −R1 − R4  

d Br⎡⎣ ⎤⎦dt

= 2R1 − R3 + R4 − R5  

     

d H2⎡⎣ ⎤⎦dt

= −R2 − R3  

d H⎡⎣ ⎤⎦dt

= 2R2 + R3 − R4 − R5  

     

d HBr⎡⎣ ⎤⎦dt

= R3 + R4 + R5  

     Setting  up  the  rate  equations  given  a  reaction  mechanism  (or  set  of  elementary  reactions)  is  a  favorite  exam  question.  You  can  check  for  possible  errors  by  checking  the  so-­‐called  mass-­‐balance.  Atoms  are  conserved  in  chemical  reactions,  and  so  we  can  enumerate  the  total  Br  concentration  and  H  concentration  (or  any  other  atom  species  in  a  reaction).  For  the  above,  we  get:  

   

[Br]total = [Br]+ 2[Br2]+ [HBr]= [Br(t = 0)]total = constant

d[Br]total

dt= 0 = d[Br]

dt+ 2

d[Br2]dt

+ d[HBr]dt

= (2R1 − R3 + R4 − R5)+ 2(−R1 − R4 )+ (R3 + R4 + R5)

= 0 indeed!

 

Likewise:  

   

[H ]total = [H ]+ 2[H2]+ [HBr]= [H (t = 0)]total = constant

d[H ]total

dt= 0 = d[H ]

dt+ 2

d[H2]dt

+ d[HBr]dt

= (2R2 + R3 − R4 − R5)+ 2(−R2 − R3)+ (R3 + R4 + R5)

= 0

 

This  is  a  good  check  (I  would  ask  for  this  check  on  the  exam).  It  is  also  a  useful  check  when  coding  a  reaction  mechanism  in  matlab.    If  we  supply  initial  concentrations  for  each  of  the  5  species  in  the  reaction  mixture:  

[ ] [ ] [ ] [ ] [ ]2 2, , , ,Br H Br H HBr  and  we  supply  the  values  for  the  forward  and  backward  rate  

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

87  

constants ,i if b ,  it  is  a  straightforward  matter  to  solve  the  differential  equations.  (Matlab).  We  

can  also  note  that  for  each  elementary  reaction  we  have  a  thermodynamic  relation   fi = Keq,ibi .    

 However,  from  an  experimental  point  of  view  it  is  not  realistic  to  provide  the  initial  concentrations  for   [Br2]  and   [Br] .  You  cannot  buy  bottle  that  has  only   [Br2] .    There  will  always  be  a  chemical  equilibrium  between  the  two  that  is  determined  by  the  temperature  and  pressure  in  the  vessel  that  contains  the  bromine.    

  Hence  

[Br]2

[Br2]= Keq (T , P), [Br]+ 2[Br2]= [Br]total  

One  can  simulate  this  nicely  in  a  matlab  program  by  using  pre-­‐equilibration.  Hence  one  can  start  with  pure   [Br2]  and  run  the  reaction  with  only  ‘Br’  present  for  a  long  enough  time  such  that  equilibrium  is  reached  (at  particular  T,P,  or  for  particular  f  and  b  rate  constants).  The  concentrations  at  the  end  of  the  ‘pre-­‐equilibrium’  simulation  provide  the  correct  initial  concentrations.  One  can  do  the  same  thing  for  establishing  the  initial  [H2],  [H]  concentrations.    The  nice  part  is  that  one  can  always  run  the  same  full  kinetic  model.  Only  the  reactions  evolving  the  pure  species  will  occur.  Let  me  give  one  more  example.  Say  we  want  to  run  a  reaction  involving  oxygen  (a  combustion  reaction).  Pure  oxygen  by  itself  always  establishes  equilibrium  as  follows:  

 

O2 ! 2OO +O2 !O3

 

Including  these  reactions  in  the  reaction  mechanism  and  pre-­‐equilibrating  provides  the  experimentally  correct  initial  concentrations.      To  summarize:  experimentally  one  can  measure  concentration  profiles  as  a  function  of  time.  The  experimentalist  can  vary  temperature  (and  pressure)  in  the  reaction  vessel,  the  amounts  of  reagent  used,  and  the  conditions  under  which  the  reagents  are  entered  in  the  reaction  vessel  (in  particular  storage  temperature).  To  simulate  these  concentration  profiles  on  a  computer  we  only  require  knowledge  of    

