chilling injury in chilling-sensitive plants: a review - lammc2)tomas/99_2_tomas_str1.pdf · 112...

14
ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol. 99, No. 2 (2012) 111 ISSN 1392-3196 Žemdirbystė=Agriculture, vol. 99, No. 2 (2012), p. 111‒124 UDK 634.1:581.17:576.3 Chilling injury in chilling-sensitive plants: a review Alexander S. LUKATKIN 1 , Aušra BRAZAITYTĖ 2 , Česlovas BOBINAS 2 , Pavelas DUCHOVSKIS 2 1 Mordovian State University Bolshevistskaja 68, Saransk, Russia E-mail: [email protected] 2 Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry Kauno 30, Babtai, Kaunas distr., Lithuania E-mail: [email protected] Abstract Chilling temperatures (1–10ºC) lead to numerous physiological disturbances in the cells of chilling-sensitive plants and result in chilling injury and death of tropical and subtropical plants, e.g., many vegetable species. The literature review shows that the exposure of chilling-sensitive plants to low temperatures causes disturbances in all physiological processes – water regime, mineral nutrition, photosynthesis, respiration and metabolism. Inactivation of metabolism, observed at chilling of chilling-sensitive plants is a complex function of both temperature and duration of exposure. Response of plants to low temperature exposure is associated with a change in the rate of gene transcription of a number of low molecular weight proteins. The review analyzes historical aspects in the development of ideas about the nature of chilling damage of chilling- sensitive plants and direction of modern research. Based on the authors’ own research and the literature data, the concept of cold damage was proposed, which highlighted the leading role of oxidative stress in the induction of stress response. According to this concept there were distinguished possible ways how to improve cold tolerance. They were divided into several groups: the thermal effect (low-temperature hardening, thermal conditioning, intermediate warming and the effect of heat stress), chemical treatment (trace elements, synthetic growth regulators, antioxidants) and the use of gene and cell engineering. Key words: antioxidants, cell, chilling-sensitive plants, chilling injury, physiological processes, oxidative stress. Introduction More than half of the 350 000 plant species on Earth are grown in the tropics and subtropics. In the course of evolution, they could not develop the ability to withstand low temperatures (Лукаткин, 2002). Most of these species are damaged during storage at temperatures above the freezing point of tissues, but lower than 15°C (chilling temperatures). This damage is called chilling injury as opposed to damage during freezing (freezing injury) (Levitt, 1980; Raison, Lyons, 1986). Thus, chill- ing injury is damage to chilling-sensitive plant species during storage at temperatures above the freezing point of tissues, but lower than 15°C. Chilling-sensitive plants are the plants sensitive to chilling and damaged at chill- ing temperatures. The ability of plants in a vegetative state to sur- vive the action of chilling temperatures without harm to the future growth and development is called cold resist- ance (Генкель, Кушниренко, 1966; Коровин, 1969). In turn, chilling-sensitive plants are sensitive to chilling and after prolonged storage in these temperatures exter- nal symptoms of injury are developed and death of the organism occurs (Table). Plants, which have the visual injuries at temperatures above 15°C, are called “very sensitive to chilling” (Raison, Lyons, 1986). A number of tropical or subtropical plants, such as rice, maize, to- mato, cucumber, cotton, soybeans, etc., introduced in the higher latitudes have not acquired substantial resistance to chilling, despite the long history of cultivation in tem- perate regions (Wilson, 1985). Chilling temperatures effects on plants in tem- perate climates lead to a reduction or complete crop failure due to either direct damage or delayed maturation. Even a small drop in temperature, causing no visible damage to chilling-sensitive plants, caused to up to 50% reduction in their productivity (Коровин, 1969). For example, chilling damage to young cotton plants in U.S. in 1980 resulted in the loss of 60 million dollars. In South and South-East Asia, high-yielding varieties of rice are not grown in areas of more than 7 million hectares, where they may be ex- posed to chilling temperatures (Wilson, 1985). Obviously, the problem of plant resistance to chilling temperatures, which often occur in spring and autumn in many count- ries, is important for practical plant breeding.

Upload: doantruc

Post on 23-Jul-2019

229 views

Category:

Documents


2 download

TRANSCRIPT

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 111

ISSN 1392-3196 Žemdirbystė=Agriculture,vol.99,No.2(2012),p.111‒124UDK634.1:581.17:576.3

Chilling injury in chilling-sensitive plants: a review

AlexanderS.LUKATKIN1,AušraBRAZAITYTĖ2,ČeslovasBOBINAS2,PavelasDUCHOVSKIS2

1MordovianStateUniversityBolshevistskaja68,Saransk,RussiaE-mail:[email protected],LithuanianResearchCentreforAgricultureandForestryKauno30,Babtai,Kaunasdistr.,LithuaniaE-mail:[email protected]

AbstractChilling temperatures (1–10ºC) lead to numerous physiological disturbances in the cells of chilling-sensitiveplantsandresultinchillinginjuryanddeathoftropicalandsubtropicalplants,e.g.,manyvegetablespecies.Theliteraturereviewshowsthattheexposureofchilling-sensitiveplantstolowtemperaturescausesdisturbancesinallphysiologicalprocesses–waterregime,mineralnutrition,photosynthesis,respirationandmetabolism.Inactivationofmetabolism,observedat chillingof chilling-sensitiveplants is a complex functionofboth temperature anddurationofexposure.Responseofplantstolowtemperatureexposureisassociatedwithachangeintherateofgenetranscriptionofanumberoflowmolecularweightproteins.Thereviewanalyzeshistoricalaspectsinthedevelopmentofideasaboutthenatureofchillingdamageofchilling-sensitiveplantsanddirectionofmodernresearch.Basedontheauthors’ownresearchandtheliteraturedata,theconceptofcolddamagewasproposed,whichhighlightedtheleadingroleofoxidativestressintheinductionofstressresponse.Accordingtothisconceptthereweredistinguishedpossiblewayshowtoimprovecoldtolerance.They were divided into several groups: the thermal effect (low-temperature hardening, thermal conditioning,intermediatewarmingandtheeffectofheatstress),chemicaltreatment(traceelements,syntheticgrowthregulators,antioxidants)andtheuseofgeneandcellengineering.

Keywords:antioxidants,cell,chilling-sensitiveplants,chillinginjury,physiologicalprocesses,oxidativestress.

IntroductionMore than half of the 350 000 plant species

onEartharegrowninthetropicsandsubtropics.Inthecourseofevolution,theycouldnotdeveloptheabilitytowithstandlowtemperatures(Лукаткин,2002).Mostofthesespeciesaredamagedduringstorageattemperaturesabovethefreezingpointoftissues,butlowerthan15°C(chilling temperatures). This damage is called chillinginjury as opposed to damage during freezing (freezinginjury)(Levitt,1980;Raison,Lyons,1986).Thus,chill-ing injury is damage to chilling-sensitive plant speciesduringstorageat temperaturesabovethefreezingpointoftissues,butlowerthan15°C.Chilling-sensitive plants aretheplantssensitivetochillinganddamagedatchill-ingtemperatures.

Theabilityofplantsinavegetativestatetosur-vivetheactionofchillingtemperatureswithoutharmtothefuturegrowthanddevelopmentiscalledcoldresist-ance(Генкель,Кушниренко,1966;Коровин,1969).Inturn, chilling-sensitive plants are sensitive to chillingandafterprolongedstorageinthesetemperaturesexter-nalsymptomsof injuryaredevelopedanddeathof the

organismoccurs (Table).Plants,whichhave thevisualinjuries at temperatures above 15°C, are called “verysensitive to chilling” (Raison,Lyons, 1986).Anumberoftropicalorsubtropicalplants,suchasrice,maize,to-mato,cucumber,cotton,soybeans,etc.,introducedinthehigherlatitudeshavenotacquiredsubstantialresistancetochilling,despitethelonghistoryofcultivationintem-perateregions(Wilson,1985).

Chilling temperatureseffectsonplants in tem-perateclimatesleadtoareductionorcompletecropfailureduetoeitherdirectdamageordelayedmaturation.Evenasmalldropintemperature,causingnovisibledamagetochilling-sensitiveplants,causedtoupto50%reductionintheirproductivity(Коровин,1969).Forexample,chillingdamage toyoungcottonplants inU.S. in1980resultedinthelossof60milliondollars.InSouthandSouth-EastAsia,high-yieldingvarietiesofricearenotgrowninareasofmorethan7millionhectares,wheretheymaybeex-posedtochillingtemperatures(Wilson,1985).Obviously,theproblemofplantresistancetochillingtemperatures,whichoftenoccurinspringandautumninmanycount-ries,isimportantforpracticalplantbreeding.

112 Chilling injury in chilling-sensitive plants: a review

Themostnoticeablevisualsymptomsofchill-ing injury in herbaceous plants are leaf and hypocotylwilting (Mitchell,Madore, 1992;Frenkel,Erez, 1996),whichoftenprecedestheappearanceofinfiltration(wa-tersaturatedareas)(McMahonetal.,1994;Sharometal.,1994), theappearanceofsurfacepitsandlargecavities(Dodds, Ludford, 1990; Cabrera et al., 1992; Frenkel,Erez,1996),discolorationofleavesandinternaltissues(Sharometal.,1994;Yoshidaetal.,1996;Tsudaetal.,2003), acceleratedagingand ruptureof chilled tissues,slow, incomplete or uneven ripening (Dodds, Ludford,1990), accompanied by a deterioration of the structureandflavor (Harker,Maindonald,1994;Ventura,Mend-linger,1999);increasedsusceptibilitytodecay(Cabreraet al., 1992),dryingof the edgesor tipsof leafblades(Жолкевич,1955;Hahn,Walbot,1989)andinthecaseof prolonged chilling – leaf necrosis and plant death(Mitchell,Madore,1992;Capell,Dörffling,1993;Fren-kel, Erez, 1996).According to Skog (1998), potentialsymptomsof chilling injury are surface lesions,water-soakingoftissues,waterloss,desiccationorshrivelling,internaldiscolouration,tissuebreakdown,failureoffruittoripen,orunevenorslowripening,acceleratedsenes-cenceandethyleneproduction,shortenedstorageorshelflife,compositionalchanges,lossofgrowthorsproutingcapability, wilting and increased decay due to leakageofplantmetabolites,whichencouragegrowthofmicro-organisms,especiallyfungi.

Seeds of chilling-sensitive plants do not ger-minate at temperatures below 10–15°C (Wolk,Herner,1982;Ismailetal.,1997),andbythisparametercanbedivided into twomaingroups (Markowski, 1988).Theseedsofthefirstgroup(representatives–Solanaceaeandpumpkin) are not damaged during imbibitions at chill-ing temperatures.With temperature increase theygrownormally,butinitiationofrootgrowthleadstounderde-velopedroottiptissue,tissuenecrosisaftertheroottip,damagetothecortexorstele(Bradow,1990;Jennings,Saltveit,1994).Thesecondgroupincludesplantswhoseseedsareparticularlysensitivetolowtemperaturesduringimbibitionsandmaynotgerminateatlowtemperatures:beans, soybeans, chickpeas, corn, and cotton (Gorecki

et al.,1990;Zemetra,Cuany,1991).There,plantdamageisincreasedbysoilpathogens,althoughitisasecondaryfactor(Wolk,Herner,1982).

Acharacteristiceffectofchilling temperatureson chilling-sensitive plants is growth slowing, morepronouncedinsusceptiblespeciesandvarietiesincom-parisonwiththetolerantspecies(Tingetal.,1991;Rab,Saltveit,1996a;Venemaetal.,1999).Inaddition,thereisadelayeddevelopmentandlengtheningofthegrow-ing season (Skrudlik, Koscielniak, 1996).At the sametimeapicalconedifferentiationisdelayed,reducingthenumber of newly formed plant organs and the rate oftheir occurrence, the structureof roots is changed, andflowering rate, fruit and seed filling are reduced (Buisetal.,1988,Barlow,Adam,1989;Rab,Saltveit,1996b,Skrudlik,Koscielniak,1996;Lejeune,Bernier,1996).

Cytophysiological changes caused by chilling in the chilling-sensitive plants Chilling temperatures cause multiple disor-

ganizationsofthecellsultrastructureinsensitiveplants(Kratsch,Wise,2000).Thedamagingeffectofchillingisoftenrevealedinthedestructionofthecellsmembranesystems, leading to lossofcell compartmentation (Gu-tierrezetal.,1992).Itwasshowntheswellingandrup-tureoftheplasmalemma(Taoetal.,1991),destructionoftheendoplasmicreticulumandvesiculationofitsmem-branes(Marangonietal.,1990),andchangesoftheGolgiapparatus(Yoshidaetal.,1989).Uponchilling,themostnoticeablechangeswereshowninthestructureofmito-chondria,namelytheirswellinganddegeneration(Guti-errezetal.,1992),matrixenlightenment,cristaeshorten-ingandadecreaseintheirnumber,whichshouldleadtoareducingofoxidativephosphorylation(Desantisetal.,1999;Yinetal.,2009).Chillingtemperaturesdisturbedthe formation of prolamellar plastids (Ikeda, Toyama,1987), caused swelling and structural changes in chlo-roplasts,namelydestructionofchloroplastsmembranes,disintegrationofgrains,reductionofribosomenumber,

Table.Thelistofthevegetables,sensitivetochillingtemperatures,thelowestsafestorage/handlingtemperatureandthesymptomsofchillinginjury(DeEll,2004)

Crop LowestsafetemperatureºC Chillinginjurysymptoms

Asparagus 0–2 dull,gray-green,limptipsBean(snap) 7 pittingandrussetingCucumber 7 pitting,water-soakedlesions,decayEggplant 7 surfacescald,Alternariarot,seedblackeningOkra 7 discoloration,water-soakedareas,pitting,decayPepper 7 pitting,Alternariarot,seedblackeningPotato 2 mahoganybrowning,sweeteningPumpkin 10 decay,especiallyAlternariarotSquash 10 decay,especiallyAlternariarot

Sweetpotato 10 decay,pitting,internaldiscolorationTomato(ripe) 7–10 water-soaking,softening,decay

Tomato(mature-green) 13 poorcolourwhenripe,Alternariarot

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 113

inducedtheformationofperipheralreticulum(smallve-siclesofenvelope)andtheaccumulationoflipidbodies,andthedisappearanceofstarchgrains(Gutierrezetal.,1992;Kratsch,Wise,2000).

