chemical flood design · 2020. 6. 16. · cmg-stars measured-0.2 0 0.2 0.4 0.6 0.8 1 1.2 0 5 10 15...

45
ENHANCED OIL RECOVERY INSTITUTE Chemical Flood VLADIMIR ALVARADO CHEMICAL AND PETROLEUM ENGINEERING JANUARY 2012 Design

Upload: others

Post on 14-Feb-2021

4 views

Category:

Documents


1 download

TRANSCRIPT

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Chemical Flood

    V L A D I M I R A LV A R A D O

    C H E M I C A L A N D P E T R O L E U M E N G I N E E R I N G

    J A N U A R Y 2 0 1 2

    Design

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    • Project objective

    • Fluid characterization

    • Design challenge

    • ASP Evaluation

    • First Attempt

    • Second Attempt

    • Closing remarks

    Outline

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Project Objective

    • To develop an effective alkaline-surfactant-polymer (ASP) blend for the DC field based on based behavior studies in the lab and coreflooding experiments.

    • No rock samples from this field were available

    • Fluid samples and data on the reservoir were collected by UW-PETE team

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Brine Analysis

    • Calcium: 456 mg/L

    • Magnesium: 63 mg/L

    • Sodium: 1315 mg/L

    • Potassium: 71 mg/L

    • Bicarbonate: 509 mg/L

    • Chloride: 360 mg/L

    • Sulfate: 3400 mg/L

    • TDS: 6094 mg/L

    • Calcium: 433mg/L

    • Magnesium: 72 mg/L

    • Sodium: 1459 mg/L

    • Potassium: 79 mg/L

    • Bicarbonate: 505 mg/L

    • Chloride: 860 mg/L

    • Sulfate: 3700 mg/L

    • TDS: 6730 mg/L

    Reservoir Brine Synthetic Reservoir Brine

    Synthetic brine optimized for sulfate and bicarbonate concentrations

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Brine Analysis

    • Calcium: 6.3 mg/L

    • Magnesium: 1.7 mg/L

    • Sodium: 556 mg/L

    • Potassium: 2.6 mg/L

    • Bicarbonate: 298 mg/L

    • Chloride: 12 mg/L

    • Sulfate: 720 mg/L

    • TDS: 1600 mg/L

    • Calcium: 13 mg/L

    • Magnesium: 2 mg/L

    • Sodium: 486 mg/L

    • Potassium: 0.5 mg/L

    • Bicarbonate: 362 mg/L

    • Chloride: 13 mg/L

    • Sulfate: 780 mg/L

    • TDS: 1500 mg/L

    Injection Water Synthetic Injection Water

    Synthetic brine optimized for sulfate and bicarbonate concentrations

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Interfacial Tension

    • IFT measured with pendant drop = 26 dynes/cm

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0 20 40 60 80 100 120

    IFT

    (dyn

    es/

    cm)

    Time (s)

    Deadman Creek Oil with Deadman Creek Injection Water at 25°C

    IFT

    IFT = 26 dynes/cm

    drop released

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    • Ongoing fresh waterflooding have changed

    current reservoir water chemistry. The

    challenge is to find surfactant blends that reach

    optimum salinity at a TDS < 12,000 ppm.

    • Solution: Use of surfactants with PO groups

    and blend them with the main surfactant

    Design Challenge

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    SUBOPTIMUM DESIGN (ONE SURF.) First Attempt

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Surfactant Selection

    • Prepared solutions with:

    – 1 wt% surfactant

    – 1 wt% Alkali • NaOH

    • Na2CO3

    – NaCl salinity varying from 1 wt% to 7 wt%

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Surfactant Selection

    • Flame seal pipettes

    • Inject Alkali-Surfactant solutions with each salinity

    • Combine with DC Oil

    • Cap pipettes and purge with argon gas

    • Placed in oven at 120°F, mixed gently

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Surfactant Selection

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Surfactant Selection • Record initial

    oil/water interface

    • Measure the volume of oil and water in microemulsion

    • Determine optimum salinity by plotting solubilization ratio vs salinity

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    1 2 3 4 5 6 7SR

    cc/

    cc

    [NaCl] (wt%)

    P S-13 B

    SRw

    SRo

    Optimum Salinity = 5 wt%

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Surfactant Selection Surfactant Activity (%) Yes No Maybe

    P S-13 B 89.51 X

    P S-13 C 84.32 X

    P S1-HA 89.96 X

    P M-2 59.29 X

    P S-13D HA X

    P A-6 X

    P C-2 46 X

    A-F X

    P C-1 39.11 X

    P S-12 67.06 X

    Yes = Optimum Salinity below brine salinity, less than 2 days to achieve

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Surfactant Selection • Tested P S-13B and P S-

