chpt loops for the lattice: pion mass and decay constant...

34
ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass and decay constant n n oscillations Conclusions 1/33 ChPT loops for the lattice: pion mass and decay constant; HVP at finite volume and n ¯ n-oscillations Johan Bijnens Lund University [email protected] http://thep.lu.se/~bijnens http://thep.lu.se/~bijnens/chpt/ http://thep.lu.se/~bijnens/chiron/ Lattice 2017 — Granada 22 June 2017

Upload: hakhuong

Post on 17-Aug-2019

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

1/33

ChPT loops for the lattice: pion mass anddecay constant; HVP at finite volume and

nn-oscillations

Johan Bijnens

Lund University

[email protected]

http://thep.lu.se/~bijnens

http://thep.lu.se/~bijnens/chpt/

http://thep.lu.se/~bijnens/chiron/

Lattice 2017 — Granada 22 June 2017

Page 2: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

2/33

Overview

1 Introduction

2 Vector two-point functions for aµ LO-HVPConnected and disconnected in infinite volumeFinite volumeTwistingResults

3 Pion mass and decay constant

4 nn oscillations

5 Conclusions

Page 3: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

3/33

Chiral Perturbation Theory

ChPT = Effective field theory describing the lowest orderpseudo-scalar representation

or the (pseudo) Goldstone bosons from spontaneousbreaking of chiral symmetry.

The number of degrees of freedom depend on the case welook at

Treat π, η,K as light and pointlike with a derivative andquark-mass expansion

Recent review of LECs:JB, Ecker,Ann.Rev.Nucl.Part.Sci. 64 (2014) 149 [arXiv:1405.6488]

Page 4: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

(Dis)connected

Finite volume

Twisting

Results

Pion mass anddecay constant

nn oscillations

Conclusions

4/33

Why

Muon: aµ = (g − 2)/2 and aLO,HVPµ =

∫ ∞0

dQ2f(Q2)

Π(Q2)

0.00 0.05 0.10 0.15 0.200.000

0.002

0.004

0.006

0.008

0.010

0.012

plot: f(Q2)

Π(Q2)

with Q2 = −q2 in GeV2

Figure and data:Aubin, Blum, Chau, Golterman, Peris, Tu,

Phys. Rev. D93 (2016) 054508 [arXiv:1512.07555]

Low energy quantity so ChPT should be useful

Page 5: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

(Dis)connected

Finite volume

Twisting

Results

Pion mass anddecay constant

nn oscillations

Conclusions

5/33

Two-point: Connected versus disconnected

Connected Disconnectedyellow=lots of quarks/gluons

Πµνab (q) ≡ i

∫d4xe iq·x

⟨T (jµa (x)jν†a (0))

⟩jµπ+ = dγµu

jµu = uγµu, jµd = dγµd , jµs = sγµs

jµe =2

3uγµu − 1

3dγµd−1

3sγµs

ChPT p4: Della Morte, Juttner, JHEP 1011(2010)154 [arXiv:1009.3783]

ChPT p6: JB, Relefors, JHEP 1611(2016)086 [arXiv:1609.01573]

Page 6: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

(Dis)connected

Finite volume

Twisting

Results

Pion mass anddecay constant

nn oscillations

Conclusions

6/33

Two-point: Connected versus disconnected

Include also singlet part of the vector current

There are new terms in the Lagrangian

p4 only one more: 〈Lµν〉 〈Lµν〉+ 〈Rµν〉 〈Rµν〉(drops out when subtracting Π(0))

=⇒ The pure singlet vector current does not couple tomesons until p6

=⇒ Loop diagrams involving the pure singlet vectorcurrent only appear at p8 (implies relations)

p6 (no full classification, just some examples)〈DρLµν〉 〈DρLµν〉+ 〈DρRµν〉 〈DρRµν〉,〈Lµν〉

⟨Lµνχ†U

⟩+ 〈Rµν〉

⟨RµνχU†

⟩,. . .

