chemical engineering tongji university · partial molar property •partial molar property (q )...

27
Solution thermodynamics Min Huang Chemical Engineering Tongji University

Upload: others

Post on 19-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Solution thermodynamics

    Min HuangChemical Engineering

    Tongji University

  • Mixture/solution

    • Chemical Potential• Partial Molar Property• Partial Pressure• Ideal-Gas Mixtures– enthalpy of an ideal gas– entropy of an ideal gas

    • Gibbs energy of an ideal-gas mixture Gig = Hig – TSig,

  • Mixture/solution

    • Because the properties of systems in chemical engineering depend strongly on composition as well as on temperature and pressure,

    • Need to develop the theoretical foundation for applications of thermodynamics to gas mixtures and liquid solutions

  • Mixture/solution

    • definition of a fundamental new property called the chemical potential, upon which the principles of phase and chemical-reaction equilibrium depend.

    • This leads to the introduction of a new class of thermodynamic properties known as partial properties.

  • Chemical potential

    • Gibbs free energy of a multicomponent mixture is a function of T, P and each species mole number, therefore, the total differential of the Gibbs free energy,

    , , ,

    i i i

    i

    iP N P N i P N

    i i

    i

    G G GdG dT dP dN

    T P N

    SdT VdP G dN

    æ ö¶ ¶ ¶æ ö æ ö= + + ç ÷ç ÷ ç ÷

    ¶ ¶ ¶è ø è ø è ø

    = - + +

    å

    å

    C

    C

    (CP1)

  • Chemical potential

    • Recall

    • in extensive function, therefore we have

    i

    r

    i

    i

    i

    r

    i

    i

    dn

    pVTSdnpVTSdG

    å

    å

    =

    =

    =

    --÷ø

    öçè

    æ+-=

    1

    1

    µ

    µ

    ( )

    jinTpi

    in

    nG

    ¹

    úû

    ùêë

    é

    ¶º

    ,,

    µ

  • Chemical Potential and Phase Equilibrium

    • Consider a closed system consisting of two phases in equilibrium.

    • Within this closed system, each individual phase is an open system, free to transfer mass to the other, that is

    ( ) ( ) ( )

    ( ) ( ) ( ) bbbbb

    aaaaa

    µ

    µ

    i

    i

    i

    i

    i

    i

    dndpnVdTnSnGd

    dndpnVdTnSnGd

    å

    å

    =

    =

    ++-=

    ++-=

    1

    1

  • Chemical Potential and Phase Equilibrium

    • The change in the total Gibbs energy of the two-phase system is the sum of these equations.

    ( ) ( ) ( )

    011

    11

    =+

    +++-=

    åå

    åå

    ==

    ==

    bbaa

    bbaa

    µµ

    µµ

    i

    i

    ii

    i

    i

    i

    i

    ii

    i

    i

    dndn

    dndndpnVdTnSnGd

  • Chemical Potential and Phase Equilibrium

    • And• Therefore,

    • Thus, multiple phases at the same T and P are in equilibrium when the chemical potential of each species is the same in all phases.

    ba

    ii dndn -=

    ( )

    ),,2,1(

    01

    Ni

    dn

    ii

    i

    i

    ii

    !==

    =-å=

    ba

    aba

    µµ

    µµ

  • Partial Molar Property

    • Partial Molar Property (q )

    • It is a response function, representing the change of total property q due to addition at constant T and P of a differential amount of species i to a finite amount of mixture/solution.

    ( )

    jinTpi

    in

    nG

    ¹

    úû

    ùêë

    é

    ¶º

    ,,

    //

    qqµ

  • Partial Molar Property

    • Let q be any molar property (molar volume, molar enthalpy, etc.) of a mixture consisting of Nimoles of species i,

    • And partial molar thermodynamic property

    • Therefore,

    ( )( )