    13C with synthetic field brines

    • Tested P S-13C for critical micellar concentration (CMC)

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Core Flooding – ASP # 1(NaOH) • Core: Minnelusa Core W R741 D7215’ • D=3.735 cm • L=7.364 cm • A=10.9565 cm2

    • Φ=22.99 % • Kg=516.6 md • PV=18.5491 cm3

    • Wt dry=161.528 g • Wt wet=180.110 g • Diff=18.582 g

    Core was initially cleaned with toluene and methanol, then dried in the oven

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Core Flooding – ASP #1 (NaOH)

    • Test for reduction in residual oil saturation

    • Core aged in synthetic DC reservoir brine

    • Flooded with DC oil to Swi and aged

    • 10 PV waterflood with synthetic DC injection brine

    • 3 PV ASP flood – 500 ppm P S-13C – 2000 ppm Floppam 3330S

    polymer – 1 wt% NaOH – 1L synthetic DC injection brine

    • 10 PV chase waterflood with synthetic DC injection brine

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Core Flooding #1 – (NaOH)

    0

    0.2

    0.4

    0.6

    0.8

    1

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 5 10 15 20 25

    ΔP

    (p

    si)

    PV Injected

    ASP Experiment # 1

    DP

    Oil Recovered

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Core Flooding – ASP # 2 (Na2CO3) • Core: Minnelusa Core W R741 D7212.5’ • D=3.728 cm • L=7.557 cm • A=10.9155 cm2

    • Φ=22.73 % • Kg=510.1 md • PV=18.7495 cm3

    • Wt dry=166.482 g • Wt wet=185.271 g • Diff=18.789 g

    Core was initially cleaned with toluene and methanol, then dried in the oven

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Core Flooding – ASP #2 (Na2CO3)

    • Test for reduction in residual oil saturation

    • Core aged in synthetic DC reservoir brine

    • Flooded with DC oil to Swi and aged

    • 10 PV waterflood with synthetic DC injection brine

    • 3 PV ASP flood – 500 ppm P S-13C – 2000 ppm Floppam 3330S

    polymer – 1 wt% Na2CO3 – 1L synthetic DC injection brine

    • 10 PV chase waterflood with synthetic DC injection brine

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Core Flooding #2 – (Na2CO3)

    0

    0.2

    0.4

    0.6

    0.8

    1

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 5 10 15 20 25

    ΔP

    (p

    si)

    PV Inj

    ASP Experiment # 2 (Na2CO3)

    DP

    Oil Production

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Core Flooding Comparison

    Test φ K (md) Swi (%)

    Waterflood Recovery (%OOIP)

    Tertiary ASP

    Recovery (%OOIP)

    Pressure Drop Return to

    Waterflooding

    ASP#1 (NaOH) 22.99 516.6 19.67 67.35 20.96 Yes

    ASP#2 (Na2CO3) 22.73 510.1 23.2 62.66 12.92 No

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    ASP #1 – Relative Permeability Curves

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    kr

    - re

    lative p

    erm

    eabili

    ty

    0.00 0.20 0.40 0.60 0.80 1.00Sw

    krw vs Sw krow vs Sw

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    ASP #1 (NaOH) History Match (WF)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 2 4 6 8 10 12

    OO

    IP%

    Inj. PV

    CMG-STARS

    Measured

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 5 10 15

    Oil

    Cu

    t

    Inj. PV

    CMG-STARS

    Measured

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 5 10 15

    Pre

    ssu

    re d

    rop

    (p

    si)

    Inj. PV

    CMG-STARS

    Measured

    0

    2

    4

    6

    8

    10

    12

    0 5 10 15

    Cu

    mu

    lati

    ve o

    il p

    rod

    uce

    d (

    ml)

    Inj. PV

    CMG-STARS

    Measured

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    OPTIMUM DESIGN (+1 SURF.) Second Attempt

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    • Connate brine

    • Injection brine

    Just 1600 ppm NaCl

    Component Wt (gr)

    MgSO4 0.313

    KCl 0.136

    CaCl2.2H2O 1.676

    NaCl 0.697

    Na2SO4 4.661

    TDS 7100 ppm

    Materials and Methods

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Dead man Creek Crude Oil Viscosity at 48oC = 83 cP

    Surfactant 0.75wt%PS13-D + 0.25wt%PS3B

    Polymer

    Flopaam-3330s

    2000 ppm (ASP) 1000 ppm (P)