Results at two-loop order, unquenched isospin limit

Page 7: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

(Dis)connected

Finite volume

Twisting

Results

Pion mass anddecay constant

nn oscillations

Conclusions

7/33

Two-point: Connected versus disconnected

Πµνπ+π+ : only connected

Πµνud : only disconnected

Πµνuu = Πµν

π+π+ + Πµνud

Πµνee =

5

9Πµνπ+π+ +

1

9Πµνud

Infinite volume (and the ab considered here):

Πµνab =

(qµqν − q2gµν

(1)ab

Large Nc + VMD estimate: Π(1)π+π+ =

4F 2π

M2V − q2

Plots on next pages are for Π(1)ab0(q2) = Π

(1)ab (q2)− Π

(1)ab (0)

At p4 the extra LEC cancels, at p6 there are new LECcontributions, but no new ones in the loop parts

Page 8: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

(Dis)connected

Finite volume

Twisting

Results

Pion mass anddecay constant

nn oscillations

Conclusions

8/33

Two-point: Connected versus disconnected

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

-0.1 -0.08 -0.06 -0.04 -0.02 0

Π(1

+0

q2

VMD

p4+p

6

p4

p6 R

p6 L

• Connected• p6 is large• Due to theLri loops

Page 9: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

(Dis)connected

Finite volume

Twisting

Results

Pion mass anddecay constant

nn oscillations

Conclusions

9/33

Two-point: Connected versus disconnected

0

0.0005

0.001

0.0015

0.002

0.0025

-0.1 -0.08 -0.06 -0.04 -0.02 0

Π(1

)u

d0

q2

p4+p

6

p4

p6 R

p6 L

• Disconnected• p6 is large• Due to theLri loops• about−1

2 connected

• − 110 is from

Π(1)ee =

59 Π

(1)π+π+ + 1

9 Π(1)ud

Page 10: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

(Dis)connected

Finite volume

Twisting

Results

Pion mass anddecay constant

nn oscillations

Conclusions

10/33

Two-point: with strange, electromagnetic current

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

-0.1 -0.08 -0.06 -0.04 -0.02 0

q2

5/9 π

1/9 ud

1/9 ss

-2/9 us

sum

• πconnected u,d• uddisconnected u,d• ssstrange current• usmixed s–u,d• new p6 LECcancels• Disconnectedstrange ≈ −15%of total strangeJB, Relefors,

LU TP 16-51 to appear

Page 11: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

(Dis)connected

Finite volume

Twisting

Results

Pion mass anddecay constant

nn oscillations

Conclusions

11/33

Finite volume

One-loop calculation in finite volume done byAubin et al, Phys.Rev. D88 (2013) 7, 074505 [arXiv:1307.4701]

Aubin et al. Phys. Rev. D93 (2016) 054508 [arXiv:1512.07555]

and found to fit lattice data well

two-loop in partially quenchedJB, Relefors, LU TP 16-51 to appear

I will stay with ChPT and the p regime (MπL >> 1)

1/mπ = 1.4 fmmay need to (and I will) go beyond leading e−mπL terms“around the world as often as you like”

Convergence of ChPT is given by 1/mρ ≈ 0.25 fm

Page 12: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

(Dis)connected

Finite volume

Twisting

Results

Pion mass anddecay constant

nn oscillations

Conclusions

12/33

Finite volume and Twisted boundary conditions

On a lattice at finite volume pi = 2πni/L: very fewmomenta directly accessible

Put a constraint on certain quark fields in some directions:q(x i + L) = e iθ

iqq(x i )

Then momenta are pi = θi/L + 2πni/L. Allows to mapout momentum space on the lattice much betterBedaque,. . .

Small note:

Beware what people call momentum:is θi/L included or not?Reason: a colour singlet gauge transformationGSµ → GS

µ − ∂µε(x), q(x)→ e iε(x)q(x), ε(x) = −θiqx i/LBoundary conditionTwisted ⇔ constant background field+periodic

Page 13: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

(Dis)connected

Finite volume

Twisting

Results

Pion mass anddecay constant

nn oscillations

Conclusions

13/33

Finite volume and twisting: Drawbacks

Drawbacks:

Box: Rotation invariance → cubic invariance

Twisting: reduces symmetry further

Consequences:

m2(~p2) = E 2 − ~p2 is not constant

There are typically more form-factors

In general: quantities depend on more (all) components ofthe momenta

Charge conjugation involves a change in momentum

Page 14: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

(Dis)connected

Finite volume

Twisting

Results

Pion mass anddecay constant

nn oscillations

Conclusions

14/33

Two-point function: twisted boundary conditions

JB, Relefors, JHEP 05 (201)4 015 [arXiv:1402.1385]∫V

ddk

(2π)dkµ

k2 −m26= 0

〈uγµu〉 6= 0

jµπ+ = dγµu

satisfies ∂µ⟨T (jµπ+(x)jν†π+(0))

⟩= δ(4)(x)

⟨dγνd − uγνu

⟩Πµνa (q) ≡ i

∫d4xe iq·x

⟨T (jµa (x)jν†a (0))

