check dam ( rock exposed)

42
DESIGN OF CHECK DAM ON EXPOSED ROCK INPUT DATA Maximum flood discharge Qa = 1022 Bed slope s 2000 = 0.0005 River width L = 130 Deepest bed level BLd = 8.35 Average bed level BLa = 9.171 Bottom level of weir/check BLW = 9.5 Maximum flood level MFL = 15.4 Height of check dam Ht = 2 Top width of weir a = 2 Density of concrete dc = 2.4 Density of water dw = 1 Afflux afx = 0.3 Retrogression ret = 0.2 Acceleration due to gravity g = 9.81 DESIGN 1 Discharge per unit width q = Qa/L = 7.862 2 Average depth of flow d = MFL-Bla = 6.229 3 Velocity of flow v = q/d = 1.262 4 Velocity head hd = 0.081 5 Crest level Crl = BLW+Ht = 11.5 6 Downstream total energy lin D/s TEL = MFL+hd = 15.481 7 Downstream water level DWL =D/s TEL-hd-ret = 15.2 8 Upstream total energy line U/s TEL = D/s TEL+afx = 15.781 9 Upstream water level UWL =U/s TEL-hd = 15.7 10 Depth of flow over weir H = UWL-Crl = 4.2 11 Drowning ratio DR =(DWL-Crl)/(UWL-Crl) = 0.881 = v 2 /2g

Upload: anil-sarngadharan

Post on 24-Oct-2014

184 views

Category:

Documents


18 download

TRANSCRIPT

Page 1: Check Dam ( Rock Exposed)

DESIGN OF CHECK DAM ON EXPOSED ROCK

INPUT DATA

Maximum flood discharge Qa = 1022 m3/sec

Bed slope s 1 in 2000 = 0.0005

River width L = 130 m

Deepest bed level BLd = 8.35 m

Average bed level BLa = 9.171 m

Bottom level of weir/check dam BLW = 9.5 m

Maximum flood level MFL = 15.4 m

Height of check dam Ht = 2 m

Top width of weir a = 2 m

Density of concrete dc = 2.4 t/m3

Density of water dw = 1 t/m3

Afflux afx = 0.3 mRetrogression ret = 0.2 mAcceleration due to gravity g = 9.81 m2/sec

DESIGN

1 Discharge per unit width q = Qa/L = 7.862 m3/sec/m

2 Average depth of flow d = MFL-Bla = 6.229 m

3 Velocity of flow v = q/d = 1.262 m/sec

4 Velocity head hd = 0.081 m

5 Crest level Crl = BLW+Ht = 11.5 m

6 Downstream total energy line D/s TEL = MFL+hd = 15.481 m

7 Downstream water level DWL =D/s TEL-hd-ret = 15.2 m

8 Upstream total energy line U/s TEL = D/s TEL+afx = 15.781 m

9 Upstream water level UWL =U/s TEL-hd = 15.7 m

10 Depth of flow over weir H = UWL-Crl = 4.2 m

11 Drowning ratio DR =(DWL-Crl)/(UWL-Crl) = 0.881

= v2/2g

Page 2: Check Dam ( Rock Exposed)

Display the value of DR to input the corresponding value of Cd

12 Coefficient of discharge Cd 1.56(Input taken from graph depending on the value of DR)

13 Calculated discharge Qth =Cd*L*H^(3/2) = 1745.589

Check whether Qth > Qa 1745.589 > 1022

Hence safe

Check for discharge for broad crested weir

No. of vents nV (L/10-1.1) = 11.90rounded 12

No. of end contractions n 2+2*nV = 26

Calculated discharge Qthb 1.705*(L-0.01*n*H)*H^1.5 = 1891.813 m3/sec

1891.81292959834 > 1022

Hence safe

Bottom width of weir

Case 1 When the u/s water is at crest level and there is no flow downsteam

Overturning moment Mo (dw*Ht^3)/6 = 1.333 tm

Resisting moment Mr (dw*Ht*dc*(b2+ab-a2))/6 =

0.8 (b2+ab-a2)

Equating Mo=Mr

Constant for calculation x a^2+(Ht^2)/dc = 5.667

Bottom width b (-a+sqrt(a2+4*x))/2 = 1.582 m

Case II When the weir is just submerged

Under maximum flow condition depth of flow over the weir H = 4.2

Depth of water in the d/s H2 H+Ht-afx-ret = 5.7

ie

Page 3: Check Dam ( Rock Exposed)

