chemistry 2 - university of sydney faculty of science · pdf filechemistry 2 lecture 6...

21
Chemistry 2 Chemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic field. The electric field interacts with charges. Two charges separated in space represent a dipole moment which can interact with an electric field. Energy can only be taken or added to the electric field in units of hν (ht ) Learning outcomes (photons). • Be able to manipulate and use the key equations given in the green box at the end of the lecture. •Utilize the harmonic oscillator and anharmonic oscillator as a model f th l lt t f ib ti di t i l l f or the energy level structure of avibrating diatomic molecule.

Upload: phamhuong

Post on 06-Mar-2018

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

Chemistry 2Chemistry 2

Lecture 6 

Vibrational Spectroscopy

Assumed knowledgeLight behaves like an oscillating electromagnetic field. The electric field interacts with charges. Two charges separated in space represent a dipole moment which can interact with an electric field. Energy can only be taken or added to the electric field in units of hν( h t )

Learning outcomes(photons).

• Be able to manipulate and use the key equations given in the green box at the end of the lecture.

•Utilize the harmonic oscillator and anharmonic oscillator as a model f th l l t t f ib ti di t i l lfor the energy level structure of a vibrating diatomic molecule.

Page 2: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

Revision:  h l i SThe Electromagnetic Spectrum

Revision: Light as a EM fieldRevision: Light as a EM field

Page 3: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

Revision:  The Electromagnetic Spectrum

Spectral range

λ (nm) ν (Hz) (cm‐1) Energy (kJ/mol)

Spectroscopyν~

Radio ~1 x 109 ~108 ~0.03 ~10‐8 NMR/ESR

Microwave ~100,000 ~1012 ~30 ~10‐2 Rotational,

Infrared ~1000 ~1014 ~3,000 ~103 Vibrational

Visible 400‐750 4‐6 x 1014 14,000‐25,000

1 – 3x105 Electronic

Ultraviolet 100‐400 ~1015 ~40,000 ~5x105 Electronic

X ray <100 >1016 >100 000 >106 CoreX ray <100 >10 >100,000 >10 Core electronic

Revision: Fundamental equations

Quantity Symbol SI Unit Common Unit

Energy E J kJ/molνhE Energy E J kJ/mol

Frequency ν s−1 or Hz

s−1 or Hz

νhE =Hz

Wavelength λ m nm or μmλν c=

Wavenumber m−1 cm−1

λν == 1~ ν~

Constant Symbol Valuecλ Constant Symbol Value

Speed of light c 3.00 x 108 m/s

Planck constant h 6.626 x 10‐34 Js

Page 4: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

Interaction of light with matter

Light can interact with matter in many different ways.  We will explore three of these in this course:in this course:

1. Absorption

2 Emission

now

no2. Emission

3. Scattering

now

later

Others include: stimulated emission, multiphoton processes, coherent spectroscopies

Classical absorption of lightClassical absorption of light

B li ht i ill ti l t ti fi ld itBecause light is an oscillating electromagnetic field, it can cause charges to oscillate.  If the charge can oscillate in resonancewith the field then energy can be absorbed.  gy

Alternatively, an oscillating charge can emit radiation with frequency in resonance with the original oscillationfrequency in resonance with the original oscillation.

For example, in a TV antenna, the oscillating EM field broadcast by the transmitter causes the electrons in your antenna to oscillate at the same frequency.

Page 5: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

Classical absorption of lightClassical absorption of lightTelevision

RadioChannel Frequency 

(MHz)FM Broadcast Band88.0 ‐ 108.0 MHz with 200 kHz channel

Radio

2  69.75

7 187.75

88.0  108.0 MHz with 200 kHz channel spacing 

AM B d B d9 201.75

10 214.75

AM Broadcast Band526.5 ‐ 1606.5 kHz with 9 kHz channel spacing. 10 214.75

28 532.75

p g

Q: If the optimal design of an antenna is ½ wavelength, what sizeQ:  If the optimal design of an antenna is ½ wavelength,  what size should your TV antenna be to pick up Ch 9? What about SBS (Ch28)?

A: ν = c/λ. /532.75×106 = 2.9979×108/λ, λ=1.78m.

Best antenna is 0.89m for SBS.

Classical absorption of lightClassical absorption of light

What about a molecule as an antenna?What about a molecule as an antenna?

H t ill ti h i l l ?How can we get oscillating charges in a molecule?