1) The  set  of  elementary  reactions  and  their  stoichiometry  2) The  set  of  elementary  rate  constants   ,i if b  (at  reaction  vessel  T,P)  3) A  set  of  initial  concentrations.  The  initial  concentrations  of  stable  molecules  

are  under  (some)  control  of  experimentalist.  This  control  is  not  complete.  As  discussed  you  will  always  have  some  Br  radical  concentration  in  a  bottle  of  Br2.  Such  cases  need  to  be  pre-­‐equilibrated.  (We  will  explore  in  matlab.)  

   

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

88  

Temperature  dependence    We  can  know  the  temperature  and  pressure  dependence  of  

Keq,i  typically.  This  knowledge  stems  either  

from  measurement,  or  from  the  use  of  thermochemistry  data  tables,  or  from  calculating  the  data  using  quantum  chemistry.  We  in  general  have  access  to   RGΔ ln eq RRT K G→ = −Δ .      

Elementary  reactions  are  usually  fairly  well  described  by  the  concept  of  transition  state  theory    

           

We  have  access  to   aE or  perhaps  even   ,a aH SΔ Δ  (from  measurements  of  rate  constants  and  Arrhenius  plots).  Before,  in  the  chapter  on  transition  state  theory  we  discussed  

      k f = A(T )e−ΔEa

f / RT ; A(T ) = aT x kTh

⎛⎝⎜

⎞⎠⎟  

The  activation  energy   ΔEa

f = (ETSel − Emin,R

el )+ (ETSzp − Emin,R

zp )  can  be  calculated  from  quantum  

chemistry,  using  the  electronic  energies  at  the  reactant  minimum  and  the  transition  state.  This  is  the  dominant  contribution.  An  additional  (smaller)  contribution  is  due  to  the  difference  in  zeropoint  energy  between  reactant  and  transition  state.  The  pre-­‐exponential  factor  has  two  

elements:  the  universal  factor   kTh

 associated  with  the  reaction  coordinate,  and  the  usual  pre-­‐

exponential  contributions  due  to  translational,  rotational  (and  remaining  vibrational)  contributions  to  the  partition  function.  The  back  ward  rate  constant  has  a  similar  form,  but  now  using  the  energies  and  partition  function  of  the  product,  rather  than  the  reactants.  We  can  write    

ΔEa

back = (ETSel − Emin,P

el )+ (ETSzp − Emin,P

zp )  This  allows  us  to  express  the  temperature  dependence  of  the  rate  constants.  Rates  often  drop  very  rapidly  with  a  decrease  in   T ,  due  to  the  exponential  factor.      As  we  have  seen  before  the  ratio  of  the  forward  and  backward  rate  constants  is  exactly  the  equilibrium  constant  associated  with  reactants  and  products.  

      Keq =

k f

kb

= (kT / h) !qTS / qR

(kT / h) !qTS / qP = qP

qR = [P][R]

 This  relation  should  hold  exactly.  In  the  ratio,  the  information  on  the  transition  state  cancels.  

From  equilibrium  thermodynamics  we  do  not  obtain  any  information  on  the  rates  of  processes.  

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

89  

   

Detailed  balance.      There  is  one  more  subtlety  I  would  like  to  discuss.  As  a  reaction  mixture  reaches  equilibrium  the  rates  of  each  elementary  reaction  should  reach  zero.  This  is  called  detailed  balance.  If  one  chooses  an  arbitrary  set  of  rate  constants  this  doesn’t  necessarily  happen.  One  has  to  make  sure  the  rate  constants  are  consistent  with  thermodynamics!  This  is  best  illustrated  by  an  example.  Consider  the  following  trio  of  elementary  reactions:  

 

A! B;[Beq ][Aeq ]

; K1 =f1

b1

A! C;[Ceq ][Aeq ]

; K2 =f2

b2

B! C;[Ceq ][Beq ]

; K3 =f3

b3

 

From  a  chemical  perspective  it  is  logical  that  if  A  is  in  equilibrium  with  both  B  and  C,  that  also  B  and  C  must  be  in  equilibrium.  This  provides  a  relation  between  the  equilibrium  constants.  They  are  not  all  independent.  It  is  easily  seen  that    

  K3 =

[Ceq ][Beq ]

=[Ceq ] / [Aeq ][Beq ] / [Aeq ]

=K2

K1

 

But  this  has  the  consequence  that  also  the  rate  constants  are  not  independent!  