Constant K H/H2 = 0.736842

Depth of flow over the crest whentail water is at crest level D K*Ht = 1.474

ie, when a depth of 1.474 m flows over the weir, the weir will be just submerged.If Ht is the height of weir and D is the difference in water level then

Max overturning moment Mo2 dw*Ht^2*D/2 = 2.948 tm

Moment of resistance Mr2 (Ht/6)*(dc-1)(b^2+ab-a^2)

Equating Mr2=Mo2

(Ht/6)*(dc-1)(b^2+ab-a^2) = 2.948

b^2+ab = a^2+Mo2*6/(Ht(dc-1))

Let x2= a^2+Mo2*6/(Ht(dc-1)) = 10.31714

b^2+ab-x2=0

Bottom width b = (-a+sqrt(a^2+4*x2))/2 = 2.364 m

Case III When the water is passing over the weir crest and the water is discharging withfree overfall (This case is to be done only if L>30*Ht)

30.Ht = 60 < L

Under maximum flow condition depth of flow over the weir H = 4.2

Depth of water in the d/s H2 H+Ht-afx-ret = 5.7

Constant K H/H2 = 0.736842

Overturning moment Mo3 dw*Ht^3(1+2K^(3/2))/6 = 3.020004

Resisting moment Mr3 dwHt(dc-1)(b^2+ab-a^2)/6

dw.Ht.(dc-1)/6 = 0.466667

Mr3 = Mo3

0.46666667 (b^2+ab-a^2) = 3.020004

(b^2+ab-a^2) = 6.471438

constant x3 = a^2 + 6.47143791094897 = 10.47144

b^2+ab-x3=0

Page 4: Check Dam ( Rock Exposed)

Bottom width b = (-a+sqrt(a^2+4*x3))/2 = 2.387 m

OUTPUTCase Bottom width

1 1.5822 2.3643 2.387

Enter the value of Bottom width b = 2.6 m(maximum rounded)

Check for stress at the foundation level of weir

Case 1 Water upto crest level and no tail water

Offset of foundation c = 0.15 m

Depth of foundation df = 0.3 m

Height of weir from foundn level Hf Ht+df = 2.3 m

Base width at foundation level B b+2c = 2.9

Let bma b-a = 0.6

ANALYSIS

Body wall W1 bma*Ht*dc/2 = 1.44la1 c+bma*2/3 = 0.55

W2 a*Ht*dc = 9.6la2 b-a/2+c = 1.75

Foundation W3 B*df*dc = 2.088la3 B/2 = 1.45

Wt of water W4 c*Ht*dw = 0.3la4 B-c/2 = 2.825

Water pressure H (1/2)*Hf^2 = 2.645la Hf/3 = 0.766667

Vertical force V W1+W2+W3+W4 = 13.428 t

Horizontal force H = 2.645 t

Resisting moment MR W1*la1+W2*la2+ = 21.4671

Page 5: Check Dam ( Rock Exposed)

W3*la3+W4*la4

Overturning moment MO H*la = 2.027833

constant x' (MR-MO)/V = 1.447667

Eccentricity e B/2-x' = 0.002333

Maximum pressure Pmax (V/B)*(1+6e/B) = 4.652699 t/m2

Minimum pressure Pmin (V/B)*(1-6e/B) = 4.60799 t/m2

Check for stability at bed level

Body wall W1 bma*Ht*dc/2 = 1.44la1 bma*2/3 = 0.4

W2 a*Ht*dc = 9.6la2 b-a/2 = 1.6

Water pressure H (1/2)*Ht^2 = 2la Ht/3 = 0.666667

Vertical force V W1+W2 = 11.04 t

Horizontal force H = 2 t

Resisting moment MR W1*la1+W2*la2 = 15.936

Overturning moment MO H*la = 1.333333

constant x' (MR-MO)/V = 1.322705

Eccentricity e b/2-x' = 0.022705

Maximum pressure Pmax (V/b)*(1+6e/b) = 4.469 t/m2

Minimum pressure Pmin (V/b)*(1-6e/b) = 4.024 t/m2

DESIGN OF LEFT ABUTMENT

MFL after construction MFLac MFL+afx = 15.7 m

Bottom level of weir BLW = 9.5 m

Left Bank Level LBL = 49.83 m

Top level of abutment TLA MFLac+0.1 = 15.8 m

Page 6: Check Dam ( Rock Exposed)