The sharp decrease in the number of divid-ingcellsduringchillingdecreased themitotic index inapexesandinthebasalpartofyoungleaves(Зауралов,1993;Лукаткинидр.,2010).Therelationshipbetweenthecellcyclephaseswaschangedtoo(Francis,Barlow,1988;Rymenetal.,2007).Significantreductionofcellgrowth inrootelongationzoneat lowtemperaturewasshown (Ikeda et al., 1999). Chilling temperatures causeaccelerated cell differentiation. So, in chilled root apex-esofmaizetheprogressingdifferentiationofsomecelllineswasobserved(Zavala,Lin,1989).Inhibitionofcellgrowthleadstosignificantchangesingrowthoftheplantanditsorgans(Rab,Saltveit,1996a;Rymenetal.,2007;Straussetal.,2007).

Colloid-chemicalpropertiesofthecytoplasmareaffected by chilling too (Генкель, Кушниренко, 1966;Wang, 1982; Minorski, 1985). So, cytoplasm viscositydecreasesataslightchillingdue to the increaseofcol-loids dispersion anddecayof structural formations, butitgrowsatastrongandlong-termchillingduetocoagu-lationofstructuralproteins (Жолкевич,1955;Генкель,Кушниренко,1966;Zhangetal.,1995).Thecontentofsolubleproteinswasdecreasedinchilling-sensitiveplantsat low temperatures, and this led to a reduction in theisoelectriczoneofthecytoplasm(Дроздовидр.,1977).ChillingofsensitiveplantsleadstoashiftofintracellularpH(Yoshida,1994;Zauralovetal.,1997;Kasamoet al.,2000) and an increase in cell membranes permeability(Markowskietal.,1990;Lukatkinetal.,1993,Лукаткини др., 2007).A very sensitive indicator of the cell is acytoplasmic streaming, which was stopped for severalminutesafterchillingofsensitiveplants(tomato,tobacco,andpumpkin)to10°C(Lewis,1961).Otherstudiesfoundagradualdecelerationofthecytoplasmicstreaminginthetrichomesoftomato,watermelon,spiderwortanddigitaliswhenthetemperaturedroppedbelow5°C(Pattersonetal.,1979),andthestreamingratecorrelatedwithresistanceofplantstochillingtemperature.Thechangesincyclosisre-sponsetochillingwereassociatedwithchangesinthecy-toplasmviscosity,ATP(adenosine-5’-triphosphate)level,sensitivitytochillingofenzymesystemsresponsiblefortheuseofATPfor thestreaming,withdamagingof thecytoskeleton(Pattersonetal.,1979;Wang,1982;Woodsetal.,1984b;Minorsky,1985).

Effect of chilling on the physio-logical processes in chilling-sensi-tive plants Incubation of chilling-sensitive plants at low

temperaturesinducesdisturbancesinphysiologicalpro-cesses: water regime, mineral nutrition, photosynthe-sis, respirationand totalmetabolism(Жолкевич,1955;Генкель,Кушниренко,1966;Levitt,1980;Wang,1982;Graham,Patterson,1982).

Water regime. Chilling of sensitive plants af-fectsallcomponentsofwaterregimeandcauseslossof

water, resulting instrongwilting (Vernierietal.,1991;Boeseetal.,1997;Bloometal.,2004).Itisbasedonthetwomainfactors:rapiddeclineintheabilityofrootstoabsorbwaterandtransportittotheshoots(Bolgeretal.,1992)andreducedabilitytoclosestomatainresponsetosubsequentwaterdeficit(Pardossietal.,1992;Wilkinsonetal.,2001;Bloometal.,2004).Insufficientwatersup-plyprovokesrapiddropinwaterpotentialofleavesdur-ingthefirsthoursofcooling(Wolfe,1991;Capell,Dörf-fling,1993;Boeseet al.,1997).Thedegreeofchillingdamageofplantscanbereducedbymeansofpreventingthedisturbanceofthewaterregime(Vernierietal.,1991;Wolfe,1991;Pardossietal.,1992;Janowiak,Dörffling,1996;Boeseetal.,1997).

Mineral nutrition. Low temperatures have aneffectonmineralnutritionofplants.Absorptionofionsbyrootsisdifficult,aswellastheirmovementintheabove-ground parts of plants.The distribution of nutrients be-tweentheplantorgansisdisrupted,withgeneraldecreasein the nutrient content in the plant (Лукаткин, 2002).Chillingofplantsleadstoadecreaseintheactivityofnit-ratereductase,reductioninthenitrogenincorporationintheaminoacidsandproteins,andadropintheproportionoforganicphosphorusandanincreaseininorganicPcon-tent(Holobradaetal.,1981;Ziaetal.,1994),whichisaconsequenceofabreachofphosphorylationandenhanceddecompositionoforganicPcompounds.Mechanisms toreducetheabsorptionofnutrientsbychillingtemperaturesinclude depression of respiration and/or oxidative phos-phorylation, impair enzymatic transport systems associ-atedwithconformationalproteinschangesinmembranes,changes in membrane potential, reducing the supply ofATP toH+-transportingATPase, aswell as lowering thepermeabilitycoefficientsforions(Clarksonetal.,1988).

Respiratory rate. The consequence of keepingplants at chilling temperatures is a change in respira-tory rate.There is evidence of its decline, occurring asaresultofdestructionofthemitochondriastructure,thegeneralloweringofkineticenergy,andtheinhibitionofsomeenzymes(Lyonsetal.,1979;Yoshidaetal.,1989;Prasadetal.,1994a;Lawrence,Holaday,2000;Munroet al.,2004).Otherauthorshaveobservedthatanincreaseinrespiratoryactivityduringchillingandprolongedele-vation of the respiration rate after cold exposure mayindicateirreversiblemetabolicdysfunctionandaccumu-lation of incompletely oxidized intermediates (Wilson,1978; Steward et al., 1990;Yadegari et al., 2008).Themechanismofstimulationisunknown,butitispossibletoassumethatitwastheresultofuncouplingofoxidativephosphorylation(Wang,1982).Itisalsopossiblethattheincreasedrespirationreflectsareactiontothetransferofplantsfromchillingtemperaturestothehighertempera-tures(Zauralov,Lukatkin,1997).Asaresultofdecreasedrespiration and increased consumption of energy-richphosphatesatchillingtemperaturesisareductionofATPlevels (Takeda et al., 1995; Lawrence,Holaday, 2000).Cold-tolerant crop species have greater temperaturehomeostasisofleafrespirationthancold-sensitivespecies(Yamori et al., 2009). Chilling reduces the cytochromepathoftheelectrontransportinseedlings(Prasadetal.,

114 Chilling injury in chilling-sensitive plants: a review

1994a;Reyes,Jennings,1997)andenhancesalternativerespiratory pathways (Ordentlich et al., 1991; Purvis,Shewfeld,1993;Gonzalez-Meieretal.,1999;Ribascarboetal.,2000).Perhapsthesealternativepathwaysplayanimportant role in plant adaptation to chilling (Stewardet al.,1990).Theyaretriggeredatthechillingperiodandincreasewith decreasing temperature (Ordentlich et al.,1991). These alternative pathways induced by chillingcausedadecreaseinsuperoxidegeneratedinmitochon-dria(Purvis,Shewfelt,1993;Huetal.,2008).

Rate of photosynthesis.Duringandafterchill-ing,therateofphotosynthesisintheleavesofchilling-sensitive plants decreased and this is more related todecreasing temperature and lengthening of chilling pe-riodandpersistedforalongtimeaftertransferofchilledplantsintheheat(Jandaetal.,1994;Boeseetal.,1997;Sonoike,1998;Gesch,Heilman,1999;Allen,Ort,2001;VanHeerdenetal.,2003;Lietal.,2004;Straussetal.,2007).Thephysiologicalreasonsforthesuppressionofphotosynthesisaretheinhibitionofphloemtransportofcarbohydrates from the leaves, stomatal limitation, de-structionofthephotosyntheticapparatus,damagetowa-ter-splitting complex of photosystem I, inhibiting elec-tron transport, and uncoupling of electron transfer andenergystorage,changesintheactivityandinhibitionofsynthesisofkeyenzymesoftheCalvincycleandC4-way(Yordanov,1992;Nieetal.,1992;McMahonetal.,1994;Gesch,Heilman,1996;Yoshidaetal.,1996;Terashimaetal.,1998;Kingston-Smithetal.,1999;Venemaetal.,1999;VanHeerden et al., 2003;Garstka et al., 2007).Cold-sensitive crop species have smaller temperaturehomeostasis of leaf photosynthesis than cold-tolerantspecies(Yamorietal.,2009).

Chilling of sensitive plants in light hadmuchstrongereffectsonthephotosyntheticapparatusthanchill-inginthedark(Szalaietal.,1997;Alam,Jacob,2002).Itisconsideredthatadisturbanceofphotosynthesisduetothelightchillingislargelyaresultofphotoinhibitionand photooxidation occurring in the chilling-sensitiveplants (butnot cold-resistant), asa resultof theexcessenergy of excitation obtained by photosynthetic appa-ratus.Photoinhibitionofphotosynthesis is theloweringof photosynthetic activity under excessive illuminationduring chilling (Nie et al., 1992;Wang et al., 2008 a).It increaseswithdecreasingtemperatureandincreasinglightintensity(Jandaetal.,1994;Greer,1995).Primarysite photoinhibition is the photosystem II. However, itwasdiscoveredthatphotoinhibitionoccursatrelativelylowlightandlowtemperature,andthemainsiteofdam-ageisphotosystemI(Sonoike,1996;1999).Decreaseofphotosynthesisatchillingtemperaturesmaybeaconse-quenceofphotooxidativedamagetothephotosystemsinthemembranesofchloroplasts,which ismanifestedbyincreasedlipidperoxidation,degradationofchlorophyll,carotene,andxanthophylls(Fryeretal.,1998;Kingston-Smith,Foyer,2000).Itwascausedbyactivatedoxygenspeciesandwasassociatedwithreducedantioxidantac-tivityof tissues (Leipner et al., 1997;Terashimaet al.,1998;Leipneretal.,2000;Alam,Jacob,2002).

The inactivation of metabolism is a complexfunction of both temperature value and duration of its

effects(Breidenbachetal.,1990).Itisdifficulttodistin-guishbetweenmetabolic changes in chilledplants, oc-curringasaresultofchillingdamageorprecedingit. So,protein content in tissues of chilling-sensitive plants isusuallyreducedwithchilling,mainlyduetoasharpde-creaseinsynthesis(Levitt,1980;Mercadoetal.,1997).Asaresultofinhibitionofproteinsynthesisistheincreaseintheleveloffreeaminoacids(Kanda,1998),especiallyproline(Duncan,Widholm,1991;Jouveetal.,1993),ac-cumulationofwhichisconsideredastheelementofthemechanismofcoldhardening.Lowtemperaturesreducetheactivityofmanyenzymes(Guy,1990).Thereasonsforthismaybethedissociationofmultimericenzymes,protein-lipidandhydrophobicinteractionsdisorders,re-versible changes in kinetic properties of enzymes andallosteric regulation (Graham,Patterson, 1982;Matsuoet al.,1994).Keepingthechilling-sensitiveplantsatlowtemperaturetheconcentrationofsolublesugarsincreasedand starch contentdecreased significantly in all organs(Jouve et al., 1993). Changes in the level of carbohy-dratescausedbythechillingareassociatedwithimpairedrespiration,photosynthesis,andtheactivityofenzymesofcarbohydratemetabolism(Ebrahimetal.,1998).

Variousphysiologicalfunctionsarenotequallysensitivetocooling(Wilson,1978;Yoshidaetal.,1989).Physiologicaldysfunctioninducedbylowtemperatures,can be converted (or function restored) if the tissue isreturned to normal temperature before the appearanceofdamage.Thus,temperaturesbelowcriticaltriggerthedisturbancesofphysiologicalfunctions,butthesedistur-bancesdonotleadtovisiblemanifestationsofinjuryortochangesintherateofgrowthanddevelopment,sincedisturbancesofthephysiologicalprocessesarereversibleuntiltheybecomestable(Lyonsetal.,1979).Irreversibledamagearisingfromprolongedchillingmaybecausedbytheaccumulationoftoxicmetabolites(Lyons,1973;Graham,Patterson,1982).