    Alkali 1wt% NaOH

    Core

    Berea: (ASP 1)

    L= 7.904 cm

    D= 3.73 cm

    PV= 22.12 cc

    Φ= 25.62%

    Kair= 366.9 md

    Minnelusa: (ASP 2)

    L= 7.017 cm

    D= 3.728 cm

    PV= 16.41 cc

    Φ= 21.43%

    Kair= 808.2 md

    Materials and Methods

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Parameter

    • Salinity

    • Surfactant blend ratio

    • Soap/surfactant ratio

    Optimal parameter

    Winsor

    Type - I

    Winsor

    Type - II

    Varying parameter

    Winsor

    Type - III

    mic

    ro

    mic

    ro

    Pipette

    (bottom sealed)

    Brine +

    surfactant

    Oil

    Initial

    interface

    24 hr

    Winsor

    Type - I

    Winsor

    Type - II

    Winsor

    Type - III

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Salinity (NaCl ppm) increases

    5000 10000 125000 15000 17500 20000 22500 25000 30000 35000

    Only 1wt% Surfactant

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    29

    1wt% Surf. + 1wt% Na2CO3 Salinity (NaCl ppm) increases

    1500 2500 3500 5000 7500 10000 15000 20000

    11500 12500 13500 25000 15000 17500 20000 30000

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    1wt% Surfactant + 1wt% NaOH Salinity (NaCl ppm) increases

    1500 2500 3500 5000 7500 10000 15000

    11500 12500 13500 25000 15000 17500 20000

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Only 1wt% Surfactant

    Opt_Sal > 35000 ppm Opt_Sal ~ 11500 ppm Opt_Sal ~ 30000 ppm

    1wt% Surfactant + 1wt% NaOH 1wt% Surfactant + 1wt% Na2CO3

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    ).().()( 21_ surfactntinjectedofsalinityoptLogxsoapinsituofsalinityoptLogxsalinityoptimalLog blendASP

    Theory:

    .

    1

    )()(surfactofnumbern

    i

    iiblend salinityoptimalLogxsalinityoptimalLog

    ),,( cationsoftypepHacidsorganicoftypeF

    ),,,( alkaliofionconcentratpHamountasphalteneTANF

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Only 1wt% Na2CO3

    Salinity (NaCl ppm) increases

    5000 10000 12500 17500 20000 22500 25000 30000

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Only 1wt% NaOH Salinity (NaCl ppm) increases

    5000 10000 12500 17500 20000 22500 25000 30000

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Results (ASP#1)

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    (sec-1)

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    2

    4

    6

    8

    10

    12

    14

    0 5 10 15

    pH

    Inj. PV

    pH at effluent

    Inlet pH

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    0

    10

    20

    30

    40

    50

    60

    0

    5

    10

    15

    20

    25

    30

    0 2 4 6 8 10 12 14 16

    Wat

    er

    visc

    . (c

    P)

    Inj. PV

    Water viscosity

    Inlet viscosity

    Emulsion

    Em

    uls

    ion

    vis

    c.

    (cP

    )

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Stage Permeability (md)

    Initial air permeability 366

    Initial brine permeability

    (Sw=1)

    55.5

    Oil permeability at Swi 218.75

    Brine permeability at Sor 24.11

    Brine permeability at the end

    of chemical flood

    27.43

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    40

    WF ASP P WF

    Results (ASP#2)

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    41

    pH and surfactant concentration at effluent:

    Mostly stable W/O emulsion

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Observed precipitation at effluent samples:

    ClKSi

    ClCa

    K

    Ca

    KS

    O

    Na

    Cl

    Ca

    0 1 2 3 4 5 6 7 8 9 10

    keVFull Scale 4240 cts Cursor: -0.031 (82 cts)

    Spectrum 1

    ClKSi

    Cl

    KCa

    CaS

    K O

    Na

    Cl

    Ca

    0 1 2 3 4 5 6 7 8 9 10 11

    keVFull Scale 5549 cts Cursor: -0.009 (361 cts)

    Spectrum 4

    As we expected some secondary minerals was produced (here calcite, also some sulfur was produced which is a really evidence for anhydrite dissolution)

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    43

    Results (ASP#2) (cont’d)

    Permeability Changes (Minn.)

    Stage Permeability (md)

    Initial air permeability 808.2

    Initial brine permeability

    (Sw=1)

    152

    Oil permeability at Swi 428.9

    Brine permeability at Sor 42.5

    Brine permeability at the end

    of chemical flood

    78.75

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    44

    Results (ASP#3)

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    45

    Why does NaOH work better?