Hard Rock Level HRL = 46.93 m

Height of abutment Hta(cal) TLA-HRL = -31.13 m

Hta Say 3.2 m

Top width of abutment tw = 0.6 m

Bottom width of abutment bwa = 1.92 m

bw Say 1.9 m

ka = 0.333333

r = 2.1 t/m3

ct1 ka.r.tw = 0.42

ct2 ka.r.Hta+ct1 = 2.66

constant btw bw-tw = 1.3

Case 1 Backfill saturated and no water in the river

Earth pressure EP (ct1+ct2)Hta/2 = 4.928 t/m2

Lever Arm LA ((ct2+2ct1)/(ct2+ct1))(Hta/3) 1.212121 m

ANALYSIS

Vertical Force W1 tw.Hta.dc = 4.608 tla1 tw/2 = 0.3 m

W2 btw.Hta.dc/2 = 4.992la2 tw+btw/3 = 1.033333

W3 btw.Hta.r/2 = 4.368la3 tw+btw*2/3 = 1.466667

Total V W1+W2+W3 = 13.968

Resisting Moment MR W1*la1+W2*la2+W3*la3 = 12.9472

Horizontal Force H EP = 4.928

Overturning Moment MO EP*LA = 5.973333

Let xa (MR-MO)/V = 0.499275

ea bw/2-xa = 0.450725

Maximum pressure Pmax (V/bw)*(1+6*ea/bw) = 17.8154

Page 7: Check Dam ( Rock Exposed)

Minimum pressure Pmin (V/bw)*(1-6*ea/bw) = -3.112244

Factor of safety (overturning) FSo MR/MO = 2.1675 >2

Factor of safety (sliding) FSsl 0.6*V/H = 1.700649 >1.5

Case II Water upto MFL and backfill submerged

ct22 ka(r-1).Hta+ct1 = 1.593

Earth pressure EP (ct1+ct22)Hta/2 = 3.2208

Lever Arm LA ((ct22+2ct1)/(ct22+ct1))* 1.28922 (Hta/3)

ANALYSIS

Vertical Force W1 tw.Hta.dc = 4.608la1 tw/2 = 0.3

W2 btw.Hta.dc/2 = 4.992la2 tw+btw/3 = 1.033333

W3 btw.Hta.r/2 = 4.368la3 tw+btw*2/3 = 1.466667

Buoyancy W4 (tw+bw)Hta*1/2 = -4la4 (tw^2/2+btw(tw+btw/3)/2/ 0.681333

(tw+btw/2)Total V W1+W2+W3+W4 = 9.968

Resisting Moment MR W1*la1+W2*la2+W3*la3 = 10.22187 +W4*la4

Horizontal Force H EP = 3.2208

Overturning Moment MO EP*LA = 4.15232

Let xa (MR-MO)/V = 0.608903

ea bw/2-xa = 0.341097

Maximum pressure Pmax (V/bw)*(1+6*ea/bw) = 10.89737

Minimum pressure Pmin (V/bw)*(1-6*ea/bw) = -0.404742

Factor of safety (overturning) Fso MR/MO = 2.461724 >2

Factor of safety (sliding) FSsl 0.6*V/H = 1.85693 >1.5

Foundation for Left Abutment

Page 8: Check Dam ( Rock Exposed)

Backfill saturated and no water in river

INPUT

Offset ca = 0.2 m

Depth dfa = 0.5 m

Height from foundn level Hfa Hta+dfa = 3.7

Bottom width Ba bw+2*ca = 2.3

Let ct2a ka.r.Hfa+ct1 = 3.01

Earth pressure EP (ct1+ct2a)Hfa/2 = 6.3455 t/m2

Lever Arm LA ((ct2a+2ct1)/(ct2a+ct1)) 1.384354 m*Hfa/3

ANALYSIS

Vertical Force W1 tw.Hta.dc = 4.608 tla1 tw/2+ca = 0.5 m

W2 btw.Hta.dc/2 = 4.992la2 tw+btw/3+ca = 1.233333

Wt of soil W3 btw.Hta.r/2 = 4.368la3 tw+btw*2/3+ca = 1.666667

Foundation W4 Ba*dfa*dc = 2.76 la4 Ba/2 = 1.15

Wt of soil W5 ca*Hta*r = 1.344la5 Ba-ca/2 = 2.2

Resisting Moment MR W1*la1+W2*la2+W3*la3 = 21.8716 +W4*la4+W5*la5

Horizontal Force H EP = 6.3455

Overturning Moment MO EP*LA = 8.784417

Vertical Force V W1+W2+W3+W4+W5 = 18.072

Let xa (MR-MO)/V = 0.724169

ea Ba/2-xa = 0.425831

Maximum pressure Pmax (V/Ba)*(1+6*ea/Ba) = 16.58588

Page 9: Check Dam ( Rock Exposed)