    , ,

    , ,

    j i

    i i

    i T P N

    NT P x

    N

    qq q

    ¹

    ¶= =

    iiN N=å

    C

    ( )1

    , ,i ii

    x T P xq q=

    =åC

  • Partial Molar Property

    • Or

    So that, by the product rule of differentiation,

    • substitute G with Nq into Eq. CP 1

    1

    i i

    i

    N Nq q=

    =åC

    ( ) i i id N N d dNq q q= +å å PM 1

  • Partial Molar Property

    • substitute G with Nq into Eq. CP 1

    , , ,

    , ,

    i i i

    i i

    i

    iP N T N i P N

    i i

    iP N T N

    N N NdN dT dP dN

    T P N

    N dT N dP dNT P

    q q qq

    q qq

    æ ö¶ ¶ ¶æ ö æ ö= + + ç ÷ç ÷ ç ÷

    ¶ ¶ ¶è ø è ø è ø

    ¶ ¶æ ö æ ö= + +ç ÷ ç ÷

    ¶ ¶è ø è ø

    å

    å

    C

    C

    PM 2

  • Partial Molar Property

    • Subtracting PM 2 from PM 1,

    • Or,, ,

    0

    i i

    i i

    iP N T N

    N dT N dP N dT P

    q qq

    ¶ ¶æ ö æ ö- - + =ç ÷ ç ÷

    ¶ ¶è ø è øåC

    , ,

    0

    i i

    i i

    iP N T N

    dT dP x dT P

    q qq

    ¶ ¶æ ö æ ö- - + =ç ÷ ç ÷

    ¶ ¶è ø è øåC

    This is the generalized Gibbs-Duhem Equation

  • Partial Molar Property

    • For constant temperature and pressure,

    • Substitute q with G

    ,1

    ,1

    0

    0

    i i T Pi

    i i T Pi

    N d

    x d

    q

    q

    =

    =

    =

    =

    å

    å

    C

    C

    1

    1

    0

    0

    i i

    i

    i i

    i

    SdT VdP N dG

    SdT VdP x dG

    =

    =

    - + =

    - + =

    å

    å

    C

    C

  • Partial Molar Property

    • At constant temperature and pressure,

    • Recall Gibbs-Duhem Equation

    1

    1

    0

    0

    i i

    i

    i i

    i

    N dG

    x dG

    =

    =

    =

    =

    å

    å

    C

    C

    , ,

    0

    i i

    i i

    iP N T N

    dT dP x dT P

    q qq

    ¶ ¶æ ö æ ö- - + =ç ÷ ç ÷

    ¶ ¶è ø è øåC

  • Partial Molar Property

    • Rearrange and times n on both sides,

    • Derivative with respect to Ni

    å-

    =++÷÷ø

    öççè

    涶

    -÷÷ø

    öççè

    涶

    -1c

    jjjii

    NT,Np,

    0θdNθdNdppθndT

    Tθn

    ii

    å-

    =++÷÷ø

    öççè

    涶

    -÷÷ø

    öççè

    涶

    -1c

    j i

    jji

    NT,

    i

    Np,

    i 0dNθd

    dNθddppθdT

    ii

    å-

    =¶¶

    ++÷÷ø

    öççè

    涶

    -÷÷ø

    öççè

    涶

    -1c

    j j

    iji

    NT,

    i

    Np,

    i 0NθdNθddp

    pθdT

    ii

  • Partial Molar Property

    • Rearrange,

    • Substitute back to the Gibbs-Duhem Equation

    å-

    =÷÷

    ø

    ö

    çç

    è

    æ

    ¶+÷÷

    ø

    öççè

    æ

    ¶+÷÷

    ø

    öççè

    æ

    ¶=

    1

    1,,,

    C

    j

    j

    pTj

    i

    xT

    i

    xp

    ii xd

    xdp

    pdT

    Td

    qqqq

    å å=

    -

    = úú

    û

    ù

    êê

    ë

    é

    ÷÷

    ø

    ö

    çç

    è

    æ

    ¶+÷÷

    ø

    öççè

    æ

    ¶+÷÷

    ø

    öççè

    æ

    ¶+

    ÷÷ø

    öççè

    æ

    ¶-÷÷

    ø

    öççè

    æ

    ¶-=

    C

    j

    C

    j

    j

    pTj

    i

    xT

    i

    xp

    ii

    NT

    i

    Np

    i

    xdx

    dpp

    dTT

    x

    dpp

    dTT

    ii

    1

    1

    1,,,

    ,,

    0

    qqq

    qq

  • Partial Molar Property

    • Since

    • Finally

    • For Binary

    1

    1 1,

    0ii ji j j T P

    x dxx

    q-

    = =

    æ ö¶=ç ÷

    ç ÷¶è øå åC C

    å å= =

    ÷ø