+ -+-

Page 6: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

Classical absorption of lightClassical absorption of light

-+ Rotating a permanent 

+dipole causes an oscillation of charge+

-

Classical absorption of lightClassical absorption of light

+ -Vibrating a permanent dipole causes an oscillation of charge

+ -

Page 7: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

Classical absorption of lightClassical absorption of light

Moving electrons in a 

j = 3

gmolecule can change the dipole of the 

l l j = 2molecule. j = 2

j = 1⎟⎠⎞

⎜⎝⎛+=

2cos2

πβαε jj ⎟⎠

⎜⎝ 6

β jj

j = 0

The “resonance condition” and the EM spectrum

Th i l i d f l l i b 10 (10 11 ) ThThe rotational period of a molecule is about 10 ps (10‐11 s).  The charge is therefore oscillating every 10‐11 s or 1011 times per second.  In what range of the electromagmetic spectrum would you expect g g p y ppure rotational spectroscopy to lie? 

11

=> λ = 3x108 / 1011 = 3x10‐3 m

ν = 1011 Hz

Page 8: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

The “resonance condition” and the EM 

Vib i l i k i h i f d i

spectrumVibrational spectroscopy is known to occur in the infrared region of the spectrum.  Calculate the frequency of the oscillating dipole and hence determine how quickly molecules vibrate.q y

Take mid‐IR to be 3000 cm‐1 (CH stretch)ν = c × ν 3x1010 × 3000 = 9 x 1013 (say 1014 s‐1)

~ν = c × ν 3x1010 × 3000 = 9 x 1013 (say 1014 s 1)Therefore a molecule vibrates in about 10 fs (or 10‐14 s)

The Quantum Harmonic Oscillator

Solution of Schrödinger equation:  

⎟⎞

⎜⎛ +=

1n

khε ν k1=But:⎟

⎠⎜⎝

+22

nn μπε

μπ2But

Oscillation (vibrational) frequencyn = 0,1,2,…

νε hnn )( 21+= S.I. unitsn )(

ω)v()v( 21+=G G(v) & ω in cm-1

Need to know!ω)v()v( 2+G ( )

G(v) is the “energy” from the bottom of the well and ω is the “harmonic frequency”

Page 9: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

“Anharmonic oscillator” (A.H.O.)Anharmonic oscillator  (A.H.O.)

harmonic

anharmonic

Molecules dissociatesMolecules dissociates

The Morse potential as an i ti f AHOapproximation of an AHO

[ ]2[ ]2)(1)r( erre eDV −−−= β

V (r

)where2

122 ⎤⎡ cμπ2

⎥⎥⎦

⎢⎢⎣

⎡=

ee hD

cμπωβDDe

You DO NOT need to know or use these equations 

rre

Page 10: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

The Schrödinger equationfor a Morse potentialfor a Morse potential

22 d ⎞⎛ h)()()(

2 2

22

xxrVdx

dnnn ψεψ

μ=⎟⎟

⎞⎜⎜⎝

⎛+−

h

μ ⎠⎝

where ( )2)(1)( erreDrV −−= βwhere ( )1)( e eDrV −=

The energy solution is:The energy solution is:

( ) ( ) ( )ehhE nn

2211

νν +−+= ( ) ( )e

e DhE

4nn 2

12

1v ν +−+=

Dissociation energy

The important equations!

all in wavenumber (cm‐1) units:

( ) ( ) ee D

G4

+v+v=)v(2

22

12

1 ωω( ) ( )

ee D4

)( 22

( ) ( )211( ) ( ) eee xG ωω 22

12

1 +v+v=)v(

This one you DO have to know how to use

In spectroscopy, we tend to use the letter “vee” to indicate the quantum number for vibration. The vibration frequency is indicated by ωe in cm-1. When solving the general quantum mechanical problem we used the letter n, to minimize confusion with “nu”, the vibrational frequency in s-1.

Page 11: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

The Morse energy levels

V (r)

Harmonic frequency

Anharmonicityconstant

( ) ( ) eee xG ωω 22

12

1 vv)v( +−+=

V

( ) ( ) eee 22)(

Harmonic  Anharmonic

term term

wexe is usually positive, so vibrationale e y p ,levels get closer together

k1 k1

The force constant for the AHO is the same as for the harmonic case:

rμπν k

2

1= μπ

ωk

c2

1=or

Different levels of approximation…ff f pp• General AHO:

( ) ( ) ( )32( ) ( ) ( ) ...vvv)v(3

212

21

21 −+++−+= eeeee yxG ωωω

• Morse oscillator:

( ) ( )G211)( ( ) ( ) eee xG ωω 2

21

21 vv)v( +−+=

• Harmonic oscillator:

( )ω21v)v( +=G ( )ω2v)v( +=G

The level of approximation to use depends on:pp p

i) the information you have

ii) the information you need

Page 12: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

The important equations!