Minimum pressure Pmin (V/Ba)*(1-6*ea/Ba) = -0.871096

Factor of safety (overturning) Fso MR/MO = 2.489818 >2

Factor of safety (sliding) FSsl 0.6*V/H = 1.708802 >1.5

16.5858790170132

x0.871096 2.3 -x

x Pmin*Ba/(Pmax+Pmin) = 0.127493

(x/Ba)*100 = 5.543166

< 20%

Check for tan a

tan a dfa/ca = 2.5

0.9*sqrt(qo/fck+1) 0.9*sqrt(Pmax/15+1) = 1.306001

< 2.5

Hence safe

DESIGN OF RIGHT ABUTMENT (with surcharge)

MFL after construction MFLac MFL+afx = 15.7 m

Bottom level of weir BLW = 9.5 m

Right Bank Level RBL = 52.8 m

Top level of abutment TLA MFLac+0.1 = 15.8 m

Hard Rock Level HRL = 46.93 m

Height of abutment Hta(cal) TLA-BLW = 6.3 m

Let Hta 3.2 m

Page 10: Check Dam ( Rock Exposed)

Surcharge height SHt RBL-TLA = 37 m

Bank height at the end of abutment after pitching at a slope of 1:1is taken as surcharge

Surcharge Sr bw-tw = 1.6 m

Top width of abutment tw = 0.6 m

Bottom width of abutment bw(cal) = 1.92 m

bw INPUT 2.2 m

ka = 0.333333

r = 2.1 t/m3

ct1 ka.r.Sr = 1.12

ct2 ka.r.Hta+ct1 = 3.36

constant btw bw-tw = 1.6

Case 1 Backfill saturated and no water in the river

Earth pressure EP (ct1+ct2)Hta/2 = 7.168 t/m2

Lever Arm LA ((ct2+2ct1)/(ct2+ct1))(Hta/3) 1.333333 m

ANALYSIS

Vertical Force W1 tw.Hta.dc = 4.608 tla1 tw/2 = 0.3 m

W2 btw.Hta.dc/2 = 6.144la2 tw+btw/3 = 1.133333

W3 btw.Hta.r/2 = 5.376la3 tw+btw*2/3 = 1.666667

W4 Sr.Sr.r/2 = 2.688la4 Sr*2/3+tw = 1.666667

Total V W1+W2+W3+W4 = 18.816

Resisting Moment MR W1*la1+W2*la2+W3*la3 = 21.7856 +W4*la4

Horizontal Force H EP = 7.168

Overturning Moment MO EP*LA = 9.557333

Let xa (MR-MO)/V = 0.649887

Page 11: Check Dam ( Rock Exposed)

ea bw/2-xa = 0.450113

Maximum pressure Pmax (V/bw)*(1+6*ea/bw) = 19.0519

Minimum pressure Pmin (V/bw)*(1-6*ea/bw) = -1.946446

Factor of safety (overturning) Fso MR/MO = 2.279464 >2

Factor of safety (sliding) FSsl 0.6*V/H = 1.575 >1.5

Foundation for Right Abutment

Backfill saturated and no water in river

Offset ca = 0.2 m

Depth dfa = 0.5 m

Height from foundn level Hfa Hta+dfa = 3.7

Bottom width Ba bw+2*ca = 2.6

Let ct2a ka.r.Hfa+ct1 = 3.71

Earth pressure EP (ct1+ct2a)Hfa/2 = 8.9355 t/m2

Lever Arm LA ((ct2a+2ct1)/(ct2a+ct1)) 1.519324 m*Hfa/3

ANALYSIS

Vertical Force W1 tw.Hta.dc = 4.608 tla1 tw/2+ca = 0.5 m

W2 btw.Hta.dc/2 = 6.144la2 tw+btw/3+ca = 1.333333

Wt of soil W3 btw.Hta.r/2 = 5.376la3 tw+btw*2/3+ca = 1.866667

Foundation W4 Ba*dfa*dc = 3.12 la4 Ba/2 = 1.3

Wt of soil W5 ca*(Hta+Sr)*r = 2.016la5 Ba-ca/2 = 2.5

W6 Sr.Sr.r/2 = 2.688

Page 12: Check Dam ( Rock Exposed)