⟩Satisfies WT identity. qµΠµν

π+ =⟨uγµu − dγµd

⟩ChPT at one-loop satisfies thissee also Aubin et al, Phys.Rev. D88 (2013) 7, 074505 [arXiv:1307.4701]

two-loop in partially quenchedJB, Relefors, LU TP 16-51, to appear

satisfies the WT identity (as it should)

Page 15: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

(Dis)connected

Finite volume

Twisting

Results

Pion mass anddecay constant

nn oscillations

Conclusions

15/33

〈uγµu〉

-3e-06

-2e-06

-1e-06

0

1e-06

2e-06

3e-06

0 π/2 π 3π/2 2π

⟨− uγµ

u⟩

twis

ted

θu

p4

p6 R

p6 L

p4+p

6

-3e-06

-2e-06

-1e-06

0

1e-06

2e-06

3e-06

0 π/2 π 3π/2 2π⟨− u

γµu

⟩ part

ially

tw

iste

d

θu

p4

p6 R

p6 L

p4+p

6

Fully twisted Partially twistedθu = (0, θu, 0, 0), all others untwistedmπL = 4 (ratio at p4 ≡ 2 up to kaon loops)

For comparison:〈uu〉V ≈ −2.4 10−5 GeV3

〈uu〉 ≈ −1.2 10−2 GeV3

Page 16: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

(Dis)connected

Finite volume

Twisting

Results

Pion mass anddecay constant

nn oscillations

Conclusions

16/33

Two-point partially twisted: components

-0.0001

-8e-05

-6e-05

-4e-05

-2e-05

0

2e-05

4e-05

-0.1 -0.08 -0.06 -0.04 -0.02 0

∆V

Ππ

ν [G

eV

2]

q2 [GeV

2]

sinθxu

p4+p

6 µν=00

p4+p

6 µν=11

p4+p

6 µν=12

-0.0001

-8e-05

-6e-05

-4e-05

-2e-05

0

2e-05

4e-05

-0.1 -0.08 -0.06 -0.04 -0.02 0∆

π+

µν [G

eV

2]

q2 [GeV

2]

sinθxu

µν=00

µν=11

µν=22

Twisting spatially symmetric Twisting in x-direction

Small p6 corrections (thin lines: p4 only)

mπ0L = 4 mπ0 = 0.135 GeV

−q2Π(1)VMD = −4q2F 2

π

M2V−q2 ≈5e-3· q

2

0.1 =⇒ Correction at % level

Can use the difference between different twists with sameq2 to check the finite volume corrections

Page 17: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

(Dis)connected

Finite volume

Twisting

Results

Pion mass anddecay constant

nn oscillations

Conclusions

17/33

Two-point partially twisted: spatial average

-9e-05

-8e-05

-7e-05

-6e-05

-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

0

-0.1 -0.08 -0.06 -0.04 -0.02 0

Σi(

∆V

Πii π

+)/

3 [G

eV

2]

q2 [GeV

2]

p4 xyz

p4 x

-9e-05

-8e-05

-7e-05

-6e-05

-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

0

-0.1 -0.08 -0.06 -0.04 -0.02 0Σ

i(∆

ii π+)/

3 [G

eV

2]

q2 [GeV

2]

p4+p

6 xyz

p4+p

6 x

p4 only p4 + p6

Plotted: volume correction to Π =1

3

∑i=x ,y ,z

Πii

Small p6 corrections: compare left and right

Can use the difference between different twists with sameq2 to check the finite volume corrections

Page 18: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

18/33

Two flavour ChPT: mass and decay constant

First step towards finding out why hard-pion ChPT doesnot work at three-loops

Lowest order: Gell-Mann, Oakes, Renner (1968)

Chiral logarithm Langacker, Pagels (1973)

Full NLO (and properly starting ChPT) Gasser-Leutwyler (1984)

NNLO Buergi (1996), JB, Colangelo, Ecker, Gasser, Sainio (1996)

NNNLO JB, Hermansson-Truedsson (2017)

Page 19: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

19/33

Methods used

LO and Chiral logs: current algebra

NLO: Feynman diagrams (by hand) and direct expansionof functional integral (with REDUCE)

NNLO: Feynman diagrams(with a little help from FORM)

NNLO: Feynman diagrams purely with FORM

Main stumbling block: integralsReduction to master integrals with reduze Studerus (2009)

Master Integrals knownLaporta-Remiddi (1996); Melnikov, van Ritbergen (2001)

Lots of book-keeping: FORM

Checks:All nonlocal divergences must cancelUse different parametrizations of the LagrangianAgree with known leading log result JB, Carloni (2009)