Molecular-genetic changes During growth, plants are exposed to various

abiotic stresses such as low temperature, salt, drought,flooding,heat,heavymetaltoxicity,etc.Plantsmustbeable to respond appropriately to the stress. In nature,manystressesaffectplantstogether.Duetothecomplexnatureof stress,multiple sensors aremore likely toberesponsibleforperceptionofthestress.Aftertheinitialrecognition of the stress, a signal transduction cascadeisinvoked.Secondarymessengersrelaythesignal,ulti-matelyactivatingstress-responsivegenesgeneratingtheinitialstressresponse(Mahajan,Tuteja,2005;Grennan,2006;Duchovskisetal.,2006;Oktemetal.,2008).NowitisknownthatdroughtandsaltstresseswerefoundtoinducemanyofthesamegenesasdiddroughtstressandABA application or response to both cold and salinitystresses is regulatedbygenesofcalcium-signalingandnucleicacidpathways(Mahajan,Tuteja,2005;Grennan,2006).Apparently,thatchillingsensitivityisgenericallydetermined, and the species and varietal differences ofchillingresistanceareconnectedtodefinitegenes(Pra-sadetal.,1994a;Sabehatetal.,1998;Grennan,2006;Suetal.,2010).Therewereidentified634chilling-respon-

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 115

sivegenesinthechilling-lethalmutantsofArabidopsis.Thisgenelistincludesgenesrelatedtolipidmetabolism,chloroplastfunction,carbohydratemetabolism,freeradi-caldetoxification(Provartetal.,2003).Insweetpotatothere were examined transcriptional regulation of ex-pansingenesinresponsetovariouschillingtemperatures(Nohetal.,2009).90%ofthe108cDNAclonesoflowtemperature-grownsunflowerplantsexpressedatvarioustemperaturesweretobedown-regulatedandinvolvedinthemetabolismof carbohydrate, protein synthesis, sig-nal transduction and transport function (Hewezi et al.,2006).Responseofplantstolowtemperatureisassoci-atedwith a change in the rate of gene transcription oflow molecular weight proteins. Even very brief plantexposures to chilling temperature are sufficient for theappearanceof stressproteins.Cooling several chilling-sensitive plants (corn, rice,waving, tomato, cucumber,peanuts,cotton,sunflower,etc.)inducedthesynthesisofmorethan20polypeptideswithmolecularmassesof14to94kDa,whichweresimilartoHSP,inducedbyhea-ting,ordifferentfromthem(Hahn,Walbot,1989;Pareeketal.,1997;Lietal.,1999).Coldacclimationofchilling-sensitive plants is also accompaniedby the changes insynthesisofseveralproteins(Hahn,Walbot,1989;Guy,1990;Cabaneetal.,1993;Andersonetal.,1994).Chill-ingleadstodifferentialexpression(down-regulatedandup-regulated)ofgenesencodingdifferentproteins(VanHeerdenetal.,2003;Yamagitchi-Shinozaki,Shinozaki,2006;Rymenet al.,2007;Wangetal.,2008a).

Cell membrane changes Low temperaturesalter thephysicalproperties

ofcellmembranes.Chillingofsensitiveplantsleadstomultiplechangesintheirmembranes,namelyreducethemembrane elasticity, decreasing their compliance andpreventing lipid inclusion in their composition, lowerlipid fluidity, thereby reducing the activity of severalmembrane-bound enzymes, including H+-ATPase, in-creasethelateraldiffusionofphospholipids,sterolsandproteinsintheplasmamembrane(Quinn,1988;Kasamoet al., 1992;Koster et al., 1994;Kasamoet al., 2000).Thephasetransitionofcellmembranesoccursatchillingtemperaturesinchilling-sensitiveplants(butnotcold-re-sistant),andmembranesfromflexibleliquid-crystalturnintosolid-gelstructure,leadingtochangesintheproper-tiesofmembranesandmembrane-boundenzymeactivity(Raisonetal.,1971;Lyons,1973).Itisbelievedthatthephase transitions of even small fractions ofmembranelipidsresultintheformationofsoliddomainsthatcausecellmembraneandcelldamage(Thompson,1989).Thephaseseparationofthemembranecomponentsislinkedwithphasetransition.Thisphaseseparationischaracter-izedbytheappearanceofgel-likesitesintheplaneofthebilayerlipid.Thesesitesarepartiallyorcompletelyfreeofproteins.Whenthecellswerenotdamaged,theforma-tionof thesemicrodomainswasofa temporarynature.The disturbances became irreversible with long-termchilling, and coincided with the appearance of visualsymptoms of damage (Platt-Aloia, Thomson, 1987).Anumberofspeciesoftropicaloriginhavethelateralphase

separationtemperaturesomehigher(15°C)thaninplantsfromtemperatezones(6–8°C)suggestingthatplantsre-ducethefreezingpointofmembraneswiththedistancefromzoneoftropicalorigin(Terzaghietal.,1989).

Thelipidcomponentsofmembranesareconside-redthemostimportantforthemembranesfunctioningatlowtemperatures(Lyons,1973;Lyonsetal.,1979;Nish-ida,Murata, 1996; Routaboul et al., 2000). Chilling ofsensitiveplantscausesdegradationofgalacto-andphos-pholipids,resultinginincreasedfreefattyacids.Chillingofplantsandfruitschangedthemolarratioofsterolsandincreased the ratio of sterols/phospholipids,whichmaybeonereasonforloweringthemembranefluiditywhencooled (Wang et al., 1992; Whitaker, 1993). Chilling-sensitiveplantsgrowingatlowerhardeningtemperatureshowanincreaseinunsaturatedfattyacids,phospholipidsaccumulation in the tissues, lower levels of sterols andtheiresters,whichreducedtheratioofsterol/PL(Kasamoetal.,1992;Kojimaetal.,1998;Kaniugaetal.,1999).

Exposureofchilling-sensitiveplantstolowtem-peraturechangesproteincomponentsintheirmembranes.Thesechangesinclude:disordersofproteinstructure,thereleaseofnon-proteincomponentsofenzymes,changesinallostericcontrolofactivityandkineticparameters.Atthesametimetheprotein-lipidinteractionsinthemem-branehaveasignificantroleinthelow-temperatureinac-tivationofenzymes(Graham,Patterson,1982).

Changesinthestateofmembranesmayleadtosecondary or irreversible reactions, depending on tem-perature,exposuredurationandsensitivityofthespecies.Afteraprolongedchilling,thesechangeswillcauselossofmembraneintegrityandcompartmentation,theleakageofsolutes,decreaseofoxidativeactivityofmitochondria,increase of the activation energy of membrane-boundenzymes, reduce the rate of photosynthesis, cause dis-ruptionandimbalanceofmetabolism,theaccumulationoftoxicsubstancesandthesymptomsofchillinginjury(Lyons,1973;Levitt,1980;Quinn,1988).

The theory of chilling injury In the initial period of studying, the influence

of low temperatures on chilling-sensitive plants waswidespread theorySachs about thedeathofplantsduetodisordersofwaterregime.However,subsequentstud-ies have shown one-sided interpretation of these data.Changesinwaterregimewerelikelyduetodisturbancesof other processes. In themiddle of the 20th century itwasfoundthatthewiltingoftheaerialorgansisnotduetoexcessivetranspirationoverslowsupplyofwaterbyroots,butistheresultofloweringwater-holdingcapaci-tyduetodisorganizationofthecytoplasmstructureandmetabolicdecompensation(Жолкевич,1955).

Basedonobservationsofchangesinprotoplas-micviscosityatlowtemperatures,ithasbeensuggestedthat this cell property plays a key role in the damage(Belehradek,1935).Thelesstolerantplantstocold,thehighertemperatureatwhichcytoplasmgelingoccursandthe faster increases the viscosity of the cytoplasm.Atconsiderableincreaseinviscositytherateofbiochemicalreactionsinthecytoplasmisdecreased,themetabolism

116 Chilling injury in chilling-sensitive plants: a review

isdisturbed,whichleadstodysfunctionofphysiologicalprocesses.However,itwasshownthatcucumberplantsdecreasedviscositywithincreasingchillingduration,andtheworstafter2.5–4days,andthenincreasedgradually,reachingviscositylevelofnon-chilledplant,butshortlybefore the complete withering away could exceed thislevel.Anincreaseinviscosityofhighlydamagedplantsalso continued after the transfer into heat. “Dying” in-crease protoplasmic viscosity and is the final stage ofdeath,whichhasnorelationtothefirststageofdamage,butonlydeepensit(Жолкевич,1955).

According to data of some research from the1950–60s, the main result of chilling-sensitive plantsdamageduring long-termcooling is ametabolic disor-der. In this case, the death of plants occurs due to thepredominanceofthedestructionoverthesynthesis.Oneof theprobable causesof theprotoplasmstructuredis-organizationandirreversiblechangesinthemetabolismis the uncouplingbetween the energyobtainingduringrespiration and its effective consumption (Жолкевич,1955).However,metabolicchangesoccuronlyaftersuf-ficientlylongchillingofplantsandmostofthemaswellaschangesinwaterregimearenottheprimarycauseofchillinginjury.So,shorterdurationofchillingdoesnotcauseasharpinhibitionofmetabolism.Accumulationoftoxicproductsofmetabolismasaresultoftheimbalancethatoccursduringchillingofsensitiveplantsandisoneofthemainreasonsofchillinginjury(Жолкевич,1955,Генкель,Кушниренко,1966),whichoftenoccursafterthe return of chilled plants to heat, i.e. is the result ofsecondarydysfunctionassociatedwithheating.

Amongthehypothesesabouttheprimaryeventsthattriggertheoccurrenceofreactiontolowertempera-tures,hypothesisofphasechangeprevailedinthe1970s,according towhich thechilling-inducedchanges in themolecularorderingofmembranelipidsmaybethecauseof chilling injury (Raison et al., 1971).These changesincrease thedamagebyloweringtheATPlevels,meta-bolicimbalancesandincreasingmembranepermeability(Lyons,1973).However,allthesechangesdonotoccurimmediatelyafterthestartofchillingandarelikelytobesecondary disorders (Minorsky, 1985).The increase inmembranepermeabilityduetothelow-temperatureexpo-sure(“membranesleakage”)shouldbequick,registeredinthefirstfewminutesafterplacingthetissueatchillingtemperatures,inaccordancewiththehypothesisofphasetransitions.Inreality,thisdoesnothappen,andoftenpas-sivepermeabilityisnotincreased(Pattersonet al.,1979).Moreover,theincreaseinelectrolyteleakageislikelyduetochilling-inducedwaterstress,whichhasbeenrevealedto be considerably weaker in an atmosphere saturatedwithwater(Guinn,1971).Atthesametimeitisnotewor-thythatthelowunsaturationofmembranousphospholi-pides,whichisgenericallydetermined,givessensitivityto cold temperatures to chilling-sensitive plants (Zhuet al.,2008).Thedataabouttheintroductionofgenesoffatty acid desaturases in a genome of chilling-senitiveplantsconfirmsthatthisgivessensitiveplantsmorepro-nouncedchillingresistance(Kodamaet al.,1994;Ishiza-

ki-Nishizawaetal.,1996;Hamadaetal.,1998;Murata,Tasaka,1997;Domínguezetal.,2010).

Inrecentyears,specialattentionofresearchershasbeendrawntotwohypothesestoexplaintheinduc-tionofchillingdamagetoarapidincreaseintheconcen-trationoffreecytosolicCa2+([Ca2+]cyt)(Minorsky,1985)and theoccurrenceofoxidative stressuponchillingofchilling-sensitiveplants(Hariyadi,Parkin,1993;Prasadetal.,1994b).

Minorsky(1985)proposedahypothesis toex-plain most of the secondary effects of chilling shock,whichsuddenlyincreases(by1–2orders)intheconcen-trationof[Ca2+]cyt.Itisassumedthattherapidincreasein[Ca2+]cytduetochilling,mayserveastheprimaryphysio-logicalsignalofcoldexposure.Itwasshownthatchang-es in intracellular calcium compartmentation in chilledplants,leadingtoanincreasein[Ca2+]cyt,stopcytoplasmicstreaming andaffect thesubcellularstructures (Woodsetal.,1984b).Thereisevidencethatinputof45Ca2+ inmaizerootcellsincreasedby20–25%atatemperatureof2°C(Zocchi,Hanson,1982).Changesin[Ca2+]cyttriggercascade reactions in the cell,which leads to numerousdisturbancesatalllevelsofanorganization.Ourinves-tigationshowsthatchillinginducesabruptreductionofCa2+-ATPaseactivity,whichpumpsoutCa2+inapoplastand/or in intracellular depots (Лукаткин, Еремкина,2002).So,thisenhancesthe[Ca2+]cytlevelincytoplasm.DuringthegrowthofmaizeseedlingsonnutrientmediawithdifferentcalciumstatusmoreintensechillinginjurywasobservedatreducedorenhancedCa2+dosesincom-parisonwithoptimaldose(Lukatkin,Isaikina,1997).