la6 Sr*2/3+tw+ca = 1.866667

Resisting Moment MR W1*la1+W2*la2+W3*la3 = 34.6448+W4*la4+W5*la5+W6*la6

Horizontal Force H EP = 8.9355

Overturning Moment MO EP*LA = 13.57592

Vertical Force V W1+W2+W3+W4+W5 = 23.952 +W6

Let xa (MR-MO)/V = 0.879629

ea Ba/2-xa = 0.420371

Maximum pressure Pmax (V/Ba)*(1+6*ea/Ba) = 18.14904

Minimum pressure Pmin (V/Ba)*(1-6*ea/Ba) = 0.275577

Factor of safety (overturning) Fso MR/MO = 2.551931 >2

Factor of safety (sliding) FSsl 0.6*V/H = 1.608326 >1.5

18.1490384615385

x0.275577 2.6 -x

x Pmin*Ba/(Pmax+Pmin) = 0.038888

(x/Ba)*100 = 1.4957

< 20%

Check for tan a

tan a dfa/ca = 2.5

0.9*sqrt(qo/fck+1) 0.9*sqrt(Pmax/15+1) = 1.337927

< 2.5

Hence safe

Check for stress at deepest foundation level

Bottom level of weir/check dam BLW = 47 m

Page 13: Check Dam ( Rock Exposed)

Deepest Ground Level DGL = 46.085 m

Allowing 30cm embedment into FL DGL-.3 = 45.785 Mrock, founding Level of Check Dam

Offset of foundation c = 0.15 m

Depth of foundation dfd BLW-FL = 1.215 m

Height of weir from foundn level Hfd Ht+dfd = 3.215 m

Base width at foundation level B b+2c = 2.9

Let bma b-a = 0.6

ANALYSIS

Body wall W1 bma*Ht*dc/2 = 1.44la1 c+bma*2/3 = 0.55

W2 a*Ht*dc = 9.6la2 b-a/2+c = 1.75

Foundation W3 B*dfd*dc = 8.4564la3 B/2 = 1.45

Wt of water W4 c*Ht*dw = 0.3la4 B-c/2 = 2.825

Water pressure H (1/2)*Hfd^2 = 5.168112la Hfd/3 = 1.071667

Vertical force V W1+W2+W3+W4 = 19.7964 t

Horizontal force H = 5.168112 t

Resisting moment MR W1*la1+W2*la2+ = 30.70128W3*la3+W4*la4

Overturning moment MO H*la = 5.538494

constant x' (MR-MO)/V = 1.271079

Eccentricity e B/2-x' = 0.178921

Maximum pressure Pmax (V/B)*(1+6e/B) = 9.353332 t/m2

Minimum pressure Pmin (V/B)*(1-6e/B) = 4.299358 t/m2

Factor of safety (overturning) Fso MR/MO = 5.543254 >2

Factor of safety (sliding) FSsl 0.6*V/H = 2.298294 >1.5

Page 14: Check Dam ( Rock Exposed)

Design of Apron

Discharge per unit width q = Qa/L = 7.861538 m3/sec/m

Afflux afx = 0.3 m

From Blench curvesEf2 = 1.7 m

Ef1 Ef2+afx = 2 m

D1 = 0.7

D2 = 1.5

Length of cistern 5(D2-D1) = 4 m

Provide a nominal apron of 5m length d/s and 3m length u/s with a nominal thickness of 0.3 m

Page 15: Check Dam ( Rock Exposed)

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT Increase by 10cm until calculated discharge Qth/Qthbis more than the max flood discharge Qa

Page 16: Check Dam ( Rock Exposed)

(Input taken from graph depending on the value of DR)

If calculated discharge is less than the actual discharge (Qth < Qa), increase the afflux(afx) by 0.05m.If afflux is more than 1 Display the message "CHECK DAM IS NOT FEASIBLE AT THIS SITE" and exit.Otherwise recalculate the steps from 8 to 11 to get the new value of DR. Input the value of Cd corresponding to the new value of DR and calculate the new Qth and repeat the process until Qth>=Qa.