 

f3

b3

=K2

K1

=f2b1

b2 f1

 

If  we  define  the  rate  constants  using  ratios  of  partition  functions,  it  is  easily  seen  that  the  rate  constants  necessarily  satisfy  the  thermodynamic  relationships,  and  therefore  detailed  balance  would  be  satisfied.  Let  me  give  an  example  to  illustrate  the  point.  In  the  above  example  I  will  use   EA, EB , EC  to  denote  the  ground  state  energies  of  each  species  (electronic  +  zeropoint),  

and   ETS  to  denote  the  energy  of  the  transition  state  for  the  third  reaction,  while  neglecting  the  difficult  part  of  the  pre-­‐exponential  rates.  (Everything  would  be  exactly  correct  if  we  use  the  complete  ratios  of  partition  functions).  

 

f3

b3

≈(kT / h)exp(−(ETS − EB ) / RT )(kT / h)exp(−(ETS − EC ) / RT )

= exp(−(EC − EB ) / RT ) = K3

=K2

K1

=exp(−(EC − EA) / RT )exp(−(EB − EA) / RT )

= exp(−(EC − EB ) / RT )  

If  we  always  define  rates  using  energies  of  each  species,  and  energies  of  transition  states,  everything  works  out  and  detailed  balance  is  satisfied.  We  will  explore  what  happens  if  the  rate  constants  are  inconsistent  in  an  exercise.  The  reaction  still  reaches  chemical  equilibrium,  but  the  individual  rates  do  not  vanish!  Weird.        Let  me  summarize.    

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

90  

 Connections  to  experiment:       Vary  initial  concentrations  of  reagents,  T ,  measure  concentration  profiles  or  measure  initial  rates.    

-­‐ Postulate  a  set  of  elementary  chemical  reactions  -­‐ Set  up  a  set  of  differential  equations  to  solve  for  concentration  profiles  (use  

computer).  -­‐ Use  thermodynamic  data  to  get  relations  between   ,f bk k  

-­‐ Fit  the  (independent)  rate  constants  at  a  given  fixed  temperature  to  measured  reaction  profile  

-­‐ Vary  temperature  to  obtain  the  temperature  dependence  of   ,f bk k  

-­‐ Extract  activation  energies  (and  possibly   ,a aH SΔ Δ )    

In  Matlab  we  could  test  the  procedure:  I  might  provide  a  subroutine  that  will  generate  concentration  profiles  depending  on  T ,  initial  concentrations.  You  (the  user)  could  set  some  initial  concentrations  to  zero,  or  use  excess  reagent  etc,  and  run  the  kinetics  simulation.  But  you  cannot  look  at  the  subroutine  to  see  what  it  does.    I  might  add  some  noise  to  the  data  (as  in  real  experiments).    By  exploring  the  generated  data,  you  may:  

1) Figure  out  the  set  of  elementary  reactions  2) Fit  the  rate  constants  3) Determine  temperature  dependence  of  rate  constants  

 Using  a  computer  intelligently  would  assist  enormously  in  the  task.  This  is  too  much  to  learn  in  this  class,  but  we  will  explore  some  of  the  steps  involved  using  Matlab.  The  principles  can  be  laid  out,  but  there  is  no  time  to  really  teach  you  the  ‘skills’  needed  (I  would  have  to  learn  myself).    Note  added:  We  are  currently  working  on  such  a  simulation  tool.  It  is  called  C.K.  Watson  (Chemical  Kinetics  Watson).  I  hope  to  use  it  in  class  to  give  you  some  idea  of  the  logical  thinking  processes  involved.  You  can  think  of  unraveling  the  chemical  kinetics  model  as  a  detective  story  (hence  the  involvement  of  Watson).  The  computer  (C.K.  Watson)  does  all  the  tedious  part  of  the  work  (including  running  the  kinetics  experiment).  You,  Sherlock,  put  all  the  pieces  together  and  solve  the  puzzle:  What  are  the  set  of  reactions  involved?  “Elementary  my  dear  Watson!”      