In recent years, the calcium hypothesis hasbeen furtherdeveloped inviewofoxidative stress thatoccurswhencoolingthechilling-sensitiveplants.Oxida-tivestressthatoccursduringcoolingofchilling-sensitiveplantsplaysaleadingroleinthetransductionofchillinginjury(Lukatkin,2002a;b;Huetal.,2008).Thereasonwhyproductionoffreeradicalsandreactiveoxygenspe-cies(ROS)increasedissingletoxygen,superoxideanion,hydroxyl radical, hydrogen peroxide (Suzuki, Mittler,2006).TheseROScauseconsiderabledamage tomem-brane lipids and other cellular components (Lukatkinet al.,1995;Lukatkin,2003;Поповидр.,2010).Itwasshownthat[Ca2+]cytchangesareintimatelyconnectedtoan oxidative stress.Oxidative stress causes an immedi-ateincreaseincytosoliccalcium(Priceetal.,1994),act-ingthesameaschillingshock(Knightetal.,1996).Thisreactionistransient,andfinisheswithin1–2minutes.Inturn,[Ca2+]cytinfluencesaleveloffreeradicals,inhibitingactivity of SOD (Price et al., 1994). So, increasing theconcentrationofionizedcalciumcausesincreasedoxida-tivestress(Priceetal.,1994;Lock,Price,1994),i.e.isthesignalamplificationcascadethatcauseschillingdamage.

Summarizedschemeoftheinitiationanddevel-opment of chilling injury in the cells of chilling-sensi-tiveplantsisshowninFigure.Thisschemeincludesallphysiologicalandbiochemicaleventswhichareknownaschillingdamageofsusceptibleplants.

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 117

Ways to improve chilling toler-ance of chilling-sensitive plants Atthepresenttime,toimprovethechillingtol-

erance of sensitive plants various techniques are used,whichcanbedividedintoseveralgroups:thethermalef-fect,chemicaltreatment,theuseofcellularandgeneticengineering.

Thermal effectsincludeslow-temperaturehard-ening,thermalconditioning,intermediatewarming,andtheeffectofheatstress.Thebasisofseedandseedlinghardeningofchilling-sensitiveplantstocold,whichhaslongbeenusedinpracticalplantbreeding,istheadapta-tionoftheorganismintheearlystagesofdevelopment,accompaniedbytheemergenceofspecificstructuralandfunctionalrearrangements(Генкель,Кушниренко,1966,Дроздовидр.,1977).Low-temperaturehardeningproc-ess is associated with the protein-synthesizing system(Титов,Шерудило,1990)andisaccompaniedbyarear-rangementofthehormonalsystemofplants(Талановаидр.,1991;Волковаидр.,1991).

Similartothehardeningisthethermalconditio-ning(“preconditioning”),associatedwithchangesinplantresponsetochillingconnectedwithgrowthtemperatureintheprecedingperiod.Growingplantsat lower tempera-tures leads to acclimation, which increases their resis-tance tochilling (Nieetal.,1992;Leipneret al.,1997;Kingstom-Smithetal.,1999;Leipneretal.,2000;Kato-Noguchi,2007;Поповидр.,2010),aswellasexposureofchilling-sensitiveplantsortheirtissueforsomeperiodoftime(from2to14days)toarelativelyreducedtem-peratures(10...18°C)(Wolk,Herner,1982;Wang,1982;

Ahnetal.,1999).Suchconditioninggives theplantsagreaterdegreeofchillingtoleranceforsometime(Bolgeretal.,1992;Cabaneetal.,1993;Capell,Dörffling,1993;Andersonetal.,1994;Wangetal.,1992;Wang,1993;1995). Conditioning causes changes in physiologicalandbiochemicalprocesses inplants,changesoperationof protein-synthesizing system, leads to the synthesisofnewproteins,possiblyinvolvedinprotectionagainstchilling shock (Marangoni et al., 1990; Cabane et al.,1993;Andersonetal.,1994;Prasadetal.,1994a).Thethermal conditioning is dependent on temperature andlightinthisperiod(Grishenkovaetal.,2006;Лукаткинидр.,2006).

Intermediate warming is another way of ther-malregulationofchillinginjury.Transferofthechilledplants in thewarmafternoonprevented theappearanceofvisible symptomsofdamage, impaired inhibitionofphotosynthesis and transpiration, reduced leaf osmoticpotential(Koscielniaketal.,1996;Koscielniak,Biesaga-Koscielniak, 2000; Skrudlik et al., 2000). Intermediatewarming is often used for storage of chilling-sensitiveplants’fruits(Wang,1982;1993).Itisassumedthatthetemporaryplacementinheatallowsthechilledtissuestometabolize toxicsubstances thataccumulateduring thechillingprocess,orhelpstorestorethecompoundsintis-suesthataredepletedduringchilling(Lyons,1973).

High-temperatureconditioning(heatingforseve-ralminutes)ofseedsandseedlingsinducedincreasedchill-ing-resistanceinplants(Rab,Saltveit,1996b;Mandrich,

Figure.Schemeoftheinitiationanddevelopmentofchillinginjuryinthecellsofchilling-sensitiveplants

118 Chilling injury in chilling-sensitive plants: a review

Saltveit, 2000).This process involves protein synthesis.So,intissuesexposedtoheatstressthereisobservedtheappearance of newmRNAs and proteins that aremain-tainedandevenincreasedafterchilling,butquicklydis-appearat theoptimum temperature (Adnanet al., 1998;Kadyrzhanovaetal.,1998;Sabehatetal.,1998).

Chemical treatmentsofchilling-sensitiveplantsleadtoincreasedchillingtolerance.Theeffectsoftraceele-ments,syntheticgrowthregulators,andantioxidantsweremoststudied.Onegroupofcompounds,themostpromis-ingintermsofincreasingthechillingresistanceofchilling-sensitiveplantsissyntheticanaloguesofphytohormonesandotherplantgrowthregulators.Theefficacy,whichin-ducedanincreasedresistancetochillingwasshownforallgroupsofphytohormones(Генкель,Кушниренко,1966;Володько,1983;Зауралов,Лукаткин,1996).

CytokininsandABAweremosteffectiveofallplantgrowthregulators(Duncan,Widholm,1991;Mitch-ell,Madore,1992;Andersonetal.,1994;Pareeketal.,1997;Заураловидр.,2000;Lukatkinetal.,2003;Lu-katkin,Zauralov,2009;Лукаткин,Овчинникова,2009).Non-hormonalgrowthregulatorsareusedalso inorderto improve the chilling tolerance of cultivated plants.These includepaklobutrazol, chlorocholinchloride,me-fluidid,unikonazolandothertriazoles(Lurieetal.,1994;Feng et al., 2003).The treatment by antioxidants andfree radicals quenching (ethoxyquin, sodium benzoate,glutathione, tyrone, formate, ascorbate, diphenylamine,α-tocopherol,propylgallate)canslowdownthedegrada-tionofunsaturatedfattyacidsandreducechillingdam-ageinchilling-sensitiveplants,leavesandfruits(Lukat-kin,Levina,1997;Michaelietal.,1999;Xuetal.,2000;Kocsyetal.,2001).Increasingthechillingresistanceofchilling-sensitiveplantsisalsoshownforcompoundsofdifferent nature: choline, proline, polyamines, glycinebetaine, alcohols, anesthetics, etc. (Lyons et al., 1979;Wang, 1982; Duncan, Widholm, 1991; Wang, 1993;Frenkel,Erez,1996;Jandaetal.,1999;Shenetal.,2000;Dingetal.,2007;Wangetal.,2008b).Themechanismsoftheiractionaredifferent.Theyincreasethefluidityofmembranes,protectingthemfromfreeradicalperoxida-tion,altertheratiooflipidaswellasproteinconforma-tion,therebyalteractivityofmembraneenzymes,influ-encehormonessynthesis,waterregime,etc.

Cellular and genetic engineeringisanewtrend,whichallowsfundamentalchangesinthechillingresist-anceofchilling-sensitiveplants.Theyarebasedonalargegeneticvariabilityincomponents,controllingsensitivity,ontheonehand,andonthedevelopmentofgenetransfertechnology,transformationandselectionmarkers,ontheotherhand(Greaves,1996;Лукаткин,Дерябин,2009).So,screeningthesurvivingcellsduringchillingofcallusandsuspensionculturesandsubsequentplantregenera-tionyieldedplantswith increasedepigenetic resistancetochillingtemperatures(Dix,1979;Lukatkin,1999;Lu-katkin,Geras’kina,2003;Lukatkin,2010).Somatichy-bridizationmaybeaconvenientwayfortheintroductionofgermplasm,associatedwith resistance tochilling, innewlinesoftomato(Bruggemannetal.,1995;Venemaetal.,2000).The increasedchilling toleranceobserved

intransgenictobaccoplantswithintroducedchloroplastω-3 fatty acid desaturase from Arabidopsis thaliana or Δ9-desaturase from the cyanobacterium Anacystis nidulanswithincreasedlevelsofpolyunsaturatedfattyacidsinmembranelipids(Kodamaetal.,1994;Ishizaki-Nishizawaetal.,1996;Hamadaet al.,1998;Murata,Ta-saka,1997).

Conclusion The literature review shows that the exposure

ofchilling-sensitiveplantstolowtemperaturesleadstodisturbances in all physiological processes –water re-gime,mineralnutrition,photosynthesis, respirationandmetabolism. Inactivation of metabolism, observed atchillingofchilling-sensitiveplantsisacomplexfunctionofbothtemperatureanddurationofexposure.Responseofplantstolowtemperatureexposureisassociatedwithachangeintherateofgenetranscriptionofanumberoflowmolecularweightproteins.

Basedontheauthors’ownresearchandthelite-raturedata, the conceptof colddamagewasproposed,which highlighted the leading role of oxidative stressin the induction of stress response. According to thisconcept, thereweredistinguishedpossibleways to im-provecoldtolerance,whichwerecombinedintoseveralgroups: the thermal effect (low-temperature hardening,thermalconditioning,intermediatewarmingandtheef-fectofheatstress),chemical treatment(traceelements,syntheticgrowthregulators,antioxidants)andtheuseofgeneandcellengineering.

Acknowledgements This research was supported by the RussianMinistryofEducationandScienceundertheAnalyticalDepartmentalTargetProgram“DevelopmentofScientistPotentialofHigherSchool”,ProjectNo.2.1.1/624. Thisworkwascarriedoutwithintheframeworkofthelongtermresearchprogram“Horticulture:agro-bio-logicalbasicsandtechnologiesimplementedbyLithua-nianResearchCentreforAgricultureandForestry”.

Received25112011Accepted06022012

ReferencesAdnanS.,LurieS.,WeN.D.Isolationandcharacterizationofaheat-

inducedgene,Hcit2,encodinganovel16.5Kdaprotein.Ex-pressioncoincideswithheat-inducedtolerancetochillingstress//PlantMolecularBiology.–1998,vol.36,No.6,p.935–939

AhnS.J., ImY.J.,ChungG.C.,ChoB.H. Inducibleexpressionofplasma-membraneH+-ATPase in therootsoffigleafgourdplantsunderchillingroottemperature//PhysiologiaPlantarum.–1999,vol.106,No.1,p.35–40

AlamВ.,JacobJ.Overproductionofphotosyntheticelectronsisas-sociatedwithchillinginjuryingreenleaves//Photosynthetica.–2002,vol.40,No.1,p.91–95

AllenD.J.,OrtD.R.Impactsofchillingtemperaturesonphotosyn-thesisinwarm-climateplants//TrendsinPlantScience.–2001,vol.6,No.1,p.36–42

AndersonM.D.,PrasadT.K.,MartinB.A.,StewartC.R.Differen-tialgeneexpressioninchilling-acclimatedmaizeseedlingsand

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 119

evidencefortheinvolvementofabscisicacidinchillingtole-rance//PlantPhysiology.–1994,vol.105,No.1,p.331–339

BarlowP.W.,AdamJ.S.AnatomicaldisturbancesinprimaryrootsofZea mays followingperiodsofcooltemperature//Environmen-talandExperimentalBotany.–1989,vol.29,No.3,p.323–336

BelehradekH.TemperatureandLivingMatter//ProtoplasmaMono-graph.–1935,vol.8,p.137–162

BloomA.J.,ZwienieckiM.A.,PassiouraJ.В.,RandallL.В.,Hol-brookN.M.,ClairD.A.St.Waterrelationsunderrootchillinginasensitiveandtoleranttomatospecies//Plant,CellandEn-vironment.–2004,vol.27,No.8,p.971–979

BoeseS.R.,WolfeD.W.,MelkonianJ.J.ElevatedCO2mitigateschilling-inducedwaterstressandphotosyntheticreductiondur-ing chilling // Plant,Cell andEnvironment. – 1997, vol. 20,No. 5,p.625–632

BolgerT.P.,UpchurchD.R.,McmichaelB.L.Temperatureeffectsoncottonroothydraulicconductance//EnvironmentalandEx-perimentalBotany.–1992,vol.32,No.1,p.49–54

Bradow J.M. Chilling sensitivity of photosynthetic oil-seedlings.2. Cucurbitaceae // Journal of Experimental Botany. – 1990,vol. 41,No.233,p.1595–1600

BreidenbachR.W.,RankD.R.,FontanaA.J.,HansenLD.,CriddleR.S. Calorimetricdeterminationoftissueresponsestothermalextremesasafunctionoftimeandtemperature//Thermochimi-caActa.–1990,vol.172,p.179–186