If calculated discharge is less than the actual discharge (Qth < Qa), increase the afflux(afx) by 0.05m.If afflux is more than 1 Display the message "CHECK DAM IS NOT FEASIBLE AT THIS SITE" and exit. Otherwise recalculate the steps from 8 to 10 to get the new value of H. Calculate the new Qthb and repeat the process until Qthb>=Qa

a Crl

HtBLW

b

UWL

Page 17: Check Dam ( Rock Exposed)

D H

Ht

wHt wD

H

DHt

wHt wH wD

Page 18: Check Dam ( Rock Exposed)

INPUT

a

HtHf

c bdf

B O

Taking moments about O

Sl.No Particulars Vertical Horizontal LeverForce Force Arm

V H 1 Body wall

W1 1/2x0.6x2x2.4 1.44 0.55

W2 2x2x2.4 9.6 1.75

2 FoundationW3 2.9x0.3x2.4 2.088 1.45

3 Wt of waterW4 0.15x2x1 0.3 2.825

4 Water pressureH 1/2x2.3x2.3 2.645 0.766667

Page 19: Check Dam ( Rock Exposed)

13.428 2.645

a

Ht

w.Ht b O

Taking moments about O

Sl.No Particulars Vertical Horizontal LeverForce Force Arm

V H 1 Body wall

W1 1/2x0.6x2x2.4 1.44 0.4

W2 2x2x2.4 9.6 1.6

2 Water pressureH 1/2x2x2 2 0.666667

11.040 2.000

INPUT

ct1 tw

Page 20: Check Dam ( Rock Exposed)

INPUT

W3

W1Hta

INPUT

W2

ct2 bw

Taking moments about O

Sl.No Particulars Vertical Horizontal LeverForce Force Arm

V H 1 Body wall

W1 0.6x3.2x2.4 4.608 0.3

W2 1.3x3.2x2.4/2 4.992 1.0333332 Wt of soil

W3 1.3x3.2x2.1/2 4.368 1.466667

3 Eath pr (0.420.42+2.66)x3.2/2 4.928 1.212121

13.968 4.928

Page 21: Check Dam ( Rock Exposed)

Sl.No Particulars Vertical Horizontal LeverForce Force Arm

V H

1 Body wallW1 0.6x3.2x2.4 4.608 0.3

W2 1.3x3.2x2.4/2 4.992 1.033333

W3 1.3x3.2x2.1/2 4.368 1.4666672 Buoyancy

W4 (1/2)x(0.6+1.9)x3.2 -4 0.681333

3 Earth pressure H (0.42+1.593)x3.2/2 3.2208 1.28922

9.968 3.221

Page 22: Check Dam ( Rock Exposed)

Sl.No Particulars Vertical Horizontal LeverForce Force Arm

V H

1 Body wallW1 0.6x3.2x2.4 4.608 0.5

W2 1.3x3.2x2.4/2 4.992 1.233333

2 Soil W3 1.3x3.2x2.1/2 4.368 1.666667

3 Foundn W4 2.3x0.5x2.4 2.76 1.15

4 Soil W5 0.2x3.2x2.1 1.344 2.2

5 H (0.42+3.01)x3.7/2 6.3455 1.384354

18.072 6.345

Page 23: Check Dam ( Rock Exposed)

INPUT

INPUT

Page 24: Check Dam ( Rock Exposed)

Try different values starting from bw(cal)

Sl.No Particulars Vertical Horizontal LeverForce Force Arm

V H

1 W1 0.6x3.2x2.4 4.608 0.3

2 W2 1.6x3.2x2.4/2 6.144 1.133333

3 W3 1.6x3.2x2.1/2 5.376 1.666667

4 W4 1.6x1.6x2.1/2 2.688 1.666667

5 H (1.12+3.36)x3.2/2 7.168 1.333333

18.816 7.168

Page 25: Check Dam ( Rock Exposed)

INPUT

INPUT

Sl.No Particulars Vertical Horizontal LeverForce Force Arm

V H

1 Body wall W1 0.6x3.2x2.4 4.608 0.5

W2 1.6x3.2x2.4/2 6.144 1.333333

2 Soil W3 1.6x3.2x2.1/2 5.376 1.866667

3 Foundn W4 2.6x0.5x2.4 3.12 1.3

4 Soil W5 0.2x(3.2+1.6)x2.1 2.016 2.5

W6 1.6x1.6x2.1/2 2.688 1.866667

5 H (1.12+3.71)x3.7/2 8.9355 1.519324

23.952 8.936

Page 26: Check Dam ( Rock Exposed)