Page 20: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

19/33

Methods used

LO and Chiral logs: current algebra

NLO: Feynman diagrams (by hand) and direct expansionof functional integral (with REDUCE)

NNLO: Feynman diagrams(with a little help from FORM)

NNLO: Feynman diagrams purely with FORM

Main stumbling block: integralsReduction to master integrals with reduze Studerus (2009)

Master Integrals knownLaporta-Remiddi (1996); Melnikov, van Ritbergen (2001)

Lots of book-keeping: FORM

Checks:All nonlocal divergences must cancelUse different parametrizations of the LagrangianAgree with known leading log result JB, Carloni (2009)

Page 21: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

20/33

Diagrams

p2; p4; p6; p8

Page 22: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

21/33

Results: LO or x-expansion/physical or ξ-expansion

x =M2

16π2F 2, Lx = log

M2

µ2, M2 = 2Bm

M2π

M2= 1 + x

(aM11Lx + aM10

)+ x2

(aM22L

2x + aM21Lx + aM20

)+x3

(aM33L

3x + aM32L

2x + aM31Lx + aM30

)+ · · ·

FπF

= 1 + x(aF11Lx + aF10

)+ x2

(aF22L

2x + aF21Lx + aF20

)+x3

(aF33L

3x + aF32L

2x + aF31Lx + aF30

)+ · · ·

ξ =M2π

16π2F 2π

, Lπ = logM2π

µ2

M2

M2π

= 1 + ξ(bM11Lπ + bM10

)+ ξ2

(bM22L

2π + bM21Lπ + bM20

)+ξ3

(bM33L

3π + bM32L

2π + bM31Lπ + bM30

)+ · · ·

F

Fπ= 1 + ξ

(bF11Lπ + bF10

)+ ξ2

(bF22L

2π + bF21Lπ + bF20

)+ξ3

(bF33L

3π + bF32L

2π + bF31Lπ + bF30

)+ · · ·

Page 23: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

22/33

Results li = 16π2l ri , ci = (16π2)2c ri

aM1112

aM10 2l3

aM22178

aM21 −3l3 − 8l2 − 14l1 − 4912

aM20 64c18 + 32c17 + 96c11 + 48c10 − 16c9 − 32c8 − 16c7

−32c6 + l3 + 2l2 + l1 + 19396

aM3310324

aM32232 l3 − 11l2 − 38l1 − 91

24

aM31 −416c18 − 208c17 − 32c16 + 96c14 + 8c13 − 48c12

−384c11 − 192c10 + 72c9 + 144c8 + 72c7 + 64c6 − 8c5

−56c4 + 16c3 + 32c2 − 96c1 − 8l23 − 48l3 l2 − 84l3 l1−88

3 l3 − 23110 l2 − 69

5 l1 − 749718640

aM30 contains free p8 LECs (and a lot more terms)

Page 24: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

23/33

Results: comments

Similar tables for aFi , bMi , bFiCoefficients depend on scale µ, but whole expression isµ-independent

Can be rewritten in terms of scales in the logarithm ratherthan in terms of LECs a la FLAG

Leading log: a number

NLL: depends on l riNNLL: depends on c riFor the mass all needed c ri can be had from mass,decay-constant and ππ parameters fitted to two-loop or p6

(i.e. rM , rF , r1, . . . , r6).

For decay need one more (busy checking if it can be had)

Page 25: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

24/33

Results: numerics preliminary

ij aMij bMij aFij bFij10 +0.00282 −0.00282 +1.09436 −1.0943611 +0.5 −0.5 −1 +1

20 +1.65296 −1.65771 −0.04734 −1.1500121 +2.4573 −3.29038 −1.90577 +4.1388522 +2.125 −0.625 −1.25 −0.25

30 +0.39527 −6.7854 −244.499 242.23631 −3.75977 +4.32719 −19.0601 32.131532 +17.1476 +0.62039 −9.39462 −6.7751133 +4.29167 +5.14583 −3.45833 −0.41666

Note the large coefficients in the decay constant

Page 26: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

25/33

Pion mass

Fπ = 92.2 MeV, F = Fπ/1.037, l1 = −0.4, l2 = 4.3, l3 = 3.41, l4 = 4.51,

ri from JB et al 1997, other cri = 0, µ = 0.77 GeV

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

M2 π/M

2

M2 [GeV

2]

p4

p6

p8

x-expansion (F -fixed)

1

1.02

1.04

1.06

1.08

1.1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

M2/M

2 π

M2π [GeV

2]

p4

p6

p8

ξ-expansion (Fπ fixed)