BruggemannW.,WennerA.,SakataY.Long-termchillingofyoungtomatoplantsunderlowlight.7.IncreasingchillingtoleranceofphotosynthesisinLycopersicon esculentumbysomatichybridi-zationwithLycopersicon peruvianum//PlantScience.–1995,vol.108,No.1,p.23–30

BuisR.,BarthouH.,RouxB. Effectof temporary chillingon fo-liarandcaulinarygrowthandproductivityinsoybean(Glycine max)//AnnalsofBotany.–1988,vol.61,No.6,p.705–715

CabaneM.,CalvetP.,VincensP.,BoudetA.M. Characterizationofchillingacclimation-relatedproteinsinsoybeanandidentifica-tionofone as amemberof theheat-shockprotein (HSP-70)family//Planta.–1993,vol.190,No.3,p.346–353

CabreraR.M.,SaltveitM.E.,OwensK.Cucumbercultivarsdif-fer in theirresponse tochilling temperatures //Journalof theAmericanSocietyforHorticulturalScience.–1992,vol.117,No.5,p.802–807

CapellВ.,DörfflingK.Genotype-specificdifferencesinchillingtole-ranceofmaizeinrelationtochilling-inducedchangesinwaterstatusandabscisicacidaccumulation//PhysiologiaPlantarum.–1993,vol.88,No.4,p.638–646

ClarksonD.Т.,EarnshawM.J.,WhiteP.A.,CooperH.D. Tempera-turedependentfactorsinfluencingnutrientuptake:ananalysisofresponsesatdifferentlevelsoforganization//PlantandTem-perature:SymposiumofSociety forExperimentalBiology.–Cambridge,UK,1988,p.281–309

DeEll J. Symptoms of chilling injury in vegetables // OntarioMinistry of Agriculture, Food and Rural Affairs. – 2004.<http://www.omafra.gov.on.ca/english/crops/hort/news/hortmatt/2004/18hrt04a5.htm>[accessed11052011]

DesantisA.,LandiP.,GenchiG.Changesofmitochondrialproper-ties inmaizeseedlingsassociatedwithselectionforgermina-tionatlowtemperature.Fattyacidcomposition,cytochromeсoxidase, andadenine-nucleotide translocase activities //PlantPhysiology.–1999,vol.119,No.2,p.743–754

DingZ.-S.,TianS.-P.,ZhengX.-L.ZhouZ.-W.,XuY.Responsesof reactiveoxygenmetabolismandquality inmango fruit toexogenousoxalicacidorsalicylicacidunderchillingtempera-turestress //PhysiologiaPlantarum.–2007,vol.130,No.1,p. 112–121

DixP. J.Cellculturemanipulationsasapotentialbreeding tool //Lowtemperaturestressincropplants.–NewYork,USA,1979,p.463–472

DoddsG.Т.,LudfordP.M.Surfacetopologyofchillinginjuryofto-matofruit//HortScience.–1990,vol.25,No.11,p.1416–1419

DomínguezT.,HernándezM.L.,PennycookeJ.C.,JiménezP.,Mar-tínez-RivasJ.M.,SanzC.,StockingerE.J.,Sánchez-Serrano

J.J.,SanmartínM.Increasingomega-3desaturaseexpressionintomatoresultsinalteredaromaprofileandenhancedresist-ancetocoldstress//PlantPhysiology.–2010,vol.153,No. 2,p.655–665

Duchovskis P., Brazaitytė A., Juknys R., Januškaitienė I.,SliesaravičiusA.,RamaškevičienėA.,BurbulisN.,ŠikšnianienėJ.B.,BaranauskisK.,DuchovskienėL.,StanysV.,BobinasČ.ChangesofphysiologicalandgeneticindicesofLycopersicon esculentum Mill. by cadmium under different acidicity andnutrition // Polish Journal ofEnvironmentalStudies. – 2006,vol. 15,No.2,p.235–242

DuncanD.R.,WidholmJ.M.Prolineisnotmeprimarydetermina-tionofchillingtoleranceinducedbymannitolorabscisicacidinregenerablemaizecalluscultures//PlantPhysiology.–1991,vol.95,No.4,p.1284–1287

EbrahimM.K.H.,VoggG.,OsmanM.N.E.H.,KomorE. Pho-tosynthetic performance and adaptation of sugarcane at sub-optimal temperatures // Journal of Plant Physiology. – 1998,vol. 153,No.5–6,p.587–592

FengZ.,GuoA.,FengZ..Ameliorationofchillingstressbytriadime-fonincucumberseedlings//PlantGrowthRegulationJournal.–2003,vol.39,No.3,p.277–283

FrancisD.,BarlowP.W.Temperatureandthecellcycle//PlantsandTemperature:SymposiumofSocietyforExperimentalBiology.–Cambridge,UK,1988,p.181–201

FrenkelC.,ErezA.Inductionofchillingtoleranceincucumber(Cu-cumis sativus)seedlingsbyendogenousandappliedethanol//PhysiologiaPlantarum.–1996,vol.96,No.4,p.593–600

FryerM.J.,AndrewsJ.R.,OxboroughK.,BlowersD.A.,BakerN.R. RelationshipbetweenCO2assimilation,photosyntheticelectrontransport,andactiveO2metabolisminleavesofmaizeinthefieldduringperiodsoflowtemperature//PlantPhysiology.–1998,vol.116,No.2,p.571–580

GarstkaM.,Venema J.H..Runiak I.,GieczewskaК.,RosiakM.,Koziol-LipinskaJ.,KierdaszukB.,VredenbergW.J.,Mostows-kaA.Contrastingeffectofdark-chillingonchloroplaststruc-tureandarrangementofchlorophyll-proteincomplexesinpeaandtomato:plantswithadifferentsusceptibilitytonon-freezingtemperature//Planta.–2007,vol.226,No.5,p.1165–1181

GeschR.W.,Heilman J. L.Chilling-induced photoinhibition andrecovery in rice // PlantPhysiology. – 1996, vol. 111,No. 2(suppl.),p.70

GeschR.W.,HeilmanJ.L.Responsesofphotosynthesisandphos-phorylationofthelight-harvestingcomplexofphotosystemIIto chilling temperature in ecologically divergent cultivars ofrice//EnvironmentalandExperimentalBotany.–1999,vol. 41,No.3,p.257–266

Gonzalez-MelerM.A.,RibascarboM.,GilesL.,SiedowJ.N. Theeffectofgrowthandmeasurementtemperatureontheactivityof the alternative respiratory pathway // Plant Physiology. –1999,vol.120,No.3,p.765–772

GoreckiRJ.,FordonskiG.,BieniaszewskiТ.,JacunskiK. Compara-tivestudiesonchillingsensitivityinsomelegumeseeds//ActaPhysiologiaePlantarum.–1990,vol.12,No.2,p.149–158

GrahamD.,PattersonB.D.Responsesofplantstolow,non-freezingtemperatures:proteins,metabolism,andacclimation//AnnualReviewofPlantPhysiology.–1982,vol.33,p.347–372

GreavesJ.A.Improvingsuboptimaltemperaturetoleranceinmaize:the search for variation // Journal ofExperimentalBotany. –1996,vol.47,No.296,p.307–323

GreerD.H.Effectofdailyphotonreceipton thesusceptibilityofdwarfbean(Phaseolus vulgarisL.)leavestophotoinhibitionofphotosynthesis//Planta.–1995,vol.197,No.1,p.31–38

GrennanA.K.Abioticstress in rice.An“omic”approach //PlantPhysiology.–2006,vol.140,No.4,p.1139–1141

GrishenkovaN.N.,LukatkinA.S.,StanysV.A.,DuchovskisP.V.Lighteffectsonchillingadaptationofmaizeseedlings//Rus-sianAgriculturalSciences.–2006,No.10,p.1–3

GuinnG.Chillinginjuryincottonseedlings:changesinpermeabilityofcotyledons//CropScience.–1971,vol.11,p.101–102

120 Chilling injury in chilling-sensitive plants: a review

GutierrezM.,SolaM.D.,PascualL.,Rodriguez-GarciaM.I.,Var-gasA.M. Ultrastructuralchangesincherimoyafruitinjuredbychilling//FoodStructure.–1992,vol.11,No.4,p.323–332

GuyC.L.Cold acclimation and freezing stress tolerance: role ofproteinmetabolism//AnnualReviewofPlantPhysiologyandPlantMolecularBiology.–1990,vol.41,p.187–223

HahnM.,WalbotV.Effectofcold-treatmentonproteinsynthesisandmRNAlevelsinriceleaves//PlantPhysiology.–1989,vol.91,No.3,p.930–938

HamadaТ.,KodamaH.,TakeshitaK.,UtsumiH.,IbaK.Characteri-zationoftransgenictobaccowithanincreasedα-linolenicacidlevel//PlantPhysiology.–1998,vol.118,No.2,p.591–598

Hariyadi P., ParkinK. L. Chilling-induced oxidative stress in cu-cumber(Cucumis sativusL.cv.Calypso)seedlings//JournalofPlantPhysiology.–1993,vol.141,p.733–738

HarkerF.R.,MaindonaldJ.H.Ripeningofnectarinefruit.Changesinthecellwall,vacuole,andmembranesdetectedusingelec-trical impedance measurements // Plant Physiology. – 1994,vol. 106,No.l,p.165–171

HeweziT., LegerM.,ElKayalW.,GentzbittelL.Transcriptionalprofilingofsunflowerplantsgrowingunderlowtemperaturesreveals an extensive down-regulation of gene expression as-sociated with chilling sensitivity // Journal of ExperimentalBotany.–2006,vol.57,p.3109–3122

HolobradaM.,MistrikJ.,KolekJ.TheeffectoftemperatureontheuptakeandlossofanionsbyseedlingrootsofZea maysL.//BiologiaPlantarum.–1981,vol.23,No.4,p.241–248

Hu W.H.,Song X.S.,Shi K.,Xia X.J.,Zhou Y.H.,Yu J.Q.Changesinelectrontransport,superoxidedismutaseandascorbateper-oxidaseisoenzymesinchloroplastsandmitochondriaofcucum-berleavesasinfluencedbychilling//Photosynthetica.–2008,vol.46, No.4,p.581–588

IkedaТ.,NonamiH.,FukuyamaТ.,HashimotoY. Hydraulic con-tribution in cell elongationof tissue-culturedplants.Growth-retardation induced by osmotic and temperature stresses andaddition of 2,4-dichlorophenoxyacetic acid and benzylami-nopurine//Plant,CellandEnvironment.–1999,vol.22,No. 8,p. 899–912

IkedaТ.,ТоуаmаS.Studiesonultrastructureandfunctionofphoto-syntheticapparatusinricecells.II.Effectoflowtemperatureonearlydevelopmentofriceplastids//JapaneseJournalofCropScience.–1987,vol.56,No.4,p.632–640

Ishizaki-NishizawaO., FujiiТ.,AzumaM., SekiguchiK.,MurataN.,OhtaniТ.,ToguriT. Lowtemperatureresistanceofhigherplants is significantly enhancedbyanonspecificcyanobacte-rialdesaturase//NatureBiotechnology.–1996,vol.14,No.8,p. 1003–1006

IsmailA.M.,HallA.E.,CloseT.J.Chillingtoleranceduringemer-genceofcowpeaassociatedwithadehydrinandslowelectrolyteleakage//CropScience.–1997,vol.37,No.4,p.1270–1277

JandaТ.,SzalaiG.,KissimonJ.,PaldiE.,MartonC,SzigetiZ. Roleofirradianceinthechillinginjuryofyoungmaizeplantsstudiedbychlorophyllfluorescenceinductionmeasurements//Photo-synthetica.–1994,vol.30,No.2,p.293–299

JandaТ.,SzalaiG.,TariI.,PaldiE.Hydroponictreatmentwithsali-cylicaciddecreasedtheeffectofchillinginjuryinmaize(Zea maysL.)plants//Planta.–1999,vol.208,No.2,p.175–180

JanowiakF.,DörfflingK. Chillingofmaize seedlings: changes inwaterstatusandabscisicacidcontent in10genotypesdiffer-inginchillingtolerance//JournalofPlantPhysiology.–1996,vol. 147,No.5,p.582–588

JenningsP.,SaltveitM.E.Temperatureeffectsonimbibitionandger-minationofcucumber(Cucumis sativus) seeds//JournaloftheAmericanSocietyforHorticulturalScience.–1994,vol. 119,No.3,p.464

JouveL.,EngelmannF.,NoirotM.,CharrierA.Evaluationofbio-chemicalmarkers(sugar,proline,malonedialdehydeandethy-lene)forcoldsensitivityinmicrocuttingsoftwocoffeespecies//PlantScience.–1993,vol.91,No.1,p.109–116

KadyrzhanovaD.K.,VlachonasiosK.E.,VerveridisP.,DilleyD.R. Molecular-cloning of a novel heat-induced chilling tolerance

related cDNA in tomato fruit byuseofmessengerRNAdif-ferential display //PlantMolecularBiology.–1998,vol. 36,No. 6,p.885–895

KandaH.O.Studiesonnucleicacidandproteinmetabolisminrootrelatingtolowtemperature-tolerantelongationabilityoffigleafgourdforrootstock//BulletinoftheAkitaPrefecturalCollegeofAgriculture.–1998,No.24,vol.29–62