INPUTSl.No Particulars Vertical Horizontal Lever

Force Force ArmV H

1 Body wall W1 0.6x2x2.4/2 1.44 0.55

W2 2x2x2.4 9.6 1.75

2 Foundn W3 2.9x1.215x2.4 8.4564 1.45

3 Wt of W4 0.15x2x1 0.3 2.825water

4 Water pr H 3.215x3.215/2 5.168112 1.071667

19.796 5.168

Page 27: Check Dam ( Rock Exposed)

Input from blench curves

Input from graph

Input from graph

Page 28: Check Dam ( Rock Exposed)

If calculated discharge is less than the actual discharge (Qth < Qa), increase the afflux(afx) by 0.05m.If afflux is more than 1 Display the message "CHECK DAM IS NOT FEASIBLE AT THIS SITE" and exit.Otherwise recalculate the steps from 8 to 11 to get the new value of DR. Input the value of Cd corresponding to the new value of DR and calculate the new Qth and repeat the

If calculated discharge is less than the actual discharge (Qth < Qa), increase the afflux(afx) by 0.05m.If afflux is more than 1 Display the message "CHECK DAM IS NOT FEASIBLE AT THIS

Page 29: Check Dam ( Rock Exposed)

H2

Page 30: Check Dam ( Rock Exposed)

+ve -ve moment moment

MR MO

0.792

16.8

3.0276

0.8475

2.027833

Page 31: Check Dam ( Rock Exposed)

21.467 2.028

+ve -ve moment moment

MR MO

0.576

15.36

1.333333

15.936 1.333

Page 32: Check Dam ( Rock Exposed)

O

+ve -ve moment moment

MR MO

1.3824

5.1584

6.4064

5.973333

12.947 5.973

Page 33: Check Dam ( Rock Exposed)

+ve -ve moment moment

MR MO

1.3824

5.1584

6.4064

-2.725333

4.15232

10.222 4.152

Page 34: Check Dam ( Rock Exposed)

+ve -ve moment moment

MR MO

2.304

6.1568

7.28

3.174

2.9568

8.784417

21.872 8.784

Page 35: Check Dam ( Rock Exposed)

+ve -ve moment moment

MR MO

1.3824

6.9632

8.96

4.48

9.557333

21.786 9.557

Page 36: Check Dam ( Rock Exposed)

+ve -ve moment moment

MR MO

2.304

8.192

10.0352

4.056

5.04

5.0176

13.57592

34.645 13.576

Page 37: Check Dam ( Rock Exposed)

+ve -ve moment moment

MR MO

0.792

16.8 12.26178

0.8475

5.538494

30.701 5.538

Page 38: Check Dam ( Rock Exposed)

DATA FOR DESIGN OF CHECK DAM ON ROCK

Maximum flood discharge Qa = m3/sec

Bed slope s = 1 in

River width L = m

Deepest bed level BLd = m

Average bed level BLa = m

Bottom level of weir/check dam BLW = m

Maximum flood level MFL = m

Height of check dam Ht = m

Top width of weir a = m

Afflux afx = m

Coefficient of discharge Cd =( Taken from graph depending on the value of DR)

Bottom width b = m( Rounded from the maximum of the values calculated in three cases)

Offset of foundation of weir c = m

Depth of foundation of weir df = m

Deepest Ground Level DGL = m(for checking stress at deepest foundation level of weir)

LEFT ABUTMENT

Left Bank Level LBL = m

Hard Rock Level HRL = m

Height of abutment Hta m(Rouded from the calculated value)

Top width of abutment tw = m

Bottom width of abutment bw = m(Rouded from the calculated value)

Foundation

Offset ca = m

Page 39: Check Dam ( Rock Exposed)

Depth dfa = m

RIGHT ABUTMENT

Right Bank Level RBL = m

Hard Rock Level HRL = m

Height of abutment Hta m(Rouded from the calculated value)

Top width of abutment tw = m

Bottom width of abutment bw = m(Rouded from the calculated value)

Foundation

Offset ca = m

Depth dfa = m

Page 40: Check Dam ( Rock Exposed)

Body wall

Foundation

Wt of water

Water pressure