• In wavenumber (cm‐1) units:

( ) ( ) eeG +v+v=)v(

22

21

21 ω

ω( ) ( )e

e DG

4vv)v( 22 ω

( ) ( )211( ) ( ) eee xG ωω 22

12

1 +v+v=)v(

2The ones you DO have to 

know how to useee

ee x

Dωω

4

2

=eexω4

Dissociation energy

eeD

ω 2

= V (r

)

eee xω4

This is the energy from the bottom of the

V

DThis is the energy from the bottom of the well to the dissociation limit.

D0

But we know about zero point energy DeBut we know about zero‐point energy, therefore slightly less energy is required to break the bond.

D0 = De – G(0)

G(0)We can estimate the bond dissociation energy from spectroscopic

rG(0)

(Zero‐point energy)

energy from spectroscopic measurements!

Page 13: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

Selection rules• All forms of spectroscopy have a set of selection rules 

that limit the number of allowed transitions.

• Selection rules arise from the resonance condition, which may be expressed as a transition dipole moment:

0)( )()( 1*221 ≠= ∫ drrrr ψψ μμ

Upper state

lower state

molecular di l

vibrationaldi tstate statedipole coordinate

• Selection rules tell us when this integral is zero

Harmonic Oscillator Selection Rules

selection rule:Δv=±1

Δv=+1: absorptionΔ 1 i iΔv=-1: emission

If an oscillator has only one frequency associated with it, then it can only interact with radiationit can only interact with radiation of that frequency.

Selection rules limit the number of allowed transitions

Page 14: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

Thermal populationp p

At normal temperatures, only the lowest vibrational statethe lowest vibrational state(v =0 ) is usually populated, therefore, only the first transition is typically  seen. 

Transitions arising from v≠0 are called “hot bands”(Their intensity is strongly(Their intensity is strongly 

temp. dependent)

Much of IR spectroscopy can understood from just h l f h h i illthese two results of the quantum harmonic oscillator:

E = (v+½)hν and Δv = ±1

For example:

1 0v = 1 ← 0

Page 15: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

More problems with harmonic model….

1.6

CO

p

What are these?

1.2

1.4

m-1 on

e)

amen

tal)

COCO

What are these?

1.0

1.2

1 tone

)

4260

cm

(firs

t ove

rto

m-1,

(fun

da

nce

0 .6

0.8

6352

cm

-1

econ

d ov

ert

2143

c

Abs

orba

n

0 2

0.4

(se

x 10

A

0.0

0.2x 100

2000 4000 6000

W avenum ber (cm-1

)

What are the new peaks?

• Three peaks…

i. 2143 cm‐1

ii. 4260 cm‐1

iii. 6352 cm‐1

v 3

v=4

v=2

v=3These are almost 1 : 2 : 3

hich s ggests transitions

v=1

which suggests transitions might be

v=00 → 10 → 20 → 3

Page 16: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

Anharmonic oscillator (A.H.O.) l ti lselection rules:

H.O.There are none!There are none!

But!...Harmonic and anharmonicmodels are very similar at low 

A H O

energy, so selection rules of AHO converge on HO as the anharmonicity becomes less: A.H.O.anharmonicity becomes less:

A.H.O. selection rule:Δv=±1,±2, ±3

Intensity gets weaker and weaker (typically 10×weaker for each)

Anharmonic oscillator (A.H.O.)

A.H.O. selection rule:Δv= ±1,±2, ±3

Δv = 1 : fundamentalΔv = 1 : fundamentalΔv = 2 : first overtoneΔv = 3 : second overtone, etc

Page 17: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

Typical Exam Question• Consider the infrared absorption spectrum of CO below.

a) From the wavenumber measurements on the spectrum, assign the

yp

a) From the wavenumber measurements on the spectrum, assign the spectrum, hence determine the harmonic frequency, ωe (in cm

‐1) and the anharmonicity constant ωexe (in cm

‐1). 

b) Estimate the bond dissociation, D0, for this molecule. There is no absorption below 2000 cm‐1.