KaniugaZ,SaczynskaV.,MiskiewiczE.,GarstkaM.Thefattyacidcomposition of phosphatidylglycerol and sulfoquinovosyldia-cylglycerolofZea maysgenotypesdifferinginchillingsuscep-tibility//JournalofPlantPhysiology.–1999,vol.154,No.2,p.256–263

KasamoK.,KagitaF.,YamanishiH.,SakakiT. Lowtemperature-inducedchangesinthethermotropicpropertiesandfattyacidcompositionoftheplasmamembraneandtonoplastofculturedrice(Oryza sativaL.)cells//PlantandCellPhysiology.–1992,vol.33,No.5,p.609–616

KasamoK.,YamaguchiM.,NakamuraY.Mechanismofthechill-ing-induceddecreaseinprotonpumpingacrossthetonoplastofricecells//PlantandCellPhysiology.–2000,vol.41,No. 7,p.840–849

Kato-NoguchiH.Lowtemperatureacclimationtochillingtoleranceinriceroots//PlantGrowthRegulation.–2007,vol.51,No.2,p.171–175

Kingston-SmithA.H.,FoyerС.Н.Bundle-sheathproteinsaremoresensitive tooxidativedamage than thoseof themesophyll inmaizeleavesexposedtoparaquatorlowtemperatures//JournalofExperimentalBotany.–2000,vol.51,No.342,p.123–130

Kingston-SmithA. H., Harbinson J., Foyer С. Н.Acclimation ofphotosynthesis,H2O2 content and antioxidants inmaize (Zea mays)grownatsuboptimaltemperatures//Plant,CellandEn-vironment.–1999,vol.22,No.9,p.1071–1083

KnightH.,TrewavasA.J.,KnightM.R.ColdcalciumsignalinginArabidopsisinvolvestwocellularpoolsandachangeincalci-umsignatureafteracclimation//ThePlantCell.–1996,vol. 8,p.489–503

KocsyG.,TothВ.,BerzyТ.,SzalaiG., JednakovitsA.,GalibaG. Glutathione-reductase activity and chilling tolerance are in-duced by a hydroxylamine derivative Brx-156 inmaize andsoybean//PlantScience.–2001,vol.160,No.5,p.943–950

KodamaH.,HamadaТ.,HoriguchiG.,NishimuraM.,IbaK. Geneticenhancementofcoldtolerancebyexpressionofageneforchlo-roplastω-3-fatty-aciddesaturaseintransgenictobacco//PlantPhysiology.–1994,vol.105,No.2,p.601–605

KojimaM.,SuzukiH.,OhnishiM.,ItoS.Effectsofgrowthtempera-tureonlipidsofadzukibeancells //Phytochemistry.–1998,vol.47,No.8,p.1483–1487

Koscielniak J., Biesaga-Koscielniak J. The effect of short warmbreaksduringchillingonwaterstatus,intensityofphotosynthe-sisofmaizeseedlingsandfinalgrainyield//JournalofAgrono-myandCropScience.–2000,vol.184,No.1,p.1–12

KoscielniakJ.,MarkowskiA.,SkrudlikG.,FilekM. Effectsofsomeperiods of variable daily exposure to temperatures of 5 and20°Conphotosynthesisandwaterrelationsinmaizeseedlings//Photosynthetica.–1996,vol.32,No.1,p.53–61

KosterK.L.,TengbeM.A.,FurtulaV.,NothnagelE.A. Effectsoflowtemperatureonlateraldiffusioninplasmamembranesonmaize(Zea maysL.)rootcortexprotoplasts.Relevancetochill-ingsensitivity//Plant,CellandEnvironment.–1994,vol.17,No.12,p.1285–1294

KratschH.A.,WiseR.R.Theultrastructureofchillingstress//Plant,CellandEnvironment.–2000,vol.23,No.4,p.337–350

LawrenceC.,HoladayA. S. Effects ofmild night chilling on re-spirationofexpandingcottonleaves//PlantScience.–2000,vol. 157,No.2,p.233–244

LeipnerJ.,BasilidesA.,StampP.,FracheboudY. Hardlyincreasedoxidativestressafterexposuretolowtemperatureinchilling-acclimatedandnon-acclimatedmaizeleaves//PlantBiology.–2000,vol.2,No.2,p.243–251

Leipner J., Fracheboud Y., Stamp P. Acclimation by suboptimalgrowth temperature diminishes photooxidative damage in

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 121

maizeleaves//Plant,CellandEnvironment.–1997,vol.20,No.3,p.366–372

LejeuneP.,BernierG.Effectofenvironmentontheearlystepsofearinitiationinmaize(Zea maysL.)//Plant,CellandEnviron-ment.–1996,vol.19,No.2,p.217–224

LevittJ.Responsesofplantstoenvironmentalstresses.Vol.1.Chill-ing,freezingandhightemperaturesstresses.–NewYork,1980,426p.

LewisD.A.Protoplasmicstreaminginplantssensitiveandinsensi-tivetochillingtemperatures//Science.–1961,vol.124,No. 1,p.75–76

LiQ.В.,HaskellD.W.,GuyC.L.Coordinateandnon-coordinateexpressionofthestress70familyandothermolecularchaper-onesathighandlowtemperatureinspinachandtomato//PlantMolecularBiology.–1999,vol.39,No.1,p.21–34

LiX.-G.,WangX.-M.,MengQ.-W.,ZouQ.Factorslimitingpho-tosynthetic recovery in sweet pepper leaves after short-termchillingstressunderlowirradiance//Photosynthetica.–2004,vol. 42,No.2,p.257–262

LockJ.,PriceA.H.Evidencethatdisruptionofcytosoliccalciumiscritically important inoxidativeplantstress //ProceedingsoftheRoyalSocietyofEdinburgh.SectionB:Biology.–1994,vol.102,p.261–264

LukatkinA.S.Contributionofoxidativestresstothedevelopmentofcold-induceddamageto leavesofchilling-sensitiveplants:1.Reactiveoxygen species formationduringplant chilling //RussianJournalofPlantPhysiology.–2002(a),vol.49,No. 5,p.622–627

LukatkinA.S.Contributionofoxidativestresstothedevelopmentofcold-induceddamageto leavesofchilling-sensitiveplants:2.Theactivityofantioxidantenzymesduringplantchilling//RussianJournalofPlantPhysiology.–2002(b),vol.49,No. 6,p.782–788

LukatkinA.S.Contributionofoxidativestresstothedevelopmentofcold-induceddamageto leavesofchilling-sensitiveplants.3.Injuryofcellmembranesbychillingtemperatures//RussianJournalofPlantPhysiology.–2003,vol.50,No.2,p.243–246

LukatkinA.S.Theuseofcucumbercallusculturestostudycolddam-age//BiologyBulletin/IzvestiyaRossiiskoiAkademiiNauk,SeriyaBiologicheskaya.–1999,vol.26,No.3,p.242–246

LukatkinA. S. Use of maize callus cultures for assessing chill-ingstressresistance//RussianAgriculturalSciences.–2010,vol. 36,No.5,p.331–333

LukatkinA.S.,BashmakovD.I.,KipaikinaN.V.Protectiveroleofthidiazurontreatmentoncucumberseedlingsexposedtoheavymetals and chilling //Russian Journal ofPlantPhysiology.–2003,vol.50,No.3,p.305–307

LukatkinA.S.,Geras’kinaA.V.Screeningfortheimprovedcoldre-sistanceofthecucumbercellcultures//BiotechnologyinRus-sia.–2003,No.3,p.64–72

LukatkinA.S.,IsaikinaE.E.Calciumstatusandchillinginjuryinmaizeseedlings//RussianJournalofPlantPhysiology.–1997,vol.44,No.3,p.339–342

LukatkinA.S.,LevinaT.E.Effectofexogenousmodifiersoflipidperoxidationonchilling injury incucumber leaves //RussianJournalofPlantPhysiology.–1997,vol.44,No.3,p.343–348

LukatkinA.S.,SharkaevaE.Sh.,ZauralovO.A.Exosmosisofelect-rolytes from maize leaves under chilling stresses // RussianJournalofPlantPhysiology.–1993,vol.40,No.5,p.770–775

LukatkinA.S.,SharkaevaE.Sh.,ZauralovO.A.Lipidperoxidationintheleavesofheat-lovingplantsasdependentonthedurationofcoldstress //RussianJournalofPlantPhysiology.–1995,vol.42,No.4,p.538–542

LukatkinA.S.,ZauralovO.A.Exogenousgrowth regulatorsasameans of increasing the cold resistance of chilling-sensitiveplants//RussianAgriculturalSciences.–2009,vol.35,No.6,p.384–386

LurieS.,RonenR.,LipskerZ.,AloniB. Effectsofpaclobutrazolandchillingtemperaturesonlipids,antioxidantsandATPaseactiv-ityofplasma-membraneisolatedfromgreenbellpepperfruits//PhysiologiaPlantarum.–1994,vol.91,No.4,p.593–598

LyonsJ.M.Chillinginjuryinplants//AnnualReviewofPlantBio-logy.–1973,vol.24,p.445–466

LyonsJ.M.,RaisonJ.K.,SteponkusP.L.Theplantmembraneinresponsetolowtemperature:anoverview//Lowtemperaturestress incropplants: the roleof themembrane.–NewYork,USA,1979,p.1–24

MahajanS,TutejaN.Cold,salinityanddroughtstresses:anover-view // Archives of Biochemistry and Biophysics. – 2005,vol. 444,p.139–158

MandrichM.E.,SaltveitM.E.Effectofchilling,heatshock,andvigoronthegrowthofcucumber(Cucumis sativus)radicles//PhysiologiaPlantarum.–2000,vol.109,No.2,p.137–142

MarangoniA.G.,ButunerZ.,SmithJ.L.,StanleyD.W. Physicalandbiochemicalchangesinthemicrosomalmembranesoftomatofruitassociatedwithacclimationtochilling//JournalofPlantPhysiology.–1990,vol.135,No.6,p.653–661

MarkowskiA.Sensitivityofdifferentspeciesoffieldcropstochill-ingtemperature.II.Germination,growthandinjuriesofseed-lings //ActaPhysiologiaePlantarum.–1988,vol.10,No.3,p. 275–283

MarkowskiA.,AugustyniakG.,JanowiakF.Sensitivityofdifferentspeciesoffieldcropstochillingtemperature.III.ATPcontentandelectrolyteleakagefromseedlingsleaves//ActaPhysiolo-giaePlantarum.–1990,vol.12,No.2,p.167–173

MatsuoТ.,GrahamD.,PattersonB.D.,HockleyD.B. Anelectro-phoreticmethodtodetectcold-induceddissociationofproteinsincrudeextractsofhigherplants//AnalyticalBiochemistry.–1994,vol.223,No.2,p.181–184

McMahonM. J., PermitA. J.,Arnold J.E.Effects of chilling onEpisciaandDieffenbachia//JournaloftheAmericanSocietyforHorticulturalScience.–1994,vol.119,No.1,p.80–83

MercadoJ.A.,ReidM.S.,ValpuestaV.,QuesadaM.A. MetabolicchangesandsusceptibilitytochillingstressinCapsicum annu-um plantsgrownatsuboptimaltemperature//AustralianJour-nalofPlantPhysiology.–1997,vol.24,No.6,p.759–767

MichaeliR.,RiovJ.,PhilosophhadasS.,MeirS.Chilling-inducedleafabscissionofIxora coccinea plants.II.Alterationofauxineconomybyoxidativestress//PhysiologiaPlantarum.–1999,vol.107,No.2,p.174–180

MinorskyP.V.Aheuristichypothesisofchillinginjuryinplants:aroleforcalciumastheprimaryphysiologicaltransducerofin-jury//Plant,CellandEnvironment.–1985,vol.8,p.75–94

Mitchell D. E., Madore M.A. Patterns of assimilate productionand translocation inmuskmelon (Cucumis meloL.). 2.Low-temperatureeffects//PlantPhysiology.–1992,vol.99,No.3,p. 966–971

MunroK.D.,HodgesD.M.,DeLongJ.M.,ForneyC.F.,KristieD.N.Low temperature effects onubiquinone content, respi-rationratesandlipidperoxidationlevelsofetiolatedseedlingsof two differentially chilling-sensitive species // PhysiologiaPlantarum.–2004,vol.121,No.3,p.488–497

MurataN.,TasakaY.Glycerol-3-phosphateacyltransferaseinplants//BiochimicaetBiophysicaActa.–1997,vol.1348,No.1–2,p.10–16

NieG.Y.,LongS.P.,BakerN.R.Theeffectsofdevelopmentatsub-optimal growth temperatures on photosynthetic capacity andsusceptibilitytochilling-dependentphotoinhibitioninZea mays //PhysiologiaPlantarum.–1992,vol.85,No.3,p.554–560

NishidaI.,MurataN.Chillingsensitivityinplantsandcyanobacte-ria.Thecrucialcontributionofmembranelipids//AnnualRe-viewofPlantPhysiologyandPlantMolecularBiology.–1996,vol.47,p.541–568

NohS.A.,ParkS.H.,HuhG.H.,PaekK.H.,Shin J.S.,Bae J.M.Growthretardationanddifferentialregulationofexpansingenes in chilling-stressed sweetpotato // PlantBiotechnologyReport.–2009,vol.3,p.75–85