ξ-expansion converges notably better

Page 27: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

26/33

Pion decay constant

1

1.05

1.1

1.15

1.2

1.25

1.3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Fπ/F

M2 [GeV

2]

p4

p6

p8

x-expansion (F -fixed)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16F

/Fπ

M2π [GeV

2]

p4

p6

p8

ξ-expansion (Fπ fixed)

ξ-expansion converges better

Large p6 due to the “240” in aF30 and bF30

Page 28: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

27/33

nn oscillations

some GUT models have neutron-anti-neutron oscillationsbut no proton decay

Limits:

8.6 107s from free neutrons (ILL)2.7 108s from oxygen nuclei (super-K)(n mass inside nuclei very different from n-mass)Possible ESS experiment improvement by up to 103

Effective dimension 9 operator: “uuduud”

Classification of quark operators and RGE to two loops:Buchoff, Wagman, Phys. Rev D93(2016)016005 [arXiv:1506.00647]

and earlier papers in there

E. Kofoed, Master thesis LU TP 16-62; JB, Kofoed, in preparation

Page 29: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

28/33

Operators

14 operators

Chiral representations under SU(2)L × SU(2)R :

Chiral #operators Chiral #operators

(1L, 3R) 3: Q1,Q2,Q3 (3L, 1R) 3(5L, 3R) 3: Q5,Q6,Q7 (3L, 5R) 3(1L, 7R) 1: Q4 (7L, 1R) 1

nn is ∆I = 1 so bottom line needs isospin breaking

For the others the different operators are differentelements within the same representation

Use heavy baryon formalism with a baryon (N ) andanti-baryon doublet (N c) with same velocity v

These correspond two widely separated areas (v and −v)in the relativistic field: so no double counting

Page 30: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

29/33

ChPT terms

L =F 2

4〈uµuµ + χ+〉+N (iv · D + gAu · S)N

+N cτ2 (iv · D + gAu · S) τ2N c + higher orders

N =

(pn

)→ hN , N c =

(pc nc

)→ N chT

h(gL, gR , u): SU(2)V compensator chiral transformation

Spurions for each quark nn operator:

(1L, 3R): two SU(2)R doublet indices(5L, 3R): four SU(2)L and two SU(2)L doublet indices(1L, 7R): six SU(2)R double indicesplus parity conjugates

Page 31: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

30/33

ChPT terms and diagrams

p0:

(1L, 3R):(uN c

)iL

(uN )jL(5L, 3R):

(u†N c

)iL

(u†N

)jL

(Uτ 2

)kR lL

(Uτ 2

)mRnL

(7L, 1R): none (first one at p2)

p1: none that directly contribute (but in loops from p3)

p2: many (at least 20 each for (3L, 1R) and (3L, 5R))

ZNp2

Page 32: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

31/33

Results (Preliminary)

Q1,Q2,Q3 same factor from loops (isospin)

Q5,Q6,Q7 same factor(Conjecture: due to projection on I = 1 subspace)

Q1,Q2,Q3:

1 + M2π

16π2F 2π

((−3

2g2A − 1) log M2

π

µ2 − g2A

)+ order p2 LECs

Q5,Q6,Q7:

1 + M2π

16π2F 2π

((−3

2g2A − 7) log M2

π

µ2 − g2A

)+ order p2 LECs

Also done at finite volume

Page 33: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

32/33

Results (Preliminary)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

m2π [GeV

2]

Q1

Q5

Relative correctionfrom loops

0.0001

0.001

0.01

0.1

1

2 2.5 3 3.5 4 4.5 5 5.5 6

mπ L

Q1

Q5

Relative correctionfrom loops (absolute value)

Page 34: ChPT loops for the lattice: pion mass and decay constant ...home.thep.lu.se/~bijnens/talks/lattice17.pdf · ChPT loops for the lattice Johan Bijnens Introduction Two-point Pion mass

ChPT loopsfor the lattice

Johan Bijnens

Introduction

Two-point

Pion mass anddecay constant

nn oscillations

Conclusions

33/33

Conclusions

Showed you results for:

HVP: ChPT at two-loops including partially quenched

Connected versus disconnected at two-loopsConnected: twisting and finite volume at two-loops

Two flavour ChPT correction at three loops for the pionmass and decay constant

Two flavour ChPT correction at one-loop fornn-oscillations

Be careful: ChPT must exactly correspond to your latticecalculation

Programs available (for published ones) via CHIRONThose for this talk: sometime later this year (I hope) (orask me)