Fundamental:Fundamental:2143 = G(1) – G(0),  

Overtone:4260 = G(2) – G(0)

Using the spectra to get information…g p g f

( ) ( ) eee xG ωω 22

12

1 vv)v( +−+=

G(1)−G(0) = [(1.5)ωe – (1.5)2 ωexe] − [(0.5)ωe – (0.5)2 ωexe]

( ) ( ) eee 22

2143 = ωe – 2ωexe …(1)

G(2)−G(0) = [(2.5)ωe – (2.5)2 ωexe] − [(0.5)we – (0.5)2 ωexe]

4260 = 2ωe – 6ωexe …(2)e e e ( )

Two simultaneous equations (simple to solve)

→ ωe = 2169 cm‐1,  and ωexe = 13 cm‐1

Page 18: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

Using the spectra to get information…

1-2

cm50090)2169(

==D V (r

)

eDω 2

= cm500,90134

=eD

0 )0(−= GDD

V

Dee

e xD

ω4=

1-

0

cm 400,891080500,90

)0(

=−=

GDD e D0

89,400 cm‐1 = 1069 kJ/mol

c.f. exp. value:  1080 kJ/mol

De

c f e p a ue 080 J/ o

Why the difference?R b M i ill h

G(0)

Remember Morse is still an approx. to the true intermolecular potential.  Still 2% error is pretty good for just 2 

rG(0)

(Zero‐point energy)

measurements!

Equations to know how to useEquations to know how to use…

μπν k

2

1=μ ≡

m1 × m2

m1 + m2

ω)v()v( 21+=G

μπ21 2

( ) ( )2

ω)v()v( 2+=G

( ) ( ) eee xG ωω 22

12

1 vv)v( +−+=

ee x

Dωω

4

2=)0(0 GDD e −=

eexω4

Page 19: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

SummarySummary

• Light interacts with vibrating dipoles. It may set a vibrating dipole in motion. Light may be emitted by a vibrating dipole

Th ib ti l l l t t f di t i l l• The vibrational energy level structure of a diatomic molecule may be represented by a harmonic oscillator, giving rise to quantization and spectroscopic selection rules.quantization and spectroscopic selection rules.

• The anharmonic oscillator represented by the Morse potential correctly describes bond dissociation and short p yrange repulsion. It is a better representation of the energy levels observed in a real molecule.

• Anharmonic oscillators exhibit overtone transitions.

Next lectureNext lecture

• The vibrational spectroscopy of polyatomic molecules.

Page 20: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

Practice Questions1. Which of the following diatomic molecules will exhibit an infrared 

spectrum?spectrum?a) HBr b) H2 c) CO d) I2

2. An unknown diatomic oxide has a harmonic vibrational frequency of ω = 1904 cm−1 and a force constant of 1607 N m −1. Identify the molecule.a) CO b) BrO c) NO d) 13CO

3 A th i th ib ti l l l i f h i3. As the energy increases, the vibrational level spacing for a harmonic oscillator is:a) increases b) decreases c) stays constant) ) ) y

4. As the energy increases, the vibrational level spacings for a Morse oscillator usually:a) increase b) decrease c) stay constant

5. As the energy increases, the vibrational level spacings for an anharmonicoscillator usually:oscillator usually:a) increase b) decrease c) stay constant

Practice Questions

6. For a Morse oscillator the observed dissociation energy, D0, is related to h ilib i ib i l f d h h i i b hthe equilibrium vibrational frequency and the anharmonicity by the following expression:a) ωe

2/4ωexe b) [ωe2/4ωexe]‐G(0) c) (v+½)ωe+(v+½)2ωexe d) (v+½)ωea) ωe / ωe e b) [ωe / ωe e] G(0) c) ( ½)ωe ( ½) ωe e d) ( ½)ωe

7. Which of the following statements about the classical and quantum harmonic oscillator (HO) are true (more than one possible answer here)?( ) ( p )a) The classical HO frequency is continuous, whereas the quantum frequency is discrete.b) The classical HO has continuous energy levels whereas the quantumb) The classical HO has continuous energy levels, whereas the quantum HO levels are discrete.c) The classical HO depends on the force constant, but the quantum HO does not.d) The classical HO may have zero energy, but the quantum HO may not.e) The classical HO does allow the bond to break whereas the quantume) The classical HO does allow the bond to break, whereas the quantum HO does.

Page 21: Chemistry 2 - University of Sydney Faculty of Science · PDF fileChemistry 2 Lecture 6 Vibrational Spectroscopy Assumed knowledge Light behaves like an oscillating electromagnetic

Practice Questions

8. Which of the following statements correctly describe features of the ill d l l i d i h i ?quantum Morse oscillator and energy levels associated with it?

a) The vibrational energy levels get more closely spaced with increasing v.c eas gb) The vibrational energy levels approach a continuum as the dissociation energy is approached.) Th M ill t d HO l th t lc) The Morse oscillator and HO are nearly the same at very low vd) The Morse potential is steeper than the HO for r < ree) The Morse potential exactly describes the interatomic potential.) p y p