OktemH.A.,EyidoganF.,SelcukF.,OzM.T.,daSilvaJ.A.T.,YucelM. Revealing response of plants to biotic and abioticstresses with microarray technology // Genes, Genomes andGenomics.–2008,p.15–48

122 Chilling injury in chilling-sensitive plants: a review

OrdentlichA., Linzer R.A., Raskin I.Alternative respiration andheat evolution in plants // PlantPhysiology. – 1991, vol. 97,No. 4,p.1545–1550

PardossiA.,VernieriP.,TognoniF.InvolvementofabscisicacidinregulatingwaterstatusinPhaseolus vulgarisL.duringchilling//PlantPhysiology.–1992,vol.100,No.3,p.1243–1250

PareekA., Singla S. L.,GroverA. Proteins alterations associatedwith salinity, desiccation, high and low-temperature stressesandabscisicacidapplicationinseedlingsofPusa169,ahigh-yielding rice (Oryza sativa L.) cultivar // Current Science. –1997,vol. 75,No.10,p.1023–1035

PattersonB.D.,PaullR.,GrahamD.Adaptationtochilling:survi-val,germination,respirationandprotoplasmicdynamics//Lowtemperaturestressincropplants:theroleofthemembrane.–NewYork,USA,1979,p.25–35

Platt-AloiaK.A.,ThomsonW.W.Freeze-fractureevidenceforlate-ralphaseseparationintheplasmalemmaofchilling-injuredav-ocadofruit//Protoplasma.–1987,vol.136,No.2–3,p.71–80

PrasadT.K.,AndersonM.D.,MartinB.A.,StewartC.R.Evidenceforchilling-inducedoxidativestress inmaizeseedlingsandaregulatoreroleforhydrogenperoxide//PlantCell.–1994(a),vol.6,p.65–74

PrasadT.K.,AndersonM.D.,StewartС.R.Acclimation,hydrogen-peroxide, andabscisicacidprotectmitochondriaagainst irre-versiblechillinginjuryinmaizeseedlings//PlantPhysiology.–1994(b),vol.105,No.2,p.619–627

PriceA.H.,TaylorA., Ripley S. J.,GriffithsA.,TrewavasA. J.,KnightM.R.Oxidativesignals in tobacco increasecytosoliccalcium//PlantCell.–1994,vol.6,p.1301–1310

ProvartN.J.,GilP.,ChenW.,HanB.,ChangH.S.,WangX.,ZhuT. Gene expression phenotypes of Arabidopsis associated withsensitivity to low temperatures // Plant Physiology. – 2003,vol. 132,p.893–906

PurvisA. C., Shewfelt R. L. Does the alternative pathway ame-lioratechillinginjuryinsensitiveplanttissues?//PhysiologiaPlantarum.–1993,vol.88,No.4,p.712–718

QuinnP.J.Effectof temperatureoncellmembranes //PlantsandTemperature:SymposiumofSocietyforExperimentalBiology.–Cambridge,UK,1988,p.237–258

RabA.,SaltveitM.E.Differentialchillingsensitivityincucumber(Cucumis sativus)seedlings//PhysiologiaPlantarum.–1996(a),vol.96,No.3,p.375–382

RabA.,SaltveitM.E.Sensitivityofseedlingradiclestochillingandheatshock-inducedchillingtolerance//JournaloftheAmericanSocietyforHorticulturalScience.–1996(b),vol.121,No.4,p.711–715

RaisonJ.K.,LyonsJ.M.Chillinginjury:apleaforuniformtermino-logy//Plant,CellandEnvironment.–1986,vol.9,p.685–686

RaisonJ.K.,LyonsJ.M.,ThompsonW.W.Theinfluenceofmem-braneson the temperature-inducedchanges in thekineticsofsomerespiratoryenzymesofmitochondria//ArchivesofBio-chemistryandBiophysics.–1971,vol.142,p.83–90

ReyesL.,JenningsP.H.Effectsofchillingonrespirationandinduc-tionofcyanide-resistantrespirationinseedlingrootsofcucum-ber//JournaloftheAmericanSocietyforHorticulturalScience.–1997,vol.122,No.2,p.190–194

RibascarboM.,ArocaR.,Gonzalez-MelerM.A.,IrigoyenJ.J.,San-chezdiazM.Theelectronpartitioningbetweenthecytochromeand alternative respiratory pathways during chilling recoveryin2cultivarsofmaizedifferinginchillingsensitivity//PlantPhysiology.–2000,vol.122,No.1,p.199–204

RoutaboulJ.M.,FisherS.F.,BrowseJ.Trienoicfattyacidsarere-quiredtomaintainchloroplastfunctionatlowtemperatures//PlantPhysiology.–2000,vol.124,No.4,p.1697–1705

RymenB.,FioraniF.,KartalF.,VandepoeleK.,InzeD.,Beems-terG.T.S.Coldnightsimpairleafgrowthandcellcycleprogres-sioninmaizethroughtranscriptionalchangesofcellcyclegenes//PlantPhysiology.–2007,vol.143,No.3,p.1429–1438

SabehatA.,LurieS.,WeN.D.Expressionofsmallheat-shockpro-teinsatlow-temperatures.Apossibleroleinprotectingagainst

chilling injuries //PlantPhysiology.–1998,vol.117,No.2,p. 651–658

SharomM.,WillemotC.,ThompsonJ.E.Chillinginjuryinducesli-pidphasechangesinmembranesoftomatofruit//PlantPhysio-logy.–1994,vol.105,No.1,p.305–308

ShenW.,NadaK.,TachibanaS.Involvementofpolyaminesinthechillingtoleranceofcucumbercultivars//PlantPhysiology.–2000,vol.124,No.1,p.431–439

Skog L. J. Chilling injury of horticultural crops. Ontario Minis-tryofAgriculture,FoodandRuralAffairsFactsheet.–1998.<http://www.omafra.gov.on.ca/english/crops/facts/98–021.htm>[accessed11052011]

SkrudlikG.,KoscielniakJ.Effectsoflow-temperaturetreatmentatseedlingstageonsoybeangrowth,developmentandfinalyield// Journal ofAgronomyandCropScience. –1996,vol. 176,No. 2,p.111–117

SkrudlikG.,Baczek-KwintaR.,KoscielniakJ.Theeffectofshortwarmbreaksduringchillingonphotosynthesisandofantioxi-dantenzymesinplantssensitivetochilling//JournalofAgro-nomyandCropScience.–2000,vol.184,No.4,p.233–240

SonoikeK.PhotoinhibitionofphotosystemI–itsphysiologicalsig-nificance in thechillingsensitivityofplants //PlantandCellPhysiology.–1996,vol.37,No.3,p.239–247

SonoikeK.Thedifferentrolesofchillingtemperaturesinthepho-toinhibitionofphotosystemIandphotosystemII//JournalofPhotochemistryandPhotobiologyB:Biology.–1999,vol.48,No.2–3,p.136–141

SonoikeK.Various aspects of inhibition of photosynthesis underlight/chilling stress. Photoinhibition at chilling temperaturesversuschillingdamageinthelight//JournalofPlantResearch.–1998,vol.111,No.1101,p.121–129

StewardС.R.,MartinB.A.,RedingL.,CerwickS. Respirationandalternativeoxidaseincornseedlingtissuesduringgerminationat different temperatures // Plant Physiology. – 1990, p. 92,No. 3,p.755–760

StraussA.J.,KrugerG.H.J.,StrasserR.J.,vanHeerdenP.D.R.TheroleoflowsoiltemperatureintheinhibitionofgrowthandPSIIfunctionduringdarkchillinginsoybeangenotypesofcontrast-ingtolerance//PhysiologiaPlantarum.–2007,vol.131,No. 1,p.89–105

SuCh.-F.,WangY.-Ch.,HsiehT.-H.,LuCh.-A.,TsengT.-H.,YuS.-M. AnovelMYBS3-dependentpathwayconferscoldtoleranceinrice//PlantPhysiology.–2010,vol.153,No.4,p.145–158

Suzuki N., Mittler R. Reactive oxygen species and temperaturestresses:adelicatebalancebetweensignalinganddestruction//PhysiologiaPlantarum.–2006,vol.126,No.1,p.45–51

SzalaiG.,JandaТ.,BartokТ.,PaldiE. Roleoflightinchangesinfreeamino-acidandpolyaminecontentsatchillingtemperatureinmaize(Zeamays)//PhysiologiaPlantarum.–1997,vol.101,No.2,p.434–438

TakedaY.,OgawaТ.,NakamuraY.,KasamoK.,SakataM.,OhtaE.31P-NMR study of the physiological conditions in intact rootcellsofmungbean seedlingsunder low temperature stress //PlantandCellPhysiology.–1995,vol.36,No.5,p.865–871

TaoZ.,ZouQ.,ChengB.Effectof low temperatureduring imbi-bitiononultrastructureinhypocotyls//ActaBotanicaSinica.–1991,vol.33,No.7,p.511–515

TerashimaI.,NoguchiK.,ItohnemotoТ.,ParkY.M.,KuboA.,Tana-kaK. ThecauseofPSIphotoinhibitionatlowtemperaturesinleavesofCucumis sativus,achilling-sensitiveplant//Physiolo-giaPlantarum.–1998,vol.103,No.3,p.295–303

TerzaghiW.В.,ForkD.C.,BerryJ.A.,FieldС.В.LowandhightemperaturelimitstoPSII.Asurveyusingtransparinaricacid,delayedlightemissionandF0chlorophyllfluorescence//PlantPhysiology.–1989,vol.91,No.4,p.1494–1500

ThompsonG.A.Molecularchangesinmembranelipidsduringcoldstress//EnvironmentalStressinPlants:BiochemicalandPhy-siologicalMechanisms/NATOASIseries.SeriesG,Ecologicalsciences.–Berlin,Germany,1989,vol.19,p.249–257

TingC.S.,OwensT.G.,WolfeD.W.Seedlinggrowthandchillingstresseffectonphotosynthesisinchilling-sensitiveandchilling-

ISSN 1392-3196 ŽEMDIRBYSTĖ=AGRICULTURE Vol.99,No.2(2012) 123

tolerantcultivarsofZeamays//JournalofPlantPhysiology.–1991,vol.137,No.5,p.559–564

TsudaH.,NiimuraY.,KatohT.ChillinjuryinSaintpaulialeafwithspecialreferencetoleafspotformation//JournalofAgriculturalScience.–TokyoNogyoDaigaku.–2003,vol.47,No.4,p.283–289

VanHeerdenP.D.R.,KrugerG.H.J.,LovelandJ.E.,ParryM.A.J.,Foyer C. H. Dark chilling imposes metabolic restrictions onphotosynthesis in soybean // Plant, Cell and Environment. –2003,vol.26,No.2,p.323–337

VenemaJ.H.,EekhofM.,vanHasseltP.R.Analysisoflow-tempera-ture tolerance of a tomato (Lycopersicon esculentum) cybridwithchloroplastsfromamorechilling-tolerantL. hirsutum ac-cession//AnnalsofBotany.–2000,vol.85,No.6,p.799–807

VenemaJ.H.,PosthumusF., deVriesM.,vanHasseltP.R. Dif-ferential responseofdomestic andwildLycopersicon speciestochillingunderlowlight:growth,carbohydratecontent,pho-tosynthesisandthexanthophyllcycle//PhysiologiaPlantarum.–1999,vol.105,No.1,p.81–88

VenturaY.,Mendlinger S. Effects of suboptimal low temperatureonyield,fruitappearanceandqualityinmuskmelon(Cucumis meloL.)cultivars //TheJournalofHorticulturalScienceandBiotechnology.–1999,vol.74,No.5,p.602–607

VernieriP.,PardossiA.,TognoniF.Influenceofchillinganddroughton water relations and abscisic acid accumulation in bean //AustralianJournalofPlantPhysiology.–1991,vol.18,No.1,p.25–35

WangC.Y.Approachestoreducechillinginjuryoffruitandvegeta-bles//HorticultureReview.–1993,vol.15,p.63–95

WangC.Y.Physiologicalandbiochemicalresponsesofplantstochill-ingstress//HortScience.–1982,vol.17,No.2,p.173–186

WangC.Y.Temperaturepreconditioningaffectsglutathionecon-tent and glutathione reductase activity in chilled zucchinisquash//JournalofPlantPhysiology.–1995,vol.145,No.1–2,p.148–152

WangC.Y.,KramerG.F.,WhitakerB.D.,LusbyW.R.Temperaturepreconditioningincreasestolerancetochillinginjuryandalterslipidcompositioninzucchinisquash//JournalofPlantPhysio-logy.–1992,vol.140,No.2,p.229–235

Wang C.,Ma X. L., Hui Z.,WangW. Glycine betaine improvesthylakoid membrane function of tobacco leaves under low-temperaturestress//Photosynthetica.–2008(b),vol.46,No. 3,p. 400–409

WangN.,FangW.,HanH.,SuiN.,LiB.,MengQ.W.Overexpres-sionofzeaxanthinepoxidasegeneenhances thesensitivityoftomatoPSIIphotoinhibitiontohighfightandchillingstress//PhysiologiaPlantarum.–2008(a),vol.132,No.3,p.384–396