Steady  State  and  Pre-­‐equilibrium  Approximation    

If  a  full  set  of  elementary  reactions  is  known  (and  their  rate  constants)  it  is  quite  straightforward  to  set  up  the  rate  equations  to  solve  (numerically)  for  the  reaction  profiles.  The  solutions  would  also  depend  on  initial  concentrations.  This  I  think  is  the  most  important  message  to  take  away.    In  much  of  the  remainder  of  our  discussion  of  kinetics,  we  wish  to  understand  certain  features  more  intuitively.  For  this  reason,  approximate  solutions  are  sought  that  can  provide  additional  insight  (and  analytical  formulas).    

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

91  

This  part  of  kinetics  is  a  bit  ‘art-­‐ful’.  One  might  derive  different  solutions  depending  on  the  path  one  takes.  They  are  all  only  approximations.    Here  we  discuss  the  steady  state  and  pre-­‐equilibrium  approximations.  Let’s  consider  the  following  reactions:  

        A

b1

f1I               [ ] [ ]1 1 1r f A b I= −  

  I→

f2

P      ( 2b  very  small)     [ ]2 2r f I=  

A is  first  converted  to  some  intermediate,  which  then  reacts  to  products.  The  kinetics  is  described  by  the  following  set  of  differential  equations  

     

     [ ] [ ] [ ]1 1 1

d Ar f A b I

dt= − = − +  

     [ ] [ ] [ ] [ ]1 2 1 1 2

d Ir r f A b I f I

dt= − = − −  

     [ ] [ ]2 2

d Pr f I

dt= =    

    For  any  values  of   1 1 2, ,f b f  one  can  solve  the  equations  numerically  

Under  2  limiting  scenarios,  one  can  get  expressions  for  the  rate  [ ]d Pdt

,  which  is  how  one  uses  

this.      a)  Steady  State  Approximation  ( f2  fast)      

  In  this  approximation  one  assumes  [ ] 0d Idt

= .  The  physical  assumption  is  that    [ ]I  is  fairly  

small,  and  after  an  initial  rise  (at  time  0)  it  reaches  a  constant  plateau.  It  is  consumed  as  fast  as  it  is  produced.  In  general  this  approximation  is  applied  to  every  intermediate  in  the  set  of  reactions.  It  allows  one  to  eliminate  intermediates,  by  expressing  their  concentrations  in  terms  of  others.  For  the  present  example:                   2 1r r=       1r :  production  of   I ,   2r :  consumption  of   I    

       [ ] 0d Idt

=          →             1 2 0r r− =    

        [ ] [ ] [ ] ( )[ ]1 1 2 1 2f A b I f I b f I= + = +  

          [ ] [ ]1

1 2

fI Ab f

=+

 

      Then      [ ] [ ] [ ]1 1

d Ab I f A

dt= −  

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

92  

          = − f1 1−

b1

f2 + b1

⎛⎝⎜

⎞⎠⎟

A⎡⎣ ⎤⎦ = − f1(f2 + b1 − b1

f2 + b1

) A⎡⎣ ⎤⎦  

          [ ]effk A= −   1 2

2 1eff

f fkf b

=+

 

      To  Solve:             [ ] [ ] effk t

oA A e−=  

          [ ] [ ] [ ] [ ]oP A A I= − −  

          [ ] [ ] [ ]1 1

2 1 2 1

effk to

f fI A A ef b f b

−= =+ +

 

        [ ] [ ] 1

2 1

1 eff effk t k to

fP A e ef b

− −⎛ ⎞= − −⎜ ⎟+⎝ ⎠

 

Note:  we  derived  kinetics  setting  [ ] 0d Idt

=    →    [ ] [ ]1

2 1

fI Af b

=+

,  but  [ ] ( )A A t= ⎡ ⎤⎣ ⎦ ,  hence  

after  solution  [ ] 0d Idt

≠ .  This  is  a  little  strange.  I  prefer  my  math  to  be  consistent!  