    öçè

    æ

    ¶=÷

    ø

    öçè

    æ

    ¶=÷÷

    ø

    öççè

    æ

    ¶C

    i xp

    C

    i

    ii

    xpxp

    ii dT

    TdTx

    TdT

    Tx

    1 ,1,,

    qq

    q

    00

    ,1

    22

    ,1

    11

    2

    1

    1

    1

    1

    ,1

    =÷÷

    ø

    ö

    çç

    è

    æ

    ¶+÷

    ÷

    ø

    ö

    çç

    è

    æ

    ¶=÷

    ÷

    ø

    ö

    çç

    è

    æ

    ¶å å=

    -

    = pTpTi

    C

    j pT

    ii

    xx

    xx dx

    xx

    qqq

  • Ideal-Gas Mixtures

    • Ideal gas

    • pi is known as the partial pressure of species i

    t

    ii

    V

    RTnp =

    tV

    nRTp =

    ),,2,1( Ni pyp or yn

    n

    p

    piii

    ii!====

    ( ) ( )

    P

    RT

    n

    n

    P

    RT

    n

    pnRT

    n

    nVV

    j

    ii

    ni

    npTinpTi

    igig

    i

    =÷÷

    ø

    ö

    çç

    è

    æ

    úû

    ùêë

    é

    ¶=ú

    û

    ùêë

    é

    ¶=

    ,,,,

    /

  • Ideal-Gas Mixtures

    • A partial molar property (other than volume) of a constituent species in an ideal-gas mixture is equal to the corresponding molar property of the species as a pure ideal gas at the mixture temperature but at a pressure equal to its partial pressure in the mixture.

    ig

    i

    ig

    ii

    ig

    i

    ig

    i VM whenpTMPTM ¹= ),(),(

  • Ideal-Gas Mixtures

    • Since the enthalpy of an ideal gas is independent of pressure,

    • For ideal gases, this enthalpy change of mixing is zero.

    ig

    i

    i

    i

    ig

    ig

    i

    ig

    i

    ig

    i

    ig

    i

    ig

    ii

    ig

    i

    HyHp T, mixture at value pureHH

    pTHpTH pTHpTH

    å==

    =

    =

    )(),(),(),(),(

  • Ideal-Gas Mixtures

    • The entropy of an ideal gas does depend on pressure, is given as

    • Therefore, integration from pi to p

    T const at pRddS igi ln=

    i

    i

    i

    ig

    i

    ig

    i yRp

    pRpTSpTS lnln),(),( =-=-

    1

    2

    1

    2p p

    pnR lnTTlnncS -=D

  • Ideal-Gas Mixtures

    • Recall• Therefore,

    • Where Siig is the pure-species value at the mixture T and P.

    ig

    i

    ig

    ii

    ig

    i

    ig

    i VM whenpTMPTM ¹= ),(),(

    i

    ig

    i

    ig

    i

    i

    ig

    i

    ig

    i

    yRSS

    yRpTSpTS

    ln

    ln),(),(

    -=

    -=

  • Ideal-Gas Mixtures

    • By the summability relation

    • the left side of the second equation is the entropy change of mixing for ideal gases. Since l/yi > 1, this quantity is always positive, in agreement with the second law.

    ii

    i

    ig

    i

    i

    i

    ig

    i

    i

    i

    i

    ig

    i

    i

    i

    ig

    i

    yyRSyS

    yyRSyS

    1ln

    ln

    åå

    åå

    =-

    -=

  • Ideal-Gas Mixtures

    • For the Gibbs energy of an ideal-gas mixture Gig = Hig – TSig,

    • for partial properties is

    i

    ig

    i

    ig

    i

    ig

    i

    i

    ig

    i

    ig

    i

    ig

    i

    ig

    i

    ig

    i

    ig

    i

    yRTGG

    yRTTSHG

    STHG

    ln

    ln

    +=º

    +-=

    -=

    µ

  • Recap Mixture/solution• Gibbs free energy of a multicomponent mixture• Chemical Potential• Partial Molar Property• Partial Pressure of Ideal-Gas• Ideal-Gas Mixtures– enthalpy of an ideal gas– entropy of an ideal gas

    • Gibbs energy of an ideal-gas mixture Gig = Hig –TSig,