Whitaker B. D. Lipid changes in microsomes and crude plastidfractionsduringstorageoftomatofruitsatchillingandnon-chillingtemperatures//Phytochemistry.–1993,vol.32,No. 2,p.265–271

WilkinsonS.,ClephanA.L.,DaviesW.J.Rapidlowtemperature-induced stomatal closure occurs in cold-tolerant Commelina communis leavesbutnot incold-sensitive tobacco-leaves,viaamechanismthatinvolvesapoplasticcalciumbutnotabscisicacid//PlantPhysiology.–2001,vol.126,No.4,p.1566–1578

WilsonJ.M.LeafrespirationandATPlevelsatchillingtemperatures//NewPhytologist.–1978,vol.80,No.2,p.325–334

WilsonJ.M.Theeconomicimportanceofchillinginjury//OutlookonAgriculture.–1985,vol.14,p.197–204

WolfeD.W.Low-temperature effects on early vegetative growth,leaf gas-exchange and water potential of chilling-sensitiveandchilling-tolerantcropspecies//AnnalsofBotany.–1991,vol. 67,No.3,p.205–212

WolkW.D.,HernerR.C.Chillinginjuryofgerminatingseedsandseedlings//HortScience.–1982,vol.17,No.2,p.169–173

WoodsC.M.,PolitoV.S.,ReidM.S.Responsetochillingstressinplantcells. II.Redistributionof intracellularcalcium//Proto-plasma.–1984(a),vol.121,No.1,p.17–24

WoodsC.M.,ReidM.S.,PattersonB.D.Responsetochillingstressinplantcells.I.Changesincyclosisandcytoplasmicstructure//Protoplasma.–1984(b),vol.121,No.1,p.8–16

XuC.C.,LinR.C,LiL.В.,KuangT.Y.Increaseinresistancetolow temperature photoinhibition following ascorbate feedingisattributabletoanenhancedxanthophyllcycleactivityinrice(Oryza saliva L.) leaves // Photosynthetica. – 2000, vol. 38,No. 2,p.221–226

YadegariL.Z.,HeidariR.,CarapetianJ.Chillingpretreatmentcausessomechangesinrespiration,membranepermeabilityandsomeotherfactorsinsoybeanseedlings//ResearchJournalofBio-logicalSciences.–2008,vol.3,No.9,p.1054–1059

Yamagitchi-Shinozaki K., Shinozaki K. Transcriptional regulatorynetworksincellularresponseandtolerancetodehydrationandcoldstresses//AnnualReviewofPlantBiology.–2006,vol. 57,p.781–803

YamoriW.,NoguchiК.,HikosakaK.,TerashimaI.Cold-tolerantcropspecieshavegreatertemperaturehomeostasisofleafrespirationandphotosynthesisthancold-sensitivespecies//PlantandCellPhysiology.–2009,vol.50,No.2,p.203–215

YinG.,SunH.,XinX.,QinG.,LiangZ.,JingX.Mitochondrialdam-ageinthesoybeanseedaxisduringimbibitionatchillingtem-peratures //PlantandCellPhysiology.–2009,vol.50, iss. 7,p. 1305–1318

Yordanov I. Response of photosynthetic apparatus to temperaturestressandmolecularmechanismsofitsadaptations//Photosyn-thetica.–1992,vol.26,No.4,p.517–531

YoshidaR.,KannoA.,SatoТ.,Катеуа Т.Cooltemperature-inducedchlorosisinriceplants.1.Relationshipbetweentheinductionandadisturbanceofetioplastdevelopment//PlantPhysiology.–1996,vol.110,No.3,p.997–1005

Yoshida S. Low temperature-induced cytoplasmic acidosis in cul-turedmungbean(Vigna radiata L.Wilczek)cells//PlantPhy-siology.–1994,vol.104,No.4,p.1131–1138

YoshidaS.,MatsuuraC.,EtaniS.ImpairmentoftonoplastH+-ATPaseasaninitialphysiologicalresponseofcellstochillinginmungbean(Vigna radiataL.Wilcheck)//PlantPhysiology.–1989,vol.89,No.2,p.634–642

ZauralovO.A.,LukatkinA.S.Aftereffectof lowtemperaturesontherespirationofheat-lovingplants//RussianJournalofPlantPhysiology.–1997,vol.44,No.5,p.640–644

ZauralovO.A.,LukatkinA.S.,SharkaevaE.Sh.IntracellularpHofmaizeleaftissuesupondifferentdegreesofchilling//BiologyBulletin.–1997,vol.24,No.1,p.82–84

ZavalaE.M.,LinC.L.Anatomicalandpolypeptidealterations incornroottipsinresponsetocoldstress//AmericanJournalofBotany.–1989,vol.76,No.1(suppl.),p.71–72

ZemetraR. S.,CuanyR.L.Variation among inbreds for seed re-sponsetolowtemperaturesinmaize(Zea maysL.)//Maydica.–1991,vol.36,No.1,p.17–23

ZhangJ.X.,CuiS.P.,LiJ.M.,WeiJ.K.,KirkhamM.B.Proto-plasmic factors, antioxidant responses, andchilling resistanceinmaize//PlantPhysiologyandBiochemistry.–1995,vol.33,No.5,p.567–575

ZhuS.-Q.,ZhaoH.,LiangJ.-S.,JiB.-H.,JiaoD.-M.Relationshipsbetween phosphatidylglycerol molecular species of thylakoidmembranelipidsandsensitivitiestochilling-inducedphotoinhi-bitioninrice//JournalofIntegrativePlantBiology.–2008,vol.50,No.2,p.194–202

ZiaM.S.,SalimM.,AslamM.,GillM.A.,Rahmatullah.Effectoflowtemperatureofirrigationwateronricegrowthandnutrientuptake//TheJournalofAgriculturalScience.–1994,vol.173,No.1,p.22–31

ZocchiG.,HansonJ.B.Calciuminfluxintocornrootsasaresultsofcoldshock//PlantPhysiology.–1982,vol.70,p.318–319

ВолковаР.И.,ТитовА.Ф.,ТалановаВ.В.,ДроздовС.Н.Измене-ниявсистемеауксиноввначальныйпериодтепловогоихо-лодовогозакаливаниявегетирующихрастений//Физиологиярастений.–1991,т.38,№3,с.538–544(in Russian)

Володько Н. К. Микроэлементы и устойчивость растений кнеблагоприятнымфакторамсреды.–Минск,1983,192с.(in Russian)

ГенкельП. А., Кушниренко С. В. Холодостойкость растенийи термические способы ее повышения. –Москва, 1966,223 с.(in Russian)

124

ДроздовС. Н.,СычеваВ. Ф.,БудыкинаН. П.,КурецВ. К.Эколого-физиологическиеаспектыустойчивостирастенийкзамороз-кам.–Ленинград,1977,228с.(in Russian)

Жолкевич В. Н. К вопросу о причинах гибели растений принизкихположительныхтемпература //Тр.ин-тафизиоло-гиирастенийим.К.А.ТимирязeваАНСССР.–1955,т.9,с. 3–28(in Russian)

ЗаураловО.А.Влияниеохлажденияпроростковогурцанапосле-дующийростиинтенсивностьфотосинтеза//Физиологияибиохимиякультурныхрастений.–1993,т.25,№4,с.380–387(in Russian)

ЗаураловО.А.,КуроваЕ.А.,ЛукаткинА.С.Влияниецитокинино-выхпрепаратовиохлаждениянаростовыереакциирастенийкукурузы//Агрохимия.–2000,№3,с.55–59(in Russian)

ЗаураловО.А.,ЛукаткинА.С.Влияниеэкзогенныханалоговфи-тогормоновнахолодоустойчивостьтеплолюбивыхрастений//Агрохимия.–1996,№1,с.109–119(in Russian)

КоровинА.И.Оботношениирастенийкнизкимположительнымтемпературамизаморозкамипутиповышенияеехолодо-изаморозкоустойчивости // Устойчивость растений к низкимположительнымтемпературамизаморозкамипутиееповы-шения.–Москва,1969,с.5–15(in Russian)

ЛукаткинА.С.Окислительныйстрессихолодовоеповреждениерастений.–Саранск,2002,208с.(in Russian)

ЛукаткинА.С.,ГришенковаН.Н.,МартыноваЛ.П.Квопросуобакклимациипроростковкукурузыкпониженнойположи-тельнойтемпературевыращивания //Сельскохозяйственнаябиология.–2006,№1,с.86–91(in Russian)

ЛукаткинА.С.,ДерябинА.Н.Повышениестрессоустойчивостирастенийсиспользованиемклеточныхтехнологийin vitro//Аграрнаянаука.–2009,№2,с.15–17(in Russian)

ЛукаткинА.С.,ЕремкинаТ.Н.АктивностьСа2+-АТФазывлис-тьяхрастенийкукурузыподвлияниемохлажденияивпосле-действии//Сельскохозяйственнаябиология.–2002,№3,с.73–76(in Russian)

ЛукаткинА. С.,КобылинаИ. В.,ДуховскисП.,СакалаускайтеЮ.,БаранаускисК.Влияниепониженныхтемпературнавыходпротоновизклетоклистьевкукурузы //Физиологияибио-химиякультурныхрастений.–2007,т.39,№6,с.476–487(in Russian)

ЛукаткинА.С.,ОвчинниковаО.В.Влияниепрепаратацитодефнаростихолодоустойчивостьтеплолюбивыхрастений//Агро-химия.–2009,№12,с.32–38(in Russian)

ЛукаткинА.С.,ШаркаеваЭ.Ш.,АпаринС.В.Ростовыереакцииклетокконусанарастаниятеплолюбивыхрастенийпридей-ствии и последействии пониженных температур // Физио-логияибиохимиякультурныхрастений.– 2010,т.42,№3,с. 256–269(in Russian)

ПоповВ.Н.,АнтипинаО.В.,ТруноваТ.И.Перекисноеокислениелипидовпринизкотемпературнойадаптациилистьевикор-нейтеплолюбивыхрастенийтабака//Физиологиярастений.–2010,т.57,№1,с.153–156(in Russian)

ТалановаВ.В.,ТитовА.Ф.,БоеваН.П.Изменениеуровняэн-догеннойабсцизовойкислотывлистьяхрастенийподвлия-ниемхолодовойитепловойзакалки//Физиологиярастений.–1991,т.38,№5,с.991–997(in Russian)

ТитовА.Ф.,ШерудилоЕ.Г.Степеньподавленияпроцессовтепло-войихолодовойадаптациирастенийингибиторамисинтезаРНКибелкаприразныхзакаливающихтемпературах//Фи-зиологияибиохимиякультурныхрастений.–1990,т.22,№4,с.384–388(in Russian)

ISSN 1392-3196 Žemdirbystė=Agriculture,vol.99,No.2(2012),p.111‒124UDK634.1:581.17:576.3

Žemų temperatūrų poveikis jautriems augalams: apžvalgaA.S.Lukatkin1,A.Brazaitytė2,Č.Bobinas2,P.Duchovskis2

1Mordovijosvalstybinisuniversitetas,Rusija2LietuvosagrariniųirmiškųmokslųcentroSodininkystėsirdaržininkystėsinstitutas

SantraukaŽemosteigiamos(1–10°C)temperatūrossąlygojadaugybęfiziologiniųsutrikimųtokiomstemperatūromsjautriųaugalųląstelėse,otailemiatropiniųirsubtropiniųaugalų,pavyzdžiui,daugeliodaržovių,žūtį.Literatūrosapžvalgaparodė,kadšilumamėgiųaugalųlaikymasžemųteigiamųtemperatūrųsąlygomisnulemiavisųfiziologiniųprocesų(vandensrežimo,mineralinėsmitybos,fotosintezės,kvėpavimo,medžiagųapykaitos)pažeidimus.Šilumamėgiųaugalųmedžiagųapykaitos inaktyvacija,nustatytažemųtemperatūrųsąlygomis,priklausoirnuotemperatūros,irnuojostrukmės.Augalųatsakasįžemųteigiamųtemperatūrųpoveikįyrasusijęssukeletomažosmolekulinėsmasėsbaltymųgenųtranskripcijosgreičiu.Apžvalgojeanalizuojamižemųtemperatūrųpažeidimųsampratoskaitosistoriniaiaspektaiiršiuolaikiniųtyrimųkryptys. Remiantis autorių tyrimais ir literatūros duomenis, pasiūlyta žemų teigiamų temperatūrų pažeidimųkoncepcija,pagalkuriądidžiausiareikšmėtenkaoksidaciniamstresuikaipstresinėsreakcijossukėlėjui.Pagalšiąkoncepcijąpasiūlytikelibūdai,kaippadidintižemųtemperatūrųtoleranciją.Jiesuskirstytiįkeliasgrupes:terminispoveikis (grūdinimas žemomis temperatūromis, temperatūrinis kondicionavimas, tarpinis atšildymas, šilumosstreso poveikis), cheminis apdorojimas (mikroelementais, sintetiniais augimo reguliatoriais, antioksidantais) irgenųbeiląsteliųinžinerijospanaudojimas.

Reikšminiai žodžiai: antioksidantai, fiziologiniai procesai, ląstelės, oksidacinis stresas, žemoms teigiamomstemperatūromsjautrūsaugalai.

Chilling injury in chilling-sensitive plants: a review