 We  can  also  analyze  situation  in  the  limit   1 0b →  

        2 11

2 1eff

f fk ff b

= →+

 

        [ ] [ ]1

2

fI Af

=  

        [ ] [ ] 1

2

1 1effk to

fP A ef

−⎛ ⎞⎛ ⎞= − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 b)  Pre-­‐equilibrium  ( 2f slow)  

        A

b1

f1I               [ ] [ ]1 1 1r f A b I= −  

 2f

I P→      ( 2b  very  small)     [ ]2 2r f I=  

If   2f  is  very  small  (slow),  then  the  equilibrium  between   A I  can  be  maintained  and  this  slowly  leaks  away  to  products  

     

     [ ] [ ] [ ]1 1 1

d Ar f A b I

dt= − = − +  

     [ ] [ ] [ ] [ ]1 2 1 1 2

d Ir r f A b I f I

dt= − = − −  

     [ ] [ ]2 2

d Pr f I

dt= =    

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

93  

 The  assumption  of  [ ]A and  [ ]I  

in  equilibrium  translates  to  

        [ ] [ ]1 1f A b I=   →    [ ] [ ]1

1

fI A

b=    

      →  [ ] 0d Adt

=   ??          (again,  strange!  A  is  supposed  to  react!)  

     [ ] [ ]20d I

f Idt

= −  

     [ ] [ ] [ ]2 1

21

d P f ff I Adt b

= =  

      [ ] ( ) [ ] [ ]1

1o o

fP A A I A A Ab

⎛ ⎞= − − = − −⎜ ⎟

⎝ ⎠  

 

     [ ] [ ] [ ]1 2 1

1 1

1d P d Af f f Adt b dt b

⎛ ⎞= − + =⎜ ⎟

⎝ ⎠  

     [ ] [ ]2 1 1

1 1 1

d A f f b Adt b b f

= − ⋅+

 

       ( ) [ ]2 1

1 1

f f Ab f

= −+

     

( )

( )2 1

1 1

beff

f fkb f

=+

 (pre-­‐equilibrium  (b),  different  from  steady  state  before    (a)  

     

      [ ] [ ]( )beffk t

oA A e−=  

      [ ] [ ]( )

1

1

beffk t

ofI A eb

−⎛ ⎞= ⎜ ⎟⎝ ⎠

 

      [ ] [ ] [ ] [ ]( )

1

1

1 1beffk t

o ofP A A I A eb

−⎛ ⎞⎛ ⎞= − − = − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

       You  can  see  that  steady  state  and  pre-­‐equilibrium  approximations  lead  to  different  behavior.  Neither  is  quite  right.  Moreover,  both  approximations  are  not  all  consistent.    

Here:  [ ] 0d Adt

=  from  rate  law  and  pre  equilibrium  condition.  

   

  We  do  not  use  this  equation,  but  analyze  in  terms  of  [ ]d Pdt

.    

 

Winter  2015   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  7a:  Chemical  Kinetics,  Steady  State  and  Pre-­‐Equilibrium      

94  

I  am  not  entirely  comfortable  with  the  math  we  do.  Here,  I  would  not  be  surprised  if  for  complicated  cases  one  might  get  a  different  result  depending  on  how  one  goes  about  doing  it.  As  I  said,  kinetics  can  be  a  bit  art-­‐ful.  The  issue  is  that  chemical  kinetics  is  an  ancient  topic,  well-­‐developed  before  the  advent  of  computers.  In  those  days  scientists  had  to  make  approximations  in  order  to  solve  their  problems.  This  is  no  longer  true  today.  My  take  on  it:  use  computers  to  do  the  hard  work.    Let  us  consider  the  rational  for  approximations  

        A

b1

f1I→

f2

P  

a) 2f  is  slow,  hence  [ ]A and  [ ]I  are  in  equilibrium,  after  some  initialization  time  →  pre-­‐

equilibrium  

b) [ ] 0d Idt

=  steady  state.  [ ]I  after  some  initialization  is  produced  and  consumed  at  equal  

rates:   [ ] ( )[ ]1 2 1f A f b I= +  

 In  both  approximations  we  can  eliminate[ ]I ,  and  then  solve  for   ( )A t⎡ ⎤⎣ ⎦ .  Both  approximations  

are  used  extensively  to  obtain  analytical  integrated  rates.  These  are  traditionally  favourite  questions  on  exams.  You  can  tell  I  am  not  all  that  impressed  by  this  cleverness.  We  will  test  some  of  the  approximations  used  in  Matlab.  On  the  exam  I  am  most  likely  to  ask  you  to  set  up  the  differential  rate  equations  (how  you  would  program  it  